Characterization of Modified PVDF Membranes Using Fourier Transform Infrared and Raman Microscopy and Infrared Nanoimaging: Challenges and Advantages of Individual Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38882160
PubMed Central
PMC11170652
DOI
10.1021/acsomega.4c01197
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polymer materials are integral to diverse scientific fields, including chemical engineering and biochemical research, as well as analytical and physical chemistry. This study focuses on the characterization of modified poly(vinylidene fluoride) (PVDF) membranes from both physical and chemical perspectives. Unfortunately, current surface characterization methods face various challenges when simultaneously measuring diverse material properties such as morphology and chemical composition. Addressing this issue, we introduce infrared scattering scanning near-field optical microscopy (IR-sSNOM), a modern technique with the ability to overcome limitations and provide simultaneous topographical, mechanical, and chemical information. We demonstrate the capabilities of IR-sSNOM for investigation of four samples of PVDF membranes modified with 2-(methacryloyloxyethyl)trimethylammonium iodide and/or methacryloyloxyethyl phosphorylcholine in various ratios. These membranes, desirable for their specific properties, represent a challenging material for analysis due to their thermal instability and mechanical vulnerability. Employing Fourier transform infrared (FTIR) microscopy, IR-sSNOM, and Raman microscopy, we successfully overcame these challenges by carefully selecting the experimental parameters and performing detailed characterization of the polymer samples. Valuable insights into morphological and chemical homogeneity, the abundance of modifying side chains, and the distribution of different crystal phases of PVDF were obtained. Most notably, the presence of modifying side chains was confirmed by FTIR microscopy, the Raman spectral mapping revealed the distribution of crystalline phases of the studied polymer, and the IR-sSNOM showed the abundance of chemically diverse aggregates on the surface of the membranes, thanks to the unique nanometer-scale resolution and chemical sensitivity of this technique. This comprehensive approach represents a powerful toolset for characterization of polymeric materials at the nano- and microscale. We believe that this methodology can be applied to similar samples, provided that their thermal stability is considered, opening avenues for detailed exploration of physical and chemical properties in various scientific applications.
Zobrazit více v PubMed
Mukbaniani O. V.; Abadie M. J. M.; Tatrishvili T.. Chemical Engineering of Polymers: Production of Functional and Flexible Materials; CRC Press, 2017. DOI: 10.1201/9781315365985. DOI
Roy I.; Gupta M. N. Smart Polymeric Materials: Emerging Biochemical Applications. Chemistry & Biology 2003, 10 (12), 1161–1171. 10.1016/j.chembiol.2003.12.004. PubMed DOI
Almeida M. I. G. S.; Cattrall R. W.; Kolev S. D. Polymer inclusion membranes (PIMs) in chemical analysis - A review. Anal. Chim. Acta 2017, 987, 1–14. 10.1016/j.aca.2017.07.032. PubMed DOI
Ragitha V. M.; Edison L. K.. Safety Issues, Environmental Impacts, and Health Effects of Biopolymers. In Handbook of Biopolymers, Thomas S.; Ar A.; Chirayil C. J.; Thomas B., Eds.; Springer Nature Singapore, 2022; pp 1–27. DOI: 10.1007/978-981-16-6603-2_54-1. DOI
Li Y.; Tao L.; Wang Q.; et al. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environment & Health 2023, 1 (4), 249–257. 10.1021/envhealth.3c00052. DOI
Nunes S. P.; Peinemann K. V.. Membrane Technology: in the Chemical Industry; John Wiley & Sons, 2006. DOI: 10.1002/3527608788. DOI
Ronco C.; Clark W. R. Haemodialysis membranes. Nature Reviews Nephrology 2018, 14 (6), 394–410. 10.1038/s41581-018-0002-x. PubMed DOI
Russo F.; Castro-Muñoz R.; Santoro S.; et al. A review on electrospun membranes for potential air filtration application. Journal of Environmental Chemical Engineering 2022, 10 (5), 10845210.1016/j.jece.2022.108452. DOI
Patterson D. A.; Havill A.; Costello S.; et al. Membrane characterisation by SEM, TEM and ESEM: The implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes. Sep. Purif. Technol. 2009, 66 (1), 90–97. 10.1016/j.seppur.2008.11.022. DOI
Hilal N.; Ismail A. F.; Matsuura T.; Oatley-Radcliffe D.. Membrane Characterization; Elsevier, 2017. ISBN: 978–0-444–63776–5.
Alqaheem Y.; Alomair A. A. Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes 2020, 10 (2), 33.10.3390/membranes10020033. PubMed DOI PMC
Tanis-Kanbur M. B.; Peinador R. I.; Calvo J. I.; et al. Porosimetric membrane characterization techniques: A review. J. Membr. Sci. 2021, 619, 11875010.1016/j.memsci.2020.118750. DOI
Ravichandran S. R.; Venkatachalam C. D.; Sengottian M.; et al. A review on fabrication, characterization of membrane and the influence of various parameters on contaminant separation process. Chemosphere 2022, 306, 13562910.1016/j.chemosphere.2022.135629. PubMed DOI
Aziz S. N. S. A.; Seman M. N. A.; Saufi S. M. A Review on Surface Characterization Techniques of Polymeric Membrane in Forward Osmosis. IOP Conference Series: Materials Science and Engineering 2020, 736 (5), 05202610.1088/1757-899X/736/5/052026. DOI
Betzig E.; Trautman J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 1992, 257 (5067), 189–195. 10.1126/science.257.5067.189. PubMed DOI
Knoll B.; Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature 1999, 399 (6732), 134–137. 10.1038/20154. DOI
Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 1873, 9 (1), 413–468. 10.1007/BF02956173. DOI
Synge E. H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1928, 6 (35), 356–362. 10.1080/14786440808564615. DOI
Bründermann E.; Havenith M. SNIM: Scanning near-field infrared microscopy. Annu. Rep. Sect. C: Phys. Chem. 2008, 104, 235–255. 10.1039/B703982B. DOI
Dendisová M.; Jeništová A.; Parchaňská-Kokaislová A.; et al. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim. Acta 2018, 1031, 1–14. 10.1016/j.aca.2018.05.046. PubMed DOI
Hillenbrand R.; Taubner T.; Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature 2002, 418 (6894), 159–162. 10.1038/nature00899. PubMed DOI
Huth F.; Govyadinov A.; Amarie S.; et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 2012, 12 (8), 3973–3978. 10.1021/nl301159v. PubMed DOI
Amenabar I.; Poly S.; Goikoetxea M.; et al. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun. 2017, 8, 14402.10.1038/ncomms14402. PubMed DOI PMC
Keilmann F. Vibrational-infrared near-field microscopy. Vib. Spectrosc. 2002, 29 (1), 109–114. 10.1016/S0924-2031(01)00195-3. DOI
Taubner T.; Keilmann F.; Hillenbrand R. Nanomechanical resonance tuning and phase effects in optical near-field interaction. Nano Lett. 2004, 4 (9), 1669–1672. 10.1021/nl0491677. DOI
Govyadinov A. A.; Amenabar I.; Huth F.; et al. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 2013, 4 (9), 1526–1531. 10.1021/jz400453r. PubMed DOI
Rao V. J.; Matthiesen M.; Goetz K. P.; et al. AFM-IR and IR-SNOM for the Characterization of Small Molecule Organic Semiconductors. J. Phys. Chem. C 2020, 124 (9), 5331–5344. 10.1021/acs.jpcc.9b11056. DOI
Hermann P.; Hoehl A.; Ulrich G.; et al. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy. Opt. Express 2014, 22 (15), 17948–17958. 10.1364/OE.22.017948. PubMed DOI
Ritchie E. T.; Casper C. B.; Lee T. A.; Atkin J. M. Quantitative Local Conductivity Imaging of Semiconductors Using Near-Field Optical Microscopy. Journal of physical chemistry. C 2022, 126 (9), 4515–4521. 10.1021/acs.jpcc.1c10498. DOI
Niehues I.; Mester L.; Vicentini E.; et al. Identification of weak molecular absorption in single-wavelength s-SNOM images. Opt. Express 2023, 31 (4), 7012–7022. 10.1364/OE.483804. PubMed DOI
Paul S.; Jeništová A.; Vosough F.; et al. 13C- and 15N-labeling of amyloid-β and inhibitory peptides to study their interaction via nanoscale infrared spectroscopy. Commun. Chem. 2023, 6 (1), 163.10.1038/s42004-023-00955-w. PubMed DOI PMC
Král M.; Dendisová M.; Matějka P.; et al. Infrared imaging of surface confluent polydopamine (PDA) films at the nanoscale. Colloids and surfaces, B, Biointerfaces 2023, 221, 112954–112954. 10.1016/j.colsurfb.2022.112954. PubMed DOI
Svoboda J.; Král M.; Dendisová M.; et al. Unraveling the influence of substrate on the growth rate, morphology and covalent structure of surface adherent polydopamine films. Colloids and surfaces, B, Biointerfaces 2021, 205, 111897–111897. 10.1016/j.colsurfb.2021.111897. PubMed DOI
Han D. J.; Kim J. F.; Lee J.-C.; et al. Design of an ionic PVDF-based additive for PVDF water purification membranes with anti-fouling and bactericidal activities. J. Membr. Sci. 2023, 683, 12183910.1016/j.memsci.2023.121839. DOI
Jung J. T.; Kim J. F.; Wang H. H.; et al. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250–263. 10.1016/j.memsci.2016.04.069. DOI
Hirose S.; Yasukawa E.; Nose T. Wet poly(vinyl chloride) membrane. J. Appl. Polym. Sci. 1981, 26 (3), 1039–1048. 10.1002/app.1981.070260326. DOI
Han D. J.; Kim S.; Heo H. J.; et al. Poly(vinylidene fluoride)-based film with strong antimicrobial activity. Appl. Surf. Sci. 2021, 562, 15018110.1016/j.apsusc.2021.150181. DOI
Zhang P.; Rajabzadeh S.; Istirokhatun T.; et al. A novel method to immobilize zwitterionic copolymers onto PVDF hollow fiber membrane surface to obtain antifouling membranes. J. Membr. Sci. 2022, 656, 12059210.1016/j.memsci.2022.120592. DOI
Lau S. K.; Yong W. F. Recent Progress of Zwitterionic Materials as Antifouling Membranes for Ultrafiltration, Nanofiltration, and Reverse Osmosis. ACS Applied Polymer Materials 2021, 3 (9), 4390–4412. 10.1021/acsapm.1c00779. DOI
Shen S.; Zhang L.; Zhang Y.; et al. Fabrication of antifouling membranes by blending poly(vinylidene fluoride) with cationic polyionic liquid. J. Appl. Polym. Sci. 2020, 137 (29), 48878.10.1002/app.48878. DOI
Nečas D.; Klapetek P. Gwyddion: an open-source software for SPM data analysis. Open Physics 2012, 10 (1), 181–188. 10.2478/s11534-011-0096-2. DOI
Martins P.; Lopes A. C.; Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39 (4), 683–706. 10.1016/j.progpolymsci.2013.07.006. DOI
Constantino C. J. L.; Job A. E.; Simões R. D.; et al. Phase Transition in Poly(Vinylidene Fluoride) Investigated with Micro-Raman Spectroscopy. Appl. Spectrosc. 2005, 59 (3), 275–279. 10.1366/0003702053585336. PubMed DOI