PDBCharges: Quantum-Mechanical Partial Atomic Charges for PDB Structures

. 2025 Jul 07 ; 53 (W1) : W457-W462.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40347106

Grantová podpora
LM2023055 Ministry of Education
Masaryk University

The Protein Data Bank (PDB) is the largest database of experimentally determined protein structures, containing more than 230 000 experimentally determined structures. The chemical reactivity of proteins is based on the electron density distribution, which is usually approximated by partial atomic charges. However, because of the size and high variability, there is not yet a universal and accurate tool for calculating the partial atomic charges of these structures. For this reason, we introduce the web application PDBCharges: a tool for quick calculation of partial atomic charges for protein structures from PDB. The charges are calculated using the recent semi-empirical quantum-mechanical method GFN1-xTB, which reproduces PBE0/TZVP/CM5 charges. The computed partial atomic charges can be downloaded in common data formats or visualized online via the powerful Mol* Viewer. The PDBCharges application is freely available at https://pdbcharges.biodata.ceitec.cz and has no login requirement.

Zobrazit více v PubMed

Burley  SK, Bhatt  R, Bhikadiya  C  et al.  Updated resources for exploring experimentally-determined PDB structures and computed structure models at the RCSB Protein Data Bank. Nucleic Acids Res. 2025; 53:D564–74. 10.1093/nar/gkae1091. PubMed DOI PMC

Batool  M, Ahmad  B, Choi  S  A structure-based drug discovery paradigm. Int J Mol Sci. 2019; 20:2783. 10.3390/ijms20112783. PubMed DOI PMC

Lee  D, Redfern  O, Orengo  C  Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol. 2007; 8:995–1005. 10.1038/nrm2281. PubMed DOI

PDBe-KB  Consortium  PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Res. 2022; 50:D534–42. 10.1093/nar/gkab988. PubMed DOI PMC

Raček  T, Schindler  O, Toušek  D  et al.  Atomic Charge Calculator II: web-based tool for the calculation of partial atomic charges. Nucleic Acids Res. 2020; 48:W591–6. 10.1093/nar/gkaa367. PubMed DOI PMC

Eberhart  ME, Alexandrova  AN, Ajmera  P  et al.  Methods for theoretical treatment of local fields in proteins and enzymes. Chem Rev. 2025; 125:3772–813. PubMed

Kangas  E, Tidor  B  Electrostatic complementarity at ligand binding sites: application to chorismate mutase. J Phys Chem B. 2001; 105:880–8. 10.1021/jp003449n. DOI

Gitlin  I, Carbeck  JD, Whitesides  GM  Why are proteins charged? Networks of charge–charge interactions in proteins measured by charge ladders and capillary electrophoresis. Angew Chem Int Ed Engl. 2006; 45:3022–60. 10.1002/anie.200502530. PubMed DOI

Park  H, Lee  J, Lee  S  Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins. 2006; 65:549–54. 10.1002/prot.21183. PubMed DOI

Rappé  AK, Goddard  III WA  Charge equilibration for molecular dynamics simulations. J Phys Chem. 1991; 95:3358–63. 10.1021/j100161a070. DOI

Shankar  R  Principles of Quantum Mechanics. 2012; New York, NY: Springer; 10.1007/978-1-4757-0576-8. DOI

Reed  AE, Weinstock  RB, Weinhold  F  Natural population analysis. J Phys Chem. 1985; 83:735–46. 10.1063/1.449486. DOI

Schindler  O, Raček  T, Maršavelski  A  et al.  Optimized SQE atomic charges for peptides accessible via a web application. J Cheminform. 2021; 13:45. 10.1186/s13321-021-00528-w. PubMed DOI PMC

Ionescu  CM, Sehnal  D, Falginella  FL  et al.  AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminform. 2015; 7:50. 10.1186/s13321-015-0099-x. PubMed DOI PMC

Schindler  O, Berka  K, Cantara  A  et al.  αCharges: partial atomic charges for AlphaFold structures in high quality. Nucleic Acids Res. 2023; 51:W11–6. 10.1093/nar/gkad349. PubMed DOI PMC

Landrum  G, Tosco  P, Kelley  B  et al.  RDKit: open-source cheminformatics. (7 March 2024, date last accessed) 10.5281/zenodo.10793672. DOI

Cock  PJ, Antao  T, Chang  JT  et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25:1422. 10.1093/bioinformatics/btp163. PubMed DOI PMC

Wojdyr  M  GEMMI: a library for structural biology. J Open Source Softw. 2022; 7:4200. 10.21105/joss.04200. DOI

Kunzmann  P, Hamacher  K  Biotite: a unifying open source computational biology framework in Python. BMC Bioinformatics. 2018; 19:346. 10.1186/s12859-018-2367-z. PubMed DOI PMC

Eastman  P, Swails  J, Chodera  JD  et al.  OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. 2017; 13:e1005659. 10.1371/journal.pcbi.1005659. PubMed DOI PMC

Berman  H, Henrick  K, Nakamura  H  Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol. 2003; 10:980. 10.1038/nsb1203-980. PubMed DOI

Ropp  PJ, Kaminsky  JC, Yablonski  S  et al.  Dimorphite-DL: an open-source program for enumerating the ionization states of drug-like small molecules. J Cheminform. 2019; 11:14. 10.1186/s13321-019-0336-9. PubMed DOI PMC

Kunzmann  P, Anter  JM, Hamacher  K  Adding hydrogen atoms to molecular models via fragment superimposition. Algorithm Mol Biol. 2022; 17:7. 10.1186/s13015-022-00215-x. PubMed DOI PMC

Doerr  S, Harvey  MJ, Noé  F  et al.  HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theor Comput. 2016; 12:1845–52. 10.1021/acs.jctc.6b00049. PubMed DOI

Dolinsky  TJ, Nielsen  JE, McCammon  JA  et al.  PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 2004; 32:W665–7. 10.1093/nar/gkh381. PubMed DOI PMC

Olsson  MH, Søndergaard  CR, Rostkowski  M  et al.  PROPKA3: consistent treatment of internal and surface residues in empirical p PubMed DOI

Spicher  S, Grimme  S  Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew Chem Int Ed Engl. 2020; 59:15665–73. 10.1002/anie.202004239. PubMed DOI PMC

Grimme  S, Bannwarth  C, Shushkov  P  A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements ( PubMed DOI

Bannwarth  C, Caldeweyher  E, Ehlert  S  et al.  Extended tight-binding quantum chemistry methods. Wiley Interdiscip Rev Comput Mol Sci. 2021; 11:e1493. 10.1002/wcms.1493. DOI

Sehnal  D, Bittrich  S, Deshpande  M  et al.  Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021; 49:W431–7. 10.1093/nar/gkab314. PubMed DOI PMC

O’Boyle  NM, Banck  M, James  CA  et al.  Open Babel: an open chemical toolbox. J Cheminform. 2011; 3:33. 10.1186/1758-2946-3-33. PubMed DOI PMC

Burke  JE, Dennis  EA  Phospholipase A2 biochemistry. Cardiovasc Drug Ther. 2009; 23:49–59. 10.1007/s10557-008-6132-9. PubMed DOI PMC

Gaspar  D, Lúcio  M, Wagner  K  et al.  A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs. Biophys Chem. 2010; 152:109–17. 10.1016/j.bpc.2010.08.006. PubMed DOI

Imberty  A, Wimmerová  M, Mitchell  EP  et al.  Structures of the lectins from PubMed DOI

Mitchell  E, Houles  C, Sudakevitz  D  et al.  Structural basis for oligosaccharide-mediated adhesion of PubMed DOI

Mitchell  EP, Sabin  C, Šnajdrová  L  et al.  High affinity fucose binding of PubMed DOI

Adam  J, Pokorná  M, Sabin  C  et al.  Engineering of PA-IIL lectin from PubMed DOI PMC

Reyes  R, Duprat  F, Lesage  F  et al.  Cloning and expression of a novel pH-sensitive two pore domain K PubMed DOI

Li  B, Rietmeijer  RA, Brohawn  SG  Structural basis for pH gating of the two-pore domain K PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...