Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars

. 2011 Sep 01 ; 16 (9) : 7428-57. [epub] 20110901

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21886093

Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

Zobrazit více v PubMed

Gazdik Z., Reznicek V., Adam V., Zitka O., Jurikova T., Krska B., Matuskovic J., Plsek J., Saloun J., Horna A., et al. Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits. Molecules. 2008;13:2823–2836. doi: 10.3390/molecules131102823. PubMed DOI PMC

Henriquez C., Almonacid S., Chiffelle I., Valenzuela T., Araya M., Cabezas L., Simpson R., Speisky H. Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chil. J. Agric. Res. 2010;70:523–536. doi: 10.4067/S0718-58392010000400001. DOI

Matsusaka Y., Kawabata J. Evaluation of antioxidant capacity of non-edible parts of some selected tropical fruits. Food Sci. Technol. Res. 2010;16:467–472. doi: 10.3136/fstr.16.467. DOI

Rop O., Mlcek J., Kramarova D., Jurikova T. Selected cultivars of cornelian cherry (cornus mas l.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010;9:1205–1210.

Simirgiotis M.J., Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. Chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010;23:545–553. doi: 10.1016/j.jfca.2009.08.020. DOI

Ahn D., Putt D., Kresty L., Stoner G.D., Fromm D., Hollenberg P.F. The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and Phase Ⅱ enzymes. Carcinogenesis. 1996;17:821–828. doi: 10.1093/carcin/17.4.821. PubMed DOI

Bagchi D., Garg A., Krohn R.L., Bagchi M., Tran M.X., Stohs S.J. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 1997;95:179–189. PubMed

Park O.J., Surh Y.J. Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicol. Lett. 2004;150:43–56. doi: 10.1016/j.toxlet.2003.06.001. PubMed DOI

Soobrattee M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2005;579:200–213. doi: 10.1016/j.mrfmmm.2005.03.023. PubMed DOI

Surh Y.J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1999;428:305–327. doi: 10.1016/S1383-5742(99)00057-5. PubMed DOI

Surh Y.J., Chun K.S., Cha H.H., Han S.S., Keum Y.S., Park K.K., Lee S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of cox-2 and inos through suppression of nf-kappa b activation. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2001;480:243–268. doi: 10.1016/S0027-5107(01)00183-X. PubMed DOI

Park H.J., DiNatale D.A., Chung M.Y., Park Y.K., Lee J.Y., Koo S.I., O’Connor M., Manautou J.E., Bruno R.S. Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J. Nutr. Biochem. 2011;22:393–400. doi: 10.1016/j.jnutbio.2010.03.009. PubMed DOI

Buchner F.L., Bueno-de-Mesquita H.B., Linseisen J., Boshuizen H.C., Kiemeney L., Ros M.M., Overvad K., Hansen L., Tjonneland A., Raaschou-Nielsen O., et al. Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the european prospective investigation into cancer and nutrition (epic) Cancer Causes Control. 2010;21:357–371. doi: 10.1007/s10552-009-9468-y. PubMed DOI PMC

Buchner F.L., Bueno-de-Mesquita H.B., Ros M.M., Overvad K., Dahm C.C., Hansen L., Tjonneland A., Clavel-Chapelon F., Boutron-Ruault M.C., Touillaud M., et al. Variety in fruit and vegetable consumption and the risk of lung cancer in the european prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomarkers Prev. 2010;19:2278–2286. doi: 10.1158/1055-9965.EPI-10-0489. PubMed DOI

Sun-Waterhouse D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011;46:899–920. doi: 10.1111/j.1365-2621.2010.02499.x. DOI

Lowik M.R.H., Hulshof K., Brussaard J.H. Patterns of food and nutrient intakes of dutch adults according to intakes of total fat, saturated fatty acids, dietary fibre, and of fruit and vegetables. Br. J. Nutr. 1999;81:S91–S98. doi: 10.1017/S0007114599001774. PubMed DOI

Boutry C., Bos C., Tome D. Amino acid requirements. Nutr. Clin. Metab. 2008;22:151–160. doi: 10.1016/j.nupar.2008.10.005. DOI

Reeds P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000;130:1835S–1840S. doi: 10.1093/jn/130.7.1835S. PubMed DOI

Markus C.R. Dietary amino acids and brain serotonin function; implications for stress-related affective changes. Neuromol. Med. 2008;10:247–258. doi: 10.1007/s12017-008-8039-9. PubMed DOI

Vieillevoye S., Poortmans J.R., Duchateau J., Carpentier A. Effects of a combined essential amino acids/carbohydrate supplementation on muscle mass, architecture and maximal strength following heavy-load training. Eur. J. Appl. Physiol. 2010;110:479–488. doi: 10.1007/s00421-010-1520-9. PubMed DOI

Nishiwaki T., Hayashi K. Purification and characterization of an aminopeptidase from the edible basidiomycete grifola frondosa. Biosci. Biotechnol. Biochem. 2001;65:424–427. doi: 10.1271/bbb.65.424. PubMed DOI

Konic-Ristic A., Savikin K., Zdunic G., Jankovic T., Juranic Z., Menkovic N., Stankovic I. Biological activity and chemical composition of different berry juices. Food Chem. 2010;125:1412–1417. doi: 10.1016/j.foodchem.2010.10.018. DOI

Sun J., Chu Y.F., Wu X.Z., Liu R.H. Antioxidant and anti proliferative activities of common fruits. J. Agric. Food Chem. 2002;50:7449–7454. doi: 10.1021/jf0207530. PubMed DOI

Rop O., Sochor J., Jurikova T., Zitka O., Skutkova H., Mlcek J., Salas P., Krska B., Babula P., Adam V., et al. Effect of five different stages of ripening on chemical compounds in medlar (mespilus germanica l.) Molecules. 2011;16:74–91. doi: 10.3390/molecules16010074. PubMed DOI PMC

Malik S.K., Chaudhury R., Dhariwal O.P., Mir S. Genetic diversity and traditional uses of wild apricot (prunus armeniaca l.) in high-altitude north-western himalayas of india. Plant Genet. Resour.-Charact. Util. 2010;8:249–257. doi: 10.1017/S1479262110000304. DOI

Bureau S., Renard C., Reich M., Ginies C., Audergon J.M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Sci. Technol. 2009;42:372–377. doi: 10.1016/j.lwt.2008.03.010. DOI

Bureau S., Ruiz D., Reich M., Gouble B., Bertrand D., Audergon J.M., Renard C. Rapid and non-destructive analysis of apricot fruit quality using ft-near-infrared spectroscopy. Food Chem. 2009;113:1323–1328. doi: 10.1016/j.foodchem.2008.08.066. DOI

Ozsahin A.D., Yilmaz O. Prunus armeniaca l. Cv. Hacihaliloglu fruits extracts prevent lipid peroxidation and protect the unsaturated fatty acids in the fenton reagent environment. Asian J. Chem. 2010;22:8022–8032.

Ihns R., Diamante L.M., Savage G.P., Vanhanen L. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Int. J. Food Sci. Technol. 2010;46:275–283. doi: 10.1111/j.1365-2621.2010.02506.x. DOI

Akin E.B., Karabulut I., Topcu A. Some compositional properties of main malatya apricot (prunus armeniaca l.) varieties (vol 107, pg 939, 2008) Food Chem. 2009;116:819–819. doi: 10.1016/j.foodchem.2009.02.065. DOI

Dragovic-Uzelac V., Levaj B., Mrkic V., Bursac D., Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007;102:966–975. doi: 10.1016/j.foodchem.2006.04.001. DOI

Elsayed A.S., Luh B.S. Polyphenolic compounds in canned apricots. J. Food Sci. 1965;30:1016–1020. doi: 10.1111/j.1365-2621.1965.tb01879.x. DOI

Hegedus A., Engel R., Abranko L., Balogh E., Blazovics A., Herman R., Halasz J., Ercisli S., Pedryc A., Stefanovits-Banyai E. Antioxidant and antiradical capacities in apricot (prunus armeniaca l.) fruits: Variations from genotypes, years, and analytical methods. J. Food Sci. 2010;75:C722–C730. doi: 10.1111/j.1750-3841.2010.01826.x. PubMed DOI

Madrau M.A., Piscopo A., Sanguinetti A.M., Del Caro A., Poiana M., Romeo F.V., Piga A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009;228:441–448. doi: 10.1007/s00217-008-0951-6. DOI

Munzuroglu O., Karatas F., Geckil H. The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chem. 2003;83:205–212. doi: 10.1016/S0308-8146(03)00064-5. DOI

Saracoglu S., Tuzen M., Soylak M. Evaluation of trace element contents of dried apricot samples from turkey. J. Hazard. Mater. 2009;167:647–652. doi: 10.1016/j.jhazmat.2009.01.011. PubMed DOI

Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Kizek R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules. 2010;15:6285–6305. doi: 10.3390/molecules15096285. PubMed DOI PMC

Williams B.L., Wender S.H. Isolation and identification of quercetin and isoquercetin from apricots (prunus-armeniaca) Arch. Biochem. Biophys. 1953;43:319–323. doi: 10.1016/0003-9861(53)90127-1. PubMed DOI

Kafkas E., Son L., Kurkcuoglu M., Baser K.H.C. Volatile compositions and some fruit characteristics of table apricot varieties from turkey. Chem. Nat. Compd. 2007;43:344–346. doi: 10.1007/s10600-007-0128-8. DOI

Jimenez J.B., Orea J.M., Montero C., Urena A.G., Navas E., Slowing K., Gomez-Serranillos M.P., Carretero E., De Martinis D. Resveratrol treatment controls microbial flora, prolongs shelf life, and preserves nutritional quality of fruit. J. Agric. Food Chem. 2005;53:1526–1530. doi: 10.1021/jf048426a. PubMed DOI

Ram L., Godara R.K., Sharma R.K., Siddique S. Primary and secondary metabolite changes of kinnow mandarin fruits during different stages of maturity. J. Food Sci. Technol.-Mysore. 2004;41:337–340.

Dillard C.J., German J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000;80:1744–1756. doi: 10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W. DOI

Parr A.J., Bolwell G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000;80:985–1012. doi: 10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7. DOI

Manning K. Isolation of a set of ripening-related genes from strawberry: Their identification and possible relationship to fruit quality traits. Planta. 1998;205:622–631. doi: 10.1007/s004250050365. PubMed DOI

Normanly J. Auxin metabolism. Physiol. Plant. 1997;100:431–442. doi: 10.1111/j.1399-3054.1997.tb03047.x. DOI

Dicu T., Postescu I.D., Tatomir C., Tamas M., Dinu A., Cosma C. A novel method to calculate the antioxidant parameters of the redox reaction between polyphenolic compounds and the stable dpph radical. Ital. J. Food Sci. 2010;22:330–336.

Muller L., Gnoyke S., Popken A.M., Bohm V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010;43:992–999. doi: 10.1016/j.lwt.2010.02.004. DOI

Papoutsis A.J., Lamore S.D., Wondrak G.T., Selmin O.I., Romagnolo D.F. Resveratrol prevents epigenetic silencing of brca-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J. Nutr. 2010;140:1607–1614. doi: 10.3945/jn.110.123422. PubMed DOI PMC

Ullah M.F., Khan M.W. Food as medicine: Potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac. J. Cancer Prev. 2008;9:187–195. PubMed

Gazdik Z., Krska B., Adam V., Saloun J., Pokorna T., Reznicek V., Horna A., Kizek R. Electrochemical determination of the antioxidant potential of some less common fruit species. Sensors. 2008;8:7564–7570. doi: 10.3390/s8127564. PubMed DOI PMC

Wang H., Cao G.H., Prior R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996;44:701–705. doi: 10.1021/jf950579y. DOI

Hercberg S., Galan P., Preziosi P., Alfarez M.J., Vazquez C. The potential role of antioxidant vitamins in preventing cardiovascular diseases and cancers. Nutrition. 1998;14:513–520. doi: 10.1016/S0899-9007(98)00040-9. PubMed DOI

Joshipura K.J., Hu F.B., Manson J.E., Stampfer M.J., Rimm E.B., Speizer F.E., Colditz G., Ascherio A., Rosner B., Spiegelman D., et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 2001;134:1106–1114. doi: 10.7326/0003-4819-134-12-200106190-00010. PubMed DOI

Block G., Patterson B., Subar A. Fruit, vegetables, and cancer prevention - a review of the epidemiologic evidence. Nutr. Cancer. 1992;18:1–29. doi: 10.1080/01635589209514201. PubMed DOI

Hertog M.G.L., BuenodeMesquita H.B., Fehily A.M., Sweetnam P.M., Elwood P.C., Kromhout D. Fruit and vegetable consumption and cancer mortality in the caerphilly study. Cancer Epidemiol. Biomarkers Prev. 1996;5:673–677. PubMed

Manach C., Scalbert A., Morand C., Remesy C., Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI

Schlesier K., Harwat M., Bohm V., Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002;36:177–187. doi: 10.1080/10715760290006411. PubMed DOI

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., et al. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. doi: 10.3390/s7102402. PubMed DOI PMC

Rop O., Jurikova T., Mlcek J., Kramarova D., Sengee Z. Antioxidant activity and selected nutritional values of plums (prunus domestica l.) typical of the white carpathian mountains. Sci. Hortic. 2009;122:545–549. doi: 10.1016/j.scienta.2009.06.036. DOI

Sochor J., Salas P., Zehnalek J., Krska B., Adam V., Havel L., Kizek R. An assay for spectrometric determination of antioxidant activity of a biological extract. Lis. Cukrov. Repar. 2010;126:416–417.

Rop O., Mlcek J., Jurikova T., Valsikova M., Sochor J., Rezniček V., Kramarova J. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (aronia melanocarpa (michx.) elliot) cultivars. J. Med. Plants Res. 2010;4:2431–2437.

Al-Kandari N.M., Jolliffe I.T. Variable selection and interpretation in correlation principal components. Environmetrics. 2005;16:659–672. doi: 10.1002/env.728. DOI

Dudoit S., Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 2002;3:1–21. doi: 10.1186/gb-2002-3-7-research0036. PubMed DOI PMC

Ogasanovic D. Amino Acids Content in the Fruit of Some Plum Cultivars and Hybrids. In: Vangdal E., Sekse L., editors. Proceedings of the Eighth International Symposium on Plum and Prune Genetics, Breeding and Pomology. International Society Horticultural Science; Leuven, Belgium: 2007. pp. 353–356.

Keutgen A.J., Pawelzik E. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under nacl salinity. Food Chem. 2008;111:642–647. doi: 10.1016/j.foodchem.2008.04.032. DOI

Gholami M., Coombe B.G., Robinson S.R. Grapevine Phloem Sap Analysis: 1-sucrose, Amino Acids, Potassium Concentrations, Seasonal and Diurnal Patterns. In: Reynolds A.G.B.P., editor. Viticulture - Living with Limitations. International Society Horticultural Science; Leuven, Belgium: 2004. pp. 143–153.

Hodisan T., Culea M., Cimpoiu C., Cot A. A study on free aminoacids from plant extracts. Ii. Separation, identification and quantitative determination of the free aminoacids in fagus silvatica by liquid chromatography (lc) and gas chromatography (gc) Rev. Chim. 1998;49:393–397.

Biswas K.M., DeVido D.R., Dorsey J.G. Evaluation of methods for measuring amino acid hydrophobicities and interactions. J. Chromatogr. A. 2003;1000:637–655. doi: 10.1016/S0021-9673(03)00182-1. PubMed DOI

Hodges R.S., Zhu B.Y., Zhou N.E., Mant C.T. Reversed-phase liquid-chromatography as a useful probe of hydrophobic interactions involved in protein-folding and protein stability. J. Chromatogr. A. 1994;676:3–15. doi: 10.1016/0021-9673(94)80452-4. PubMed DOI

Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI

Fernandez V., Del Rio V., Pumarino L., Igartua E., Abadia J., Abadia A. Foliar fertilization of peach (prunus persica (l.) batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci. Hortic. 2008;117:241–248. doi: 10.1016/j.scienta.2008.05.002. DOI

Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997;16:7–21. doi: 10.1080/07315724.1997.10718644. PubMed DOI

Gilca M., Stoian I., Atanasiu V., Virgolici B. The oxidative hypothesis of senescence. J. Postgrad. Med. 2007;53:207–213. doi: 10.4103/0022-3859.33869. PubMed DOI

Ruiz D., Egea J., Gil M.I., Tomas-Barberan F.A. Phytonutrient Content in New Apricot (prunus armeniaca l.) Varieties. In: Romojaro F., Dicenta F., MartinezGomez P., editors. Proceedings of the Xiiith International Symposium on Apricot Breeding and Culture. International Society Horticultural Science; Leuven, Belgium: 2006. pp. 363–367.

Teow C.C., Truong V.D., McFeeters R.F., Thompson R.L., Pecota K.V., Yencho G.C. Antioxidant activities, phenolic and beta-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007;103:829–838. doi: 10.1016/j.foodchem.2006.09.033. DOI

Wang W., Bostic T.R., Gu L.W. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010;122:1193–1198. doi: 10.1016/j.foodchem.2010.03.114. DOI

Ishiwata K., Yamaguchi T., Takamura H., Matoba I. Dpph radical-scavenging activity and polyphenol content in dried fruits. Food Sci. Technol. Res. 2004;10:152–156. doi: 10.3136/fstr.10.152. DOI

Yigit D., Yigit N., Mavi A. Antioxidant and antimicrobial activities of bitter and sweet apricot (prunus armeniaca l.) kernels. Braz. J. Med. Biol. Res. 2009;42:346–352. doi: 10.1590/S0100-879X2009000400006. PubMed DOI

Borochov-Neori H., Judeinstein S., Greenberg A., Fuhrman B., Attias J., Volkova N., Hayek T., Aviram M. Phenolic antioxidants and antiatherogenic effects of marula (sclerocarrya birrea subsp caffra) fruit juice in healthy humans. J. Agric. Food Chem. 2008;56:9884–9891. doi: 10.1021/jf801467m. PubMed DOI

Kuda T., Tsunekawa M., Goto H., Araki Y. Antioxidant properties of four edible algae harvested in the noto peninsula, japan. J. Food Compos. Anal. 2005;18:625–633. doi: 10.1016/j.jfca.2004.06.015. DOI

Ndhlala A.R., Kasiyamhuru A., Mupure C., Chitindingu K., Benhura M.A., Muchuweti M. Phenolic composition of flacourtia indica, opuntia megacantha and sclerocarya birrea. Food Chem. 2007;103:82–87. doi: 10.1016/j.foodchem.2006.06.066. DOI

Martinez-Calvo J., Llacer G., Badenes M.L. 'Rafel' and 'belgida', two apricot cultivars resistant to sharka. Hortscience. 2010;45:1904–1905.

Schildberger B. Assessment of the colonization of apricot trees by pseudomonas syringae. Mitt. Klosterneubg. 2010;60:214–215.

Liu L.X., Sun Y., Laura T., Liang X.F., Ye H., Zeng X.X. Determination of polyphenolic content and antioxidant activity of kudingcha made from ilex kudingcha c.J. Tseng. Food Chem. 2009;112:35–41. doi: 10.1016/j.foodchem.2008.05.038. DOI

Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Oxidants and Antioxidants, pt A. Volume 299. Academic Press Inc.; San Diego, CA, USA: 1999. Analysis of Total Phenols and other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent; pp. 152–178.

Leccese A., Viti R., Bartolini S. The effect of solvent extraction on antioxidant properties of apricot fruit. Cent. Eur. J. Biol. 2010;6:199–204. doi: 10.2478/s11535-010-0113-2. DOI

Zitka O., Sochor J., Rop O., Skalickova S., Sobrova P., Zehnnalek J., Beklova M., Krska B., Adam V., Kizek R. Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. Molecules. 2011;16:2914–2936. doi: 10.3390/molecules16042914. PubMed DOI PMC

Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8641. doi: 10.3390/molecules15128618. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...