Engineering of PA-IIL lectin from Pseudomonas aeruginosa - Unravelling the role of the specificity loop for sugar preference
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17540045
PubMed Central
PMC1903359
DOI
10.1186/1472-6807-7-36
PII: 1472-6807-7-36
Knihovny.cz E-zdroje
- MeSH
- bakteriální adheziny chemie genetika MeSH
- chromatografie afinitní MeSH
- jednonukleotidový polymorfismus MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lektiny chemie genetika MeSH
- molekulární modely MeSH
- monosacharidy chemie MeSH
- mutageneze cílená MeSH
- proteinové inženýrství MeSH
- Pseudomonas aeruginosa genetika MeSH
- Ralstonia solanacearum chemie MeSH
- rekombinantní proteiny chemie izolace a purifikace MeSH
- rostlinné lektiny chemie MeSH
- substituce aminokyselin MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adhesin, Pseudomonas MeSH Prohlížeč
- bakteriální adheziny MeSH
- lektiny MeSH
- monosacharidy MeSH
- rekombinantní proteiny MeSH
- rostlinné lektiny MeSH
BACKGROUND: Lectins are proteins of non-immune origin capable of binding saccharide structures with high specificity and affinity. Considering the high encoding capacity of oligosaccharides, this makes lectins important for adhesion and recognition. The present study is devoted to the PA-IIL lectin from Pseudomonas aeruginosa, an opportunistic human pathogen capable of causing lethal complications in cystic fibrosis patients. The lectin may play an important role in the process of virulence, recognizing specific saccharide structures and subsequently allowing the bacteria to adhere to the host cells. It displays high values of affinity towards monosaccharides, especially fucose--a feature caused by unusual binding mode, where two calcium ions participate in the interaction with saccharide. Investigating and understanding the nature of lectin-saccharide interactions holds a great potential of use in the field of drug design, namely the targeting and delivery of active compounds to the proper site of action. RESULTS: In vitro site-directed mutagenesis of the PA-IIL lectin yielded three single point mutants that were investigated both structurally (by X-ray crystallography) and functionally (by isothermal titration calorimetry). The mutated amino acids (22-23-24 triad) belong to the so-called specificity binding loop responsible for the monosaccharide specificity of the lectin. The mutation of the amino acids resulted in changes to the thermodynamic behaviour of the mutants and subsequently in their relative preference towards monosaccharides. Correlation of the measured data with X-ray structures provided the molecular basis for rationalizing the affinity changes. The mutations either prevent certain interactions to be formed or allow formation of new interactions--both of afore mentioned have strong effects on the saccharide preferences. CONCLUSION: Mutagenesis of amino acids forming the specificity binding loop allowed identification of one amino acid that is crucial for definition of the lectin sugar preference. Altering specificity loop amino acids causes changes in saccharide-binding preferences of lectins derived from PA-IIL, via creation or blocking possible binding interactions. This finding opens a gate towards protein engineering and subsequent protein design to refine the desired binding properties and preferences, an approach that could have strong potential for drug design.
Zobrazit více v PubMed
Gabius HJ, Siebert HC, Andre S, Jimenez-Barbero J, Rudiger H. Chemical biology of the sugar code. Chembiochem. 2004;5:740–764. doi: 10.1002/cbic.200300753. PubMed DOI
Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Advanced drug delivery reviews. 2004;56:425–435. doi: 10.1016/j.addr.2003.10.030. PubMed DOI
Gilboa-Garber N. Pseudomonas aeruginosa lectins. Methods Enzymol. 1982;83:378–385. PubMed
Imberty A, Mitchell EP, Wimmerova M. Structural basis of high-affinity glycan recognition by bacterial and fungal lectins. Curr Opin Struct Biol. 2005;15:525–534. doi: 10.1016/j.sbi.2005.08.003. PubMed DOI
Rhim AD, Stoykova LI, Trindade AJ, Glick MC, Scanlin TF. Altered terminal glycosylation and the pathophysiology of CF lung disease. J Cyst Fibros. 2004;3:95–96. doi: 10.1016/j.jcf.2004.05.021. PubMed DOI
Roussel P, Lamblin G. The glycosylation of airway mucins in cystic fibrosis and its relationship with lung infection by Pseudomonas aeruginosa. Adv Exp Med Biol. 2003;535:17–32. PubMed
Stoykova LI, Ellway J, Rhim AD, Kim DJ, Glick MC, Scanlin TF. Binding of Pseudomonas aeruginosa lectin LecB to cystic fibrosis airway cells is inhibited by fucosylated compounds: Implications for therapy. Glycobiology. 2005;15:1228–1228.
Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S, Rosenau F, Jaeger KE. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology. 2005;151:1313–1323. doi: 10.1099/mic.0.27701-0. PubMed DOI
Sonawane A, Jyot J, Ramphal R. Pseudomonas aeruginosa LecB is involved in pilus biogenesis and protease IV activity but not in adhesion to respiratory mucins. Infection and Immunity. 2006;74:7035–7039. doi: 10.1128/IAI.00551-06. PubMed DOI PMC
Mitchell EP, Sabin S, Snajdrová L, Pokorná M, Perret S, Gautier C, Hofr C, Gilboa-Garber N, Koca J, Wimmerová M, Imberty A. High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins: Struct Funct Bioinfo. 2005;58:735–748. doi: 10.1002/prot.20330. PubMed DOI
Perret S, Sabin C, Dumon C, Pokorna M, Gautier C, Galanina O, Ilia S, Bovin N, Nicaise M, Desmadril M, Gilboa-Garber N, Wimmerova M, Mitchell EP, Imberty A. Structural basis for the interaction between human milk oligosaccharides and the bacterial lectin PA-IIL of Pseudomonas aeruginosa. Biochem J. 2005;389:325–332. PubMed PMC
Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Pérez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nature Struct Biol. 2002;9:918–921. doi: 10.1038/nsb865. PubMed DOI
Garber N, Guempel U, Gilboa-Garber N, Doyle RJ. Specificity of the fucose-binding lectin of Pseudomonas aeruginosa. FEMS Microbiol Lett. 1987;48:331–334. doi: 10.1111/j.1574-6968.1987.tb02619.x. DOI
Sabin C, Mitchell EP, Pokorna M, Gautier C, Utille JP, Wimmerova M, Imberty A. Binding of different monosaccharides by lectin PA-IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X-ray structures. FEBS Lett. 2006;580:982–987. doi: 10.1016/j.febslet.2006.01.030. PubMed DOI
Loris R, Tielker D, Jaeger KE, Wyns L. Structural basis of carbohydrate recognition by the lectin LecB from Pseudomonas aeruginosa. J Mol Biol. 2003;331:861–870. doi: 10.1016/S0022-2836(03)00754-X. PubMed DOI
Sudakevitz D, Kostlanova N, Blatman-Jan G, Mitchell EP, Lerrer B, Wimmerova M, Katcof DJ, Imberty A, Gilboa-Garber N. A new Ralstonia solanacearum high affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL. Mol Microbiol. 2004;52:691–700. doi: 10.1111/j.1365-2958.2004.04020.x. PubMed DOI
Wiseman T, Williston S, Brandts JF, Lin LN. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989;179:131–137. doi: 10.1016/0003-2697(89)90213-3. PubMed DOI
Pokorna M, Cioci G, Perret S, Rebuffet E, Kostlanova N, Adam J, Gilboa-Garber N, Mitchell EP, Imberty A, Wimmerova M. Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. Biochemistry. 2006;45:7501–7510. doi: 10.1021/bi060214e. PubMed DOI
Leslie AGW. Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography. 1992;26
COLLABORATIVE COMPUTATIONAL PROJECT:The CCP4 Suite: Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994;50:760–763. PubMed
Perrakis A, Morris R, Lamzin VS. Automated protein model building combined with iterative structure refinement. Nat Struct Biol. 1999;6:458–463. doi: 10.1038/8263. PubMed DOI
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–55. doi: 10.1107/S0907444996012255. PubMed DOI
Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
DeLano WL. The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA; 2003.
PDBCharges: Quantum-Mechanical Partial Atomic Charges for PDB Structures
Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins