Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20877223
PubMed Central
PMC6257765
DOI
10.3390/molecules15096285
PII: molecules15096285
Knihovny.cz E-zdroje
- MeSH
- antioxidancia analýza chemie MeSH
- chemické techniky analytické MeSH
- fenoly analýza MeSH
- flavonoidy analýza MeSH
- genotyp MeSH
- ovoce chemie MeSH
- oxidace-redukce MeSH
- polyfenoly MeSH
- scavengery volných radikálů chemie MeSH
- slivoň chemie genetika MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- fenoly MeSH
- flavonoidy MeSH
- polyfenoly MeSH
- scavengery volných radikálů MeSH
Research on natural compounds is increasingly focused on their effects on human health. In this study, we were interested in the evaluation of nutritional value expressed as content of total phenolic compounds and antioxidant capacity of new apricot (Prunus armeniaca L.) genotypes resistant against Plum pox virus (PPV) cultivated on Department of Fruit Growing of Mendel University in Brno. Fruits of twenty one apricot genotypes were collected at the onset of consumption ripeness. Antioxidant capacities of the genotypes were determined spectrometrically using DPPH• (1,1-diphenyl-2-picryl-hydrazyl free radicals) scavenging test, TEAC (Trolox Equivalent Antioxidant Capacity), and FRAP (Ferric Reducing Antioxidant Power)methods. The highest antioxidant capacities were determined in the genotypes LE-3228 and LE-2527, the lowest ones in the LE-985 and LE-994 genotypes. Moreover, close correlation (r = 0.964) was determined between the TEAC and DPPH assays. Based on the antioxidant capacity and total polyphenols content, a clump analysis dendrogram of the monitored apricot genotypes was constructed. In addition, we optimized high performance liquid chromatography coupled with tandem electrochemical and spectrometric detection and determined phenolic profile consisting of the following fifteen phenolic compounds: gallic acid, 4-aminobenzoic acid, chlorogenic acid, ferulic acid, caffeic acid, procatechin, salicylic acid, p-coumaric acid, the flavonols quercetin and quercitrin, the flavonol glycoside rutin, resveratrol, vanillin, and the isomers epicatechin, (-)- and (+)- catechin.
Zobrazit více v PubMed
Ercisli S. Apricot culture in Turkey. Sci. Res. Essays. 2009;4:715–719.
Martinez-Gomez P., Dicenta F., Audergon J.M. Behaviour of apricot (Prunus armeniaca L.) cultivars in the presence of sharka (plum pox potyvirus): A review. Agronomie. 2000;20:407–422. doi: 10.1051/agro:2000137. DOI
Garciaviguera C., Bridle P., Ferreres F., Tomasbarberan F.A. Influence of variety, maturity and processing on phenolic.compounds of apricot juices and jams. Z. Lebensm. Unters. Forsch. 1994;199:433–436. doi: 10.1007/BF01193268. DOI
Pedersen C.B., Kyle J., Jenkinson A.M., Gardner P.T., McPhail D.B., Duthie G.G. Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur. J. Clin. Nutr. 2000;54:405–408. doi: 10.1038/sj.ejcn.1600972. PubMed DOI
GarciaViguera C., Zafrilla P., TomasBarberan F.A. Determination of authenticity of fruit jams by HPLC analysis of anthocyanins. J. Sci. Food Agric. 1997;73:207–213. doi: 10.1002/(SICI)1097-0010(199702)73:2<207::AID-JSFA703>3.0.CO;2-8. DOI
Record I.R., Dreosti I.E., McInerney J.K. Changes in plasma antioxidant status following consumption of diets high or low in fruit and vegetables or following dietary supplementation with an antioxidant mixture. Br. J. Nutr. 2001;85:459–464. doi: 10.1079/BJN2000292. PubMed DOI
Arts I.C.W., van de Putte B., Hollman P.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 2000;48:1746–1751. doi: 10.1021/jf000025h. PubMed DOI
Hodek P., Hanustiak P., Krizkova J., Mikelova R., Krizkova S., Stiborova M., Trnkova L., Horna A., Beklova M., Kizek R. Toxicological aspects of flavonoid interaction with biomacromolecules. Neuroendocrinol. Lett. 2006;27:14–17. PubMed
RiceEvans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
La Vecchia C., Altieri A., Tavani A. Vegetables, fruit, antioxidants and cancer: A review of Italian studies. Eur. J. Nutr. 2001;40:261–267. doi: 10.1007/s394-001-8354-9. PubMed DOI
Long H., Zhu Y.X., Cregor M., Tian F.F., Coury L., Kissinger C.B., Kissinger P.T. Liquid chromatography with multi-channel electrochemical detection for the determination of epigallocatechin gallate in rat plasma utilizing an automated blood sampling device. J. Chromatogr. B. 2001;763:47–51. doi: 10.1016/S0378-4347(01)00365-6. PubMed DOI
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. doi: 10.3390/s7102402. PubMed DOI PMC
Bors W., Michel C. Chemistry of the antioxidant effect of polyphenols. In: Das D.K., Ursini F., editors. Alcohol and Wine in Health and Disease. New York Acad Sciences; New York, NY, USA: 2002. pp. 57–69. PubMed
Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Oxidants and Antioxidants, Pt A. Academic Press Inc; San Diego, CA, USA: 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent; pp. 152–178.
Gazdik Z., Reznicek V., Adam V., Zitka O., Jurikova T., Krska B., Matuskovic J., Plsek J., Saloun J., Horna A., Kizek R. Use of Liquid Chromatography with Electrochemical Detection for the Determination of Antioxidants in Less Common Fruits. Molecules. 2008;13:2823–2836. doi: 10.3390/molecules131102823. PubMed DOI PMC
Ou B.X., Huang D.J., Hampsch-Woodill M., Flanagan J.A., Deemer E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002;50:3122–3128. doi: 10.1021/jf0116606. PubMed DOI
Gazdik Z., Krska B., Adam V., Saloun J., Pokorna T., Reznicek V., Horna A., Kizek R. Electrochemical Determination of the Antioxidant Potential of Some Less Common Fruit Species. Sensors. 2008;8:7564–7570. doi: 10.3390/s8127564. PubMed DOI PMC
Koleva II, Niederlander H.A.G., van Beek T.A. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures. Anal. Chem. 2000;72:2323–2328. doi: 10.1021/ac9912451. PubMed DOI
Diopan V., Babula P., Shestivska V., Adam V., Zemlicka M., Dvorska M., Hubalek J., Trnkova L., Havel L., Kizek R. Electrochemical and spectrometric study of antioxidant activity of pomiferin, isopomiferin, osajin and catalposide. J. Pharm. Biomed. Anal. 2008;48:127–133. PubMed
Gillman M.W., Cupples L.A., Gagnon D., Posner B.M., Ellison R.C., Castelli W.P., Wolf P.A. Protective effect of fruits and vegetables on development of stroke in men. JAMA-J. Am. Med. Assoc. 1995;273:1113–1117. doi: 10.1001/jama.1995.03520380049034. PubMed DOI
Parejo L., Codina C., Petrakis C., Kefalas P. Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminol chemiluminescence and DPPH center dot (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J. Pharmacol. Toxicol. Methods. 2000;44:507–512. doi: 10.1016/S1056-8719(01)00110-1. PubMed DOI
Howell W.E., Eastwell K.C., Li T.S.C. Heat treatment, chemo-therapy and hydroponic culture for obtaining virus-free trees of sweet cherry. Acta Hort. (ISHS). 2001;550:455–458.
Paunovic S., Ruzic D., Vujovic T., Milenkovic S., Ievremovic D. In vitro production of Plum pox virus - Free plums by chemotherapy with ribavirin. Biotechnol. Biotechnol. Equip. 2007;21:417–421.
Knapp E., Hanzer V., Weiss H., Machado A.D.C., Weiss B., Wang Q., Katinger H., Machado M.L.D. New aspects of virus elimination in fruit trees. Acta Hort. (ISHS). 1995;386:409–418.
Paulova H., Bochorakova H., Taborska E. In vitro methods for estimation of the antioxidant activity of natural compounds. Chem. Listy. 2004;98:174–179.
Milosevic T.M., Glisic I.P., Milosevic N.T., Glisic I.S. Plum pox virus as a stress factor in the vegetative growth, fruit growth and yield of plum (Prunus domestica) cv. 'Cacanska Rodna'. Eur. J. Plant Pathol. 2010;126:73–79. doi: 10.1007/s10658-009-9526-z. DOI
Polak J., Hauptmanova A. Preliminary results of in vivo thermotherapy of plum, apricot and peach cultivars artificially infected with PPV-M and PPV-D strains of Plum pox virus. Hortic. Sci. 2009;36:92–96.
Lalic A., Kovacevic J., Novoselovic D., Simis G., Abicic I., Guberac V. Agronomic and quality traits of winter barley varieties (Hordeum vulgare L.) under growing conditions in Croatia. Agr. Consp. Scient. 2009;74:283–289.
Perez-Pastor A., Ruiz-Sanchez M.C., Martinez J.A., Nortes P.A., Artes F., Domingo R. Effect of deficit irrigation on apricot fruit quality at harvest and during storage. J. Sci. Food Agric. 2007;87:2409–2415. doi: 10.1002/jsfa.2905. DOI
Artes F., Escriche A.J., Martinez J.A., Marin J.G. Quality factors in four varieties of melon (Cucumis melo, L.) J. Food Qual. 1993;16:91–100. doi: 10.1111/j.1745-4557.1993.tb00352.x. DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Long L.H., Halliwell B. Flavonoids and Other Polyphenols. Academic Press Inc; San Diego, CA: 2001. Antioxidant and prooxidant abilities of foods and beverages; pp. 181–190. PubMed
Capillary Blood GSH Level Monitoring, Using an Electrochemical Method Adapted for Micro Volumes
Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits
Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.)