Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins

. 2019 ; 14 (7) : e0220318. [epub] 20190725

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31344098

Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope.

Zobrazit více v PubMed

Gabius HJ, Roth J. An introduction to the sugar code. Histochem Cell Biol. 2017;147(2):111–7. Epub 2016/12/16. 10.1007/s00418-016-1521-9 . PubMed DOI

Sharon N, Lis H. Lectins—Cell-Agglutinating and Sugar-Specific Proteins. Science. 1972;177(4053):949-&. 10.1126/science.177.4053.949 PubMed PMID: WOS:A1972N431600008. PubMed DOI

Audfray A, Varrot A, Imberty A. Bacteria love our sugars: Interaction between soluble lectins and human fucosylated glycans, structures, thermodynamics and design of competing glycocompounds. Cr Chim. 2013;16(5):482–90. 10.1016/j.crci.2012.11.021 PubMed PMID: WOS:000321484300011. DOI

Klukova L, Bertok T, Kasak P, Tkac J. Nanoscale controlled architecture for development of ultrasensitive lectin biosensors applicable in glycomics. Analytical Methods. 2014;6(14):4922–31. Epub 2014/07/21. 10.1039/C4AY00495G PubMed DOI PMC

Kuo JCH, Ibrahim AEK, Dawson S, Parashar D, Howat WJ, Guttula K, et al. Detection of colorectal dysplasia using fluorescently labelled lectins. Sci Rep-Uk. 2016;6 10.1038/srep24231 PubMed PMID: WOS:000373916000001. PubMed DOI PMC

Coelho LCBB, Silva PMD, Lima VLD, Pontual EV, Paiva PMG, Napoleao TH, et al. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. Evid-Based Compl Alt. 2017. 10.1155/2017/1594074 PubMed PMID: WOS:000398491600001. PubMed DOI PMC

Csavas M, Malinovska L, Perret F, Gyurko M, Illyes ZT, Wimmerova M, et al. Tri- and tetravalent mannoclusters cross-link and aggregate BC2L-A lectin from Burkholderia cenocepacia. Carbohyd Res. 2017;437:1–8. 10.1016/j.carres.2016.11.008 PubMed PMID: WOS:000392557900001. PubMed DOI

Kovalchuk SN, Golotin VA, Balabanova LA, Buinovskaya NS, Likhatskaya GN, Rasskazov VA. Carbohydrate-binding motifs in a novel type lectin from the sea mussel Crenomytilus grayanus: Homology modeling study and site-specific mutagenesis. Fish and Shellfish Immunology. 2015;47(1):565–71. 10.1016/j.fsi.2015.09.045 PubMed PMID: WOS:000365053300063. PubMed DOI

Mrazkova J, Malinovska L, Wimmerova M. Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL. Methods in Molecular Biology. 2017;1498:399–419. Epub 2016/10/07. 10.1007/978-1-4939-6472-7_28 . PubMed DOI

Swanson MD, Boudreaux DM, Salmon L, Chugh J, Winter HC, Meagher JL, et al. Engineering a Therapeutic Lectin by Uncoupling Mitogenicity from Antiviral Activity. Cell. 2015;163(3):746–58. 10.1016/j.cell.2015.09.056 PubMed PMID: WOS:000364828900026. PubMed DOI PMC

Christie MP, Toth I, Simerska P. Biophysical characterization of lectin-glycan interactions for therapeutics, vaccines and targeted drug delivery. Future Med Chem. 2014;6(18):2113–29. 10.4155/fmc.14.130 PubMed PMID: WOS:000346694700010. PubMed DOI

Jerabek-Willemsen M, Andre T, Wanner R, Roth HM, Duhr S, Baaske P, et al. MicroScale Thermophoresis: Interaction analysis and beyond. J Mol Struct. 2014;1077:101–13. 10.1016/j.molstruc.2014.03.009 PubMed PMID: WOS:000343847500011. DOI

Maierhofer C, Rohmer K, Wittmann V. Probing multivalent carbohydrate-lectin interactions by an enzyme-linked lectin assay employing covalently immobilized carbohydrates. Bioorgan Med Chem. 2007;15(24):7661–76. 10.1016/j.bmc.2007.08.063 PubMed PMID: WOS:000253489200016. PubMed DOI

Khan F, Khan RH, Sherwani A, Mohmood S, Azfer MA. Lectins as markers for blood grouping. Medical Science Monitor. 2002;8(12):RA293–300. Epub 2002/12/28. . PubMed

Kline TR, Runyon MK, Pothiawala M, Ismagilov RF. ABO, D blood typing and subtyping using plug-based microfluidics. Anal Chem. 2008;80(16):6190–7. 10.1021/ac800485q PubMed PMID: WOS:000258448100006. PubMed DOI PMC

Seth M, Jackson KV, Giger U. Comparison of five blood-typing methods for the feline AB blood group system. Am J Vet Res. 2011;72(2):203–9. 10.2460/ajvr.72.2.203 PubMed PMID: WOS:000286705500006. PubMed DOI PMC

Bhari R, Kaur B, Singh RS. Lectin activity in mycelial extracts of Fusarium species. Braz J Microbiol. 2016;47(3):775–80. Epub 2016/05/31. 10.1016/j.bjm.2016.04.024 PubMed DOI PMC

Mirelman D, Altmann G, Eshdat Y. Screening of Bacterial Isolates for Mannose-Specific Lectin Activity by Agglutination of Yeasts. J Clin Microbiol. 1980;11(4):328–31. PubMed PMID: WOS:A1980JP90000005. PubMed PMC

Bose PP, Bhattacharjee S, Singha S, Mandal S, Mondal G, Gupta P, et al. A glucose/mannose binding lectin from litchi (Litchi chinensis) seeds: Biochemical and biophysical characterizations. Biochem Biophys Rep. 2016;6:242–52. Epub 2016/05/03. 10.1016/j.bbrep.2016.05.001 PubMed DOI PMC

Gasmi L, Ferre J, Herrero S. High Bacterial Agglutination Activity in a Single-CRD C-Type Lectin from Spodoptera exigua (Lepidoptera: Noctuidae). Biosensors-Basel. 2017;7(1). 10.3390/bios7010012 PubMed PMID: WOS:000398085500011. PubMed DOI PMC

Argayosa AM, Bernal RAD, Luczon AU, Arboleda JS. Characterization of mannose-binding protein isolated from the African catfish (Clarias gariepinus B.) serum. Aquaculture. 2011;310(3–4):274–80. 10.1016/j.aquaculture.2010.11.002 PubMed PMID: WOS:000286548300005. DOI

Wang X, Zhou YJ, Wang L, Liu W, Liu Y, Peng C, et al. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis. Applied and Environmental Microbiology. 2017;83(13). Epub 2017/04/30. 10.1128/AEM.00692-17 PubMed DOI PMC

Yu S, Yang H, Chai Y, Liu Y, Zhang Q, Ding X, et al. Molecular cloning and characterization of a C-type lectin in roughskin sculpin (Trachidermus fasciatus). Fish and Shellfish Immunology. 2013;34(2):582–92. Epub 2012/12/19. 10.1016/j.fsi.2012.11.033 . PubMed DOI

Athamna A, Cohen D, Athamna M, Ofek I, Stavri H. Rapid identification of Mycobacterium species by lectin agglutination. J Microbiol Methods. 2006;65(2):209–15. Epub 2005/08/09. 10.1016/j.mimet.2005.07.008 . PubMed DOI

Munoz A, Alonso B, Alvarez O, Llovo J. Lectin typing of five medically important Candida species. Mycoses. 2003;46(3–4):85–9. Epub 2003/07/23. . PubMed

Adamova L, Malinovska L, Wimmerova M. New Sensitive Detection Method for Lectin Hemagglutination using Microscopy. Microsc Res Techniq. 2014;77(10):841–9. 10.1002/jemt.22407 PubMed PMID: WOS:000342207900012. PubMed DOI

Sivakamavalli J, Vaseeharan B. Purification, characterization and functional analysis of a novel beta-1, 3-glucan binding protein from green tiger shrimp Penaeus semisulcatus. Fish and Shellfish Immunology. 2013;35(3):689–96. 10.1016/j.fsi.2013.05.017 PubMed PMID: WOS:000324511700008. PubMed DOI

Tsutsui S, Iwamoto K, Nakamura O, Watanabe T. Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus. Mol Immunol. 2007;44(5):691–702. 10.1016/j.molimm.2006.04.023 PubMed PMID: WOS:000242020100003. PubMed DOI

Sano K, Ogawa H. Hemagglutination (inhibition) assay. Methods Mol Biol. 2014;1200:47–52. Epub 2014/08/15. 10.1007/978-1-4939-1292-6_4 . PubMed DOI

Sudakevitz D, Kostlanova N, Blatman-Jan G, Mitchell EP, Lerrer B, Wimmerova M, et al. A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL. Mol Microbiol. 2004;52(3):691–700. 10.1111/j.1365-2958.2004.04020.x PubMed PMID: WOS:000220941400008. PubMed DOI

Gilboa-Garber N, Katcoff DJ, Garber NC. Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. Fems Immunol Med Mic. 2000;29(1):53–7. 10.1016/0928-8244 PubMed PMID: WOS:000089167900009. PubMed DOI

Zinger-Yosovich K, Sudakevitz D, Imberty A, Garber NC, Gilboa-Garber N. Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL). Microbiol-Sgm. 2006;152:457–63. 10.1099/mic.0.28500-0 PubMed PMID: WOS:000235272400019. PubMed DOI

Lameignere E, Malinovska L, Slavikova M, Duchaud E, Mitchell EP, Varrot A, et al. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem J. 2008;411:307–18. 10.1042/bj20071276 PubMed PMID: WOS:000255384800011. PubMed DOI

Sulak O, Cioci G, Lameignere E, Balloy V, Round A, Gutsche I, et al. Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity. Plos Pathog. 2011;7(9). 10.1371/journal.ppat.1002238 PubMed PMID: WOS:000295409000041. PubMed DOI PMC

Adam J, Pokorna M, Sabin C, Mitchell EP, Imberty A, Wimmerova M. Engineering of PA-IIL lectin from Pseudomonas aeruginosa—Unravelling the role of the specificity loop for sugar preference. Bmc Struct Biol. 2007;7 10.1186/1472-6807-7-36 PubMed PMID: WOS:000247687500001. PubMed DOI PMC

Pokorna M, Cioci G, Perret S, Rebuffet E, Kostlanova N, Adam J, et al. Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose. Biochemistry-Us. 2006;45(24):7501–10. 10.1021/bi060214e PubMed PMID: WOS:000238217100010. PubMed DOI

Adam J, Kriz Z, Prokop M, Wimmerova M, Koca J. In Silico Mutagenesis and Docking Studies of Pseudomonas aeruginosa PA-IIL Lectin—Predicting Binding Modes and Energies. J Chem Inf Model. 2008;48(11):2234–42. 10.1021/ci8002107 PubMed PMID: WOS:000261103700013. PubMed DOI

Hu D, Tateno H, Kuno A, Yabe R, Hirabayashi J. Directed Evolution of Lectins with Sugar-binding Specificity for 6-Sulfo-galactose. J Biol Chem. 2012;287(24):20313–20. 10.1074/jbc.M112.351965 PubMed PMID: WOS:000306414500051. PubMed DOI PMC

Ielasi FS, Verhaeghe T, Desmet T, Willaert RG. Engineering the carbohydrate-binding site of Epa1p from Candida glabrata: generation of adhesin mutants with different carbohydrate specificity. Glycobiology. 2014;24(12):1312–22. 10.1093/glycob/cwu075 PubMed PMID: WOS:000347410300012. PubMed DOI

Keogh D, Thompson R, Larragy R, McMahon K, O'Connell M, O'Connor B, et al. Generating novel recombinant prokaryotic lectins with altered carbohydrate binding properties through mutagenesis of the PA-IL protein from Pseudomonas aeruginosa. Bba-Gen Subjects. 2014;1840(6):2091–104. 10.1016/j.bbagen.2014.01.020 PubMed PMID: WOS:000336012700050. PubMed DOI

Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of Fusion Tags for Recombinant Proteins. Biochemistry-Moscow+. 2016;81(3):187–200. 10.1134/S0006297916030019 PubMed PMID: WOS:000373346300001. PubMed DOI

Pina AS, Lowe CR, Roque ACA. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv. 2014;32(2):366–81. 10.1016/j.biotechadv.2013.12.001 PubMed PMID: WOS:000343640400011. PubMed DOI PMC

Wood DW. New trends and affinity tag designs for recombinant protein purification. Curr Opin Struc Biol. 2014;26:54–61. 10.1016/j.sbi.2014.04.006 PubMed PMID: WOS:000340852000010. PubMed DOI

Wang L, Zhang J, Kong X, Zhao X, Pei C, Li L. A C-type lectin, Nattectin-like protein (CaNTC) in Qihe crucian carp Carassius auratus: Binding ability with LPS, PGN and various bacteria, and agglutinating activity against bacteria. Fish and Shellfish Immunology. 2017;67:382–92. Epub 2017/06/13. 10.1016/j.fsi.2017.06.012 PubMed DOI

Zhang JD, Wu HL, Meng T, Zhang CF, Fan XJ, Chang HH, et al. A high-throughput microtiter plate assay for the discovery of active and enantioselective amino alcohol-specific transaminases. Analytical Biochemistry. 2017;518:94–101. Epub 2016/12/03. 10.1016/j.ab.2016.11.015 . PubMed DOI

Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics. 2012;192(3):775–818. Epub 2012/11/09. 10.1534/genetics.112.144485 PubMed DOI PMC

Zhao W, Baldwin E, Cameron R. A digital data interpretation method for hemagglutination inhibition assay by using a plate reader. Anal Biochem. 2019;571:37–9. Epub 2019/02/25. 10.1016/j.ab.2019.02.016 . PubMed DOI

Coffey DG, Uebersax MA, Hosfield GL, Brunner JR. Evaluation of the Hemagglutinating Activity of Low-temperature Cooked Kidney Beans. Journal of Food Science. 2006;50(1):78–81. 10.1111/j.1365-2621.1985.tb13281.x DOI

Flemming C, Ulrich M, Schwall G, Schröder HC, Müller WEG. Determination of lectin characteristics by a novel agglutination technique. Analytical Biochemistry. 1992;205(2):251–6. 10.1016/0003-2697(92)90431-6 PubMed DOI

Kauscher U, Ravoo BJ. Mannose-decorated cyclodextrin vesicles: The interplay of multivalency and surface density in lectin-carbohydrate recognition. Beilstein J Org Chem. 2012;8:1543–51. Epub 2012/12/05. 10.3762/bjoc.8.175 PubMed DOI PMC

Worstell NC, Singla A, Wu HJ. Evaluation of hetero-multivalent lectin binding using a turbidity-based emulsion agglutination assay. Colloids Surf B Biointerfaces. 2019;175:84–90. Epub 2018/12/07. 10.1016/j.colsurfb.2018.11.069 . PubMed DOI PMC

Gurnani P, Lunn AM, Perrier S. Synthesis of mannosylated and PEGylated nanoparticles via RAFT emulsion polymerisation, and investigation of particle-lectin aggregation using turbidimetric and DLS techniques. Polymer. 2016;106:229–37. 10.1016/j.polymer.2016.08.093 DOI

Arnaud J, Trondle K, Claudinon J, Audfray A, Varrot A, Romer W, et al. Membrane deformation by neolectins with engineered glycolipid binding sites. Angew Chem Int Ed Engl. 2014;53(35):9267–70. Epub 2014/07/22. 10.1002/anie.201404568 . PubMed DOI

Hyono A, Gaboriaud F, Mazda T, Takata Y, Ohshima H, Duval JF. Impacts of papain and neuraminidase enzyme treatment on electrohydrodynamics and IgG-mediated agglutination of type A red blood cells. Langmuir. 2009;25(18):10873–85. Epub 2009/09/09. 10.1021/la900087c . PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...