PDBCharges: Quantum-Mechanical Partial Atomic Charges for PDB Structures
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
LM2023055
Ministry of Education
Masaryk University
PubMed
40347106
PubMed Central
PMC12230704
DOI
10.1093/nar/gkaf401
PII: 8128216
Knihovny.cz E-zdroje
- MeSH
- databáze proteinů * MeSH
- internet MeSH
- konformace proteinů MeSH
- kvantová teorie MeSH
- proteiny * chemie MeSH
- software * MeSH
- statická elektřina MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny * MeSH
The Protein Data Bank (PDB) is the largest database of experimentally determined protein structures, containing more than 230 000 experimentally determined structures. The chemical reactivity of proteins is based on the electron density distribution, which is usually approximated by partial atomic charges. However, because of the size and high variability, there is not yet a universal and accurate tool for calculating the partial atomic charges of these structures. For this reason, we introduce the web application PDBCharges: a tool for quick calculation of partial atomic charges for protein structures from PDB. The charges are calculated using the recent semi-empirical quantum-mechanical method GFN1-xTB, which reproduces PBE0/TZVP/CM5 charges. The computed partial atomic charges can be downloaded in common data formats or visualized online via the powerful Mol* Viewer. The PDBCharges application is freely available at https://pdbcharges.biodata.ceitec.cz and has no login requirement.
CEITEC Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Institute of Computer Science Masaryk University 602 00 Brno Czech Republic
Zobrazit více v PubMed
Burley SK, Bhatt R, Bhikadiya C et al. Updated resources for exploring experimentally-determined PDB structures and computed structure models at the RCSB Protein Data Bank. Nucleic Acids Res. 2025; 53:D564–74. 10.1093/nar/gkae1091. PubMed DOI PMC
Batool M, Ahmad B, Choi S A structure-based drug discovery paradigm. Int J Mol Sci. 2019; 20:2783. 10.3390/ijms20112783. PubMed DOI PMC
Lee D, Redfern O, Orengo C Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol. 2007; 8:995–1005. 10.1038/nrm2281. PubMed DOI
PDBe-KB Consortium PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Res. 2022; 50:D534–42. 10.1093/nar/gkab988. PubMed DOI PMC
Raček T, Schindler O, Toušek D et al. Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges. Nucleic Acids Res. 2020; 48:W591–6. 10.1093/nar/gkaa367. PubMed DOI PMC
Eberhart ME, Alexandrova AN, Ajmera P et al. Methods for theoretical treatment of local fields in proteins and enzymes. Chem Rev. 2025; 125:3772–813. PubMed
Kangas E, Tidor B Electrostatic complementarity at ligand binding sites: application to chorismate mutase. J Phys Chem B. 2001; 105:880–8. 10.1021/jp003449n. DOI
Gitlin I, Carbeck JD, Whitesides GM Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chem Int Ed Engl. 2006; 45:3022–60. 10.1002/anie.200502530. PubMed DOI
Park H, Lee J, Lee S Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins. 2006; 65:549–54. 10.1002/prot.21183. PubMed DOI
Rappé AK, Goddard III WA Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991; 95:3358–63. 10.1021/j100161a070. DOI
Shankar R Principles of Quantum Mechanics. 2012; New York, NY: Springer; 10.1007/978-1-4757-0576-8. DOI
Reed AE, Weinstock RB, Weinhold F Natural population analysis. J Phys Chem. 1985; 83:735–46. 10.1063/1.449486. DOI
Schindler O, Raček T, Maršavelski A et al. Optimized SQE atomic charges for peptides accessible via a web application. J Cheminform. 2021; 13:45. 10.1186/s13321-021-00528-w. PubMed DOI PMC
Ionescu CM, Sehnal D, Falginella FL et al. AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminform. 2015; 7:50. 10.1186/s13321-015-0099-x. PubMed DOI PMC
Schindler O, Berka K, Cantara A et al. αCharges: partial atomic charges for AlphaFold structures in high quality. Nucleic Acids Res. 2023; 51:W11–6. 10.1093/nar/gkad349. PubMed DOI PMC
Landrum G, Tosco P, Kelley B et al. RDKit: open-source cheminformatics. (7 March 2024, date last accessed) 10.5281/zenodo.10793672. DOI
Cock PJ, Antao T, Chang JT et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25:1422. 10.1093/bioinformatics/btp163. PubMed DOI PMC
Wojdyr M GEMMI: a library for structural biology. J Open Source Softw. 2022; 7:4200. 10.21105/joss.04200. DOI
Kunzmann P, Hamacher K Biotite: a unifying open source computational biology framework in Python. BMC Bioinformatics. 2018; 19:346. 10.1186/s12859-018-2367-z. PubMed DOI PMC
Eastman P, Swails J, Chodera JD et al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. 2017; 13:e1005659. 10.1371/journal.pcbi.1005659. PubMed DOI PMC
Berman H, Henrick K, Nakamura H Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol. 2003; 10:980. 10.1038/nsb1203-980. PubMed DOI
Ropp PJ, Kaminsky JC, Yablonski S et al. Dimorphite-DL: an open-source program for enumerating the ionization states of drug-like small molecules. J Cheminform. 2019; 11:14. 10.1186/s13321-019-0336-9. PubMed DOI PMC
Kunzmann P, Anter JM, Hamacher K Adding hydrogen atoms to molecular models via fragment superimposition. Algorithm Mol Biol. 2022; 17:7. 10.1186/s13015-022-00215-x. PubMed DOI PMC
Doerr S, Harvey MJ, Noé F et al. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theor Comput. 2016; 12:1845–52. 10.1021/acs.jctc.6b00049. PubMed DOI
Dolinsky TJ, Nielsen JE, McCammon JA et al. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 2004; 32:W665–7. 10.1093/nar/gkh381. PubMed DOI PMC
Olsson MH, Søndergaard CR, Rostkowski M et al. PROPKA3: consistent treatment of internal and surface residues in empirical p PubMed DOI
Spicher S, Grimme S Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew Chem Int Ed Engl. 2020; 59:15665–73. 10.1002/anie.202004239. PubMed DOI PMC
Grimme S, Bannwarth C, Shushkov P A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements ( PubMed DOI
Bannwarth C, Caldeweyher E, Ehlert S et al. Extended tight-binding quantum chemistry methods. Wiley Interdiscip Rev Comput Mol Sci. 2021; 11:e1493. 10.1002/wcms.1493. DOI
Sehnal D, Bittrich S, Deshpande M et al. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC
O’Boyle NM, Banck M, James CA et al. Open Babel: an open chemical toolbox. J Cheminform. 2011; 3:33. 10.1186/1758-2946-3-33. PubMed DOI PMC
Burke JE, Dennis EA Phospholipase A2 biochemistry. Cardiovasc Drug Ther. 2009; 23:49–59. 10.1007/s10557-008-6132-9. PubMed DOI PMC
Gaspar D, Lúcio M, Wagner K et al. A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs. Biophys Chem. 2010; 152:109–17. 10.1016/j.bpc.2010.08.006. PubMed DOI
Imberty A, Wimmerová M, Mitchell EP et al. Structures of the lectins from PubMed DOI
Mitchell E, Houles C, Sudakevitz D et al. Structural basis for oligosaccharide-mediated adhesion of PubMed DOI
Mitchell EP, Sabin C, Šnajdrová L et al. High affinity fucose binding of PubMed DOI
Adam J, Pokorná M, Sabin C et al. Engineering of PA-IIL lectin from PubMed DOI PMC
Reyes R, Duprat F, Lesage F et al. Cloning and expression of a novel pH-sensitive two pore domain K PubMed DOI
Li B, Rietmeijer RA, Brohawn SG Structural basis for pH gating of the two-pore domain K PubMed DOI PMC