Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21886093
PubMed Central
PMC6264707
DOI
10.3390/molecules16097428
PII: molecules16097428
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- aminokyseliny chemie MeSH
- analýza hlavních komponent * MeSH
- antioxidancia chemie MeSH
- benzothiazoly chemie MeSH
- bifenylové sloučeniny chemie MeSH
- genový pool MeSH
- kyseliny sulfonové chemie MeSH
- ovoce chemie MeSH
- pikráty chemie MeSH
- polyfenoly chemie MeSH
- rostlinné extrakty chemie MeSH
- shluková analýza MeSH
- slivoň chemie MeSH
- volné radikály chemie MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,1-diphenyl-2-picrylhydrazyl MeSH Prohlížeč
- 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid MeSH Prohlížeč
- aminokyseliny MeSH
- antioxidancia MeSH
- benzothiazoly MeSH
- bifenylové sloučeniny MeSH
- kyseliny sulfonové MeSH
- pikráty MeSH
- polyfenoly MeSH
- rostlinné extrakty MeSH
- volné radikály MeSH
Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L.) cultivated in Lednice (climatic area T4), South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine) were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin), was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis). The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.
Zobrazit více v PubMed
Gazdik Z., Reznicek V., Adam V., Zitka O., Jurikova T., Krska B., Matuskovic J., Plsek J., Saloun J., Horna A., et al. Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits. Molecules. 2008;13:2823–2836. doi: 10.3390/molecules131102823. PubMed DOI PMC
Henriquez C., Almonacid S., Chiffelle I., Valenzuela T., Araya M., Cabezas L., Simpson R., Speisky H. Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chil. J. Agric. Res. 2010;70:523–536. doi: 10.4067/S0718-58392010000400001. DOI
Matsusaka Y., Kawabata J. Evaluation of antioxidant capacity of non-edible parts of some selected tropical fruits. Food Sci. Technol. Res. 2010;16:467–472. doi: 10.3136/fstr.16.467. DOI
Rop O., Mlcek J., Kramarova D., Jurikova T. Selected cultivars of cornelian cherry (cornus mas l.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010;9:1205–1210.
Simirgiotis M.J., Schmeda-Hirschmann G. Determination of phenolic composition and antioxidant activity in fruits, rhizomes and leaves of the white strawberry (Fragaria chiloensis spp. Chiloensis form chiloensis) using HPLC-DAD-ESI-MS and free radical quenching techniques. J. Food Compos. Anal. 2010;23:545–553. doi: 10.1016/j.jfca.2009.08.020. DOI
Ahn D., Putt D., Kresty L., Stoner G.D., Fromm D., Hollenberg P.F. The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and Phase Ⅱ enzymes. Carcinogenesis. 1996;17:821–828. doi: 10.1093/carcin/17.4.821. PubMed DOI
Bagchi D., Garg A., Krohn R.L., Bagchi M., Tran M.X., Stohs S.J. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 1997;95:179–189. PubMed
Park O.J., Surh Y.J. Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicol. Lett. 2004;150:43–56. doi: 10.1016/j.toxlet.2003.06.001. PubMed DOI
Soobrattee M.A., Neergheen V.S., Luximon-Ramma A., Aruoma O.I., Bahorun T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2005;579:200–213. doi: 10.1016/j.mrfmmm.2005.03.023. PubMed DOI
Surh Y.J. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 1999;428:305–327. doi: 10.1016/S1383-5742(99)00057-5. PubMed DOI
Surh Y.J., Chun K.S., Cha H.H., Han S.S., Keum Y.S., Park K.K., Lee S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of cox-2 and inos through suppression of nf-kappa b activation. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2001;480:243–268. doi: 10.1016/S0027-5107(01)00183-X. PubMed DOI
Park H.J., DiNatale D.A., Chung M.Y., Park Y.K., Lee J.Y., Koo S.I., O’Connor M., Manautou J.E., Bruno R.S. Green tea extract attenuates hepatic steatosis by decreasing adipose lipogenesis and enhancing hepatic antioxidant defenses in ob/ob mice. J. Nutr. Biochem. 2011;22:393–400. doi: 10.1016/j.jnutbio.2010.03.009. PubMed DOI
Buchner F.L., Bueno-de-Mesquita H.B., Linseisen J., Boshuizen H.C., Kiemeney L., Ros M.M., Overvad K., Hansen L., Tjonneland A., Raaschou-Nielsen O., et al. Fruits and vegetables consumption and the risk of histological subtypes of lung cancer in the european prospective investigation into cancer and nutrition (epic) Cancer Causes Control. 2010;21:357–371. doi: 10.1007/s10552-009-9468-y. PubMed DOI PMC
Buchner F.L., Bueno-de-Mesquita H.B., Ros M.M., Overvad K., Dahm C.C., Hansen L., Tjonneland A., Clavel-Chapelon F., Boutron-Ruault M.C., Touillaud M., et al. Variety in fruit and vegetable consumption and the risk of lung cancer in the european prospective investigation into cancer and nutrition. Cancer Epidemiol. Biomarkers Prev. 2010;19:2278–2286. doi: 10.1158/1055-9965.EPI-10-0489. PubMed DOI
Sun-Waterhouse D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011;46:899–920. doi: 10.1111/j.1365-2621.2010.02499.x. DOI
Lowik M.R.H., Hulshof K., Brussaard J.H. Patterns of food and nutrient intakes of dutch adults according to intakes of total fat, saturated fatty acids, dietary fibre, and of fruit and vegetables. Br. J. Nutr. 1999;81:S91–S98. doi: 10.1017/S0007114599001774. PubMed DOI
Boutry C., Bos C., Tome D. Amino acid requirements. Nutr. Clin. Metab. 2008;22:151–160. doi: 10.1016/j.nupar.2008.10.005. DOI
Reeds P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000;130:1835S–1840S. doi: 10.1093/jn/130.7.1835S. PubMed DOI
Markus C.R. Dietary amino acids and brain serotonin function; implications for stress-related affective changes. Neuromol. Med. 2008;10:247–258. doi: 10.1007/s12017-008-8039-9. PubMed DOI
Vieillevoye S., Poortmans J.R., Duchateau J., Carpentier A. Effects of a combined essential amino acids/carbohydrate supplementation on muscle mass, architecture and maximal strength following heavy-load training. Eur. J. Appl. Physiol. 2010;110:479–488. doi: 10.1007/s00421-010-1520-9. PubMed DOI
Nishiwaki T., Hayashi K. Purification and characterization of an aminopeptidase from the edible basidiomycete grifola frondosa. Biosci. Biotechnol. Biochem. 2001;65:424–427. doi: 10.1271/bbb.65.424. PubMed DOI
Konic-Ristic A., Savikin K., Zdunic G., Jankovic T., Juranic Z., Menkovic N., Stankovic I. Biological activity and chemical composition of different berry juices. Food Chem. 2010;125:1412–1417. doi: 10.1016/j.foodchem.2010.10.018. DOI
Sun J., Chu Y.F., Wu X.Z., Liu R.H. Antioxidant and anti proliferative activities of common fruits. J. Agric. Food Chem. 2002;50:7449–7454. doi: 10.1021/jf0207530. PubMed DOI
Rop O., Sochor J., Jurikova T., Zitka O., Skutkova H., Mlcek J., Salas P., Krska B., Babula P., Adam V., et al. Effect of five different stages of ripening on chemical compounds in medlar (mespilus germanica l.) Molecules. 2011;16:74–91. doi: 10.3390/molecules16010074. PubMed DOI PMC
Malik S.K., Chaudhury R., Dhariwal O.P., Mir S. Genetic diversity and traditional uses of wild apricot (prunus armeniaca l.) in high-altitude north-western himalayas of india. Plant Genet. Resour.-Charact. Util. 2010;8:249–257. doi: 10.1017/S1479262110000304. DOI
Bureau S., Renard C., Reich M., Ginies C., Audergon J.M. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Sci. Technol. 2009;42:372–377. doi: 10.1016/j.lwt.2008.03.010. DOI
Bureau S., Ruiz D., Reich M., Gouble B., Bertrand D., Audergon J.M., Renard C. Rapid and non-destructive analysis of apricot fruit quality using ft-near-infrared spectroscopy. Food Chem. 2009;113:1323–1328. doi: 10.1016/j.foodchem.2008.08.066. DOI
Ozsahin A.D., Yilmaz O. Prunus armeniaca l. Cv. Hacihaliloglu fruits extracts prevent lipid peroxidation and protect the unsaturated fatty acids in the fenton reagent environment. Asian J. Chem. 2010;22:8022–8032.
Ihns R., Diamante L.M., Savage G.P., Vanhanen L. Effect of temperature on the drying characteristics, colour, antioxidant and beta-carotene contents of two apricot varieties. Int. J. Food Sci. Technol. 2010;46:275–283. doi: 10.1111/j.1365-2621.2010.02506.x. DOI
Akin E.B., Karabulut I., Topcu A. Some compositional properties of main malatya apricot (prunus armeniaca l.) varieties (vol 107, pg 939, 2008) Food Chem. 2009;116:819–819. doi: 10.1016/j.foodchem.2009.02.065. DOI
Dragovic-Uzelac V., Levaj B., Mrkic V., Bursac D., Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007;102:966–975. doi: 10.1016/j.foodchem.2006.04.001. DOI
Elsayed A.S., Luh B.S. Polyphenolic compounds in canned apricots. J. Food Sci. 1965;30:1016–1020. doi: 10.1111/j.1365-2621.1965.tb01879.x. DOI
Hegedus A., Engel R., Abranko L., Balogh E., Blazovics A., Herman R., Halasz J., Ercisli S., Pedryc A., Stefanovits-Banyai E. Antioxidant and antiradical capacities in apricot (prunus armeniaca l.) fruits: Variations from genotypes, years, and analytical methods. J. Food Sci. 2010;75:C722–C730. doi: 10.1111/j.1750-3841.2010.01826.x. PubMed DOI
Madrau M.A., Piscopo A., Sanguinetti A.M., Del Caro A., Poiana M., Romeo F.V., Piga A. Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. Eur. Food Res. Technol. 2009;228:441–448. doi: 10.1007/s00217-008-0951-6. DOI
Munzuroglu O., Karatas F., Geckil H. The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chem. 2003;83:205–212. doi: 10.1016/S0308-8146(03)00064-5. DOI
Saracoglu S., Tuzen M., Soylak M. Evaluation of trace element contents of dried apricot samples from turkey. J. Hazard. Mater. 2009;167:647–652. doi: 10.1016/j.jhazmat.2009.01.011. PubMed DOI
Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Kizek R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules. 2010;15:6285–6305. doi: 10.3390/molecules15096285. PubMed DOI PMC
Williams B.L., Wender S.H. Isolation and identification of quercetin and isoquercetin from apricots (prunus-armeniaca) Arch. Biochem. Biophys. 1953;43:319–323. doi: 10.1016/0003-9861(53)90127-1. PubMed DOI
Kafkas E., Son L., Kurkcuoglu M., Baser K.H.C. Volatile compositions and some fruit characteristics of table apricot varieties from turkey. Chem. Nat. Compd. 2007;43:344–346. doi: 10.1007/s10600-007-0128-8. DOI
Jimenez J.B., Orea J.M., Montero C., Urena A.G., Navas E., Slowing K., Gomez-Serranillos M.P., Carretero E., De Martinis D. Resveratrol treatment controls microbial flora, prolongs shelf life, and preserves nutritional quality of fruit. J. Agric. Food Chem. 2005;53:1526–1530. doi: 10.1021/jf048426a. PubMed DOI
Ram L., Godara R.K., Sharma R.K., Siddique S. Primary and secondary metabolite changes of kinnow mandarin fruits during different stages of maturity. J. Food Sci. Technol.-Mysore. 2004;41:337–340.
Dillard C.J., German J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000;80:1744–1756. doi: 10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W. DOI
Parr A.J., Bolwell G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000;80:985–1012. doi: 10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7. DOI
Manning K. Isolation of a set of ripening-related genes from strawberry: Their identification and possible relationship to fruit quality traits. Planta. 1998;205:622–631. doi: 10.1007/s004250050365. PubMed DOI
Normanly J. Auxin metabolism. Physiol. Plant. 1997;100:431–442. doi: 10.1111/j.1399-3054.1997.tb03047.x. DOI
Dicu T., Postescu I.D., Tatomir C., Tamas M., Dinu A., Cosma C. A novel method to calculate the antioxidant parameters of the redox reaction between polyphenolic compounds and the stable dpph radical. Ital. J. Food Sci. 2010;22:330–336.
Muller L., Gnoyke S., Popken A.M., Bohm V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010;43:992–999. doi: 10.1016/j.lwt.2010.02.004. DOI
Papoutsis A.J., Lamore S.D., Wondrak G.T., Selmin O.I., Romagnolo D.F. Resveratrol prevents epigenetic silencing of brca-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J. Nutr. 2010;140:1607–1614. doi: 10.3945/jn.110.123422. PubMed DOI PMC
Ullah M.F., Khan M.W. Food as medicine: Potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac. J. Cancer Prev. 2008;9:187–195. PubMed
Gazdik Z., Krska B., Adam V., Saloun J., Pokorna T., Reznicek V., Horna A., Kizek R. Electrochemical determination of the antioxidant potential of some less common fruit species. Sensors. 2008;8:7564–7570. doi: 10.3390/s8127564. PubMed DOI PMC
Wang H., Cao G.H., Prior R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996;44:701–705. doi: 10.1021/jf950579y. DOI
Hercberg S., Galan P., Preziosi P., Alfarez M.J., Vazquez C. The potential role of antioxidant vitamins in preventing cardiovascular diseases and cancers. Nutrition. 1998;14:513–520. doi: 10.1016/S0899-9007(98)00040-9. PubMed DOI
Joshipura K.J., Hu F.B., Manson J.E., Stampfer M.J., Rimm E.B., Speizer F.E., Colditz G., Ascherio A., Rosner B., Spiegelman D., et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann. Intern. Med. 2001;134:1106–1114. doi: 10.7326/0003-4819-134-12-200106190-00010. PubMed DOI
Block G., Patterson B., Subar A. Fruit, vegetables, and cancer prevention - a review of the epidemiologic evidence. Nutr. Cancer. 1992;18:1–29. doi: 10.1080/01635589209514201. PubMed DOI
Hertog M.G.L., BuenodeMesquita H.B., Fehily A.M., Sweetnam P.M., Elwood P.C., Kromhout D. Fruit and vegetable consumption and cancer mortality in the caerphilly study. Cancer Epidemiol. Biomarkers Prev. 1996;5:673–677. PubMed
Manach C., Scalbert A., Morand C., Remesy C., Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747. doi: 10.1093/ajcn/79.5.727. PubMed DOI
Schlesier K., Harwat M., Bohm V., Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002;36:177–187. doi: 10.1080/10715760290006411. PubMed DOI
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., et al. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. doi: 10.3390/s7102402. PubMed DOI PMC
Rop O., Jurikova T., Mlcek J., Kramarova D., Sengee Z. Antioxidant activity and selected nutritional values of plums (prunus domestica l.) typical of the white carpathian mountains. Sci. Hortic. 2009;122:545–549. doi: 10.1016/j.scienta.2009.06.036. DOI
Sochor J., Salas P., Zehnalek J., Krska B., Adam V., Havel L., Kizek R. An assay for spectrometric determination of antioxidant activity of a biological extract. Lis. Cukrov. Repar. 2010;126:416–417.
Rop O., Mlcek J., Jurikova T., Valsikova M., Sochor J., Rezniček V., Kramarova J. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (aronia melanocarpa (michx.) elliot) cultivars. J. Med. Plants Res. 2010;4:2431–2437.
Al-Kandari N.M., Jolliffe I.T. Variable selection and interpretation in correlation principal components. Environmetrics. 2005;16:659–672. doi: 10.1002/env.728. DOI
Dudoit S., Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 2002;3:1–21. doi: 10.1186/gb-2002-3-7-research0036. PubMed DOI PMC
Ogasanovic D. Amino Acids Content in the Fruit of Some Plum Cultivars and Hybrids. In: Vangdal E., Sekse L., editors. Proceedings of the Eighth International Symposium on Plum and Prune Genetics, Breeding and Pomology. International Society Horticultural Science; Leuven, Belgium: 2007. pp. 353–356.
Keutgen A.J., Pawelzik E. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under nacl salinity. Food Chem. 2008;111:642–647. doi: 10.1016/j.foodchem.2008.04.032. DOI
Gholami M., Coombe B.G., Robinson S.R. Grapevine Phloem Sap Analysis: 1-sucrose, Amino Acids, Potassium Concentrations, Seasonal and Diurnal Patterns. In: Reynolds A.G.B.P., editor. Viticulture - Living with Limitations. International Society Horticultural Science; Leuven, Belgium: 2004. pp. 143–153.
Hodisan T., Culea M., Cimpoiu C., Cot A. A study on free aminoacids from plant extracts. Ii. Separation, identification and quantitative determination of the free aminoacids in fagus silvatica by liquid chromatography (lc) and gas chromatography (gc) Rev. Chim. 1998;49:393–397.
Biswas K.M., DeVido D.R., Dorsey J.G. Evaluation of methods for measuring amino acid hydrophobicities and interactions. J. Chromatogr. A. 2003;1000:637–655. doi: 10.1016/S0021-9673(03)00182-1. PubMed DOI
Hodges R.S., Zhu B.Y., Zhou N.E., Mant C.T. Reversed-phase liquid-chromatography as a useful probe of hydrophobic interactions involved in protein-folding and protein stability. J. Chromatogr. A. 1994;676:3–15. doi: 10.1016/0021-9673(94)80452-4. PubMed DOI
Rice-Evans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
Fernandez V., Del Rio V., Pumarino L., Igartua E., Abadia J., Abadia A. Foliar fertilization of peach (prunus persica (l.) batsch) with different iron formulations: Effects on re-greening, iron concentration and mineral composition in treated and untreated leaf surfaces. Sci. Hortic. 2008;117:241–248. doi: 10.1016/j.scienta.2008.05.002. DOI
Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997;16:7–21. doi: 10.1080/07315724.1997.10718644. PubMed DOI
Gilca M., Stoian I., Atanasiu V., Virgolici B. The oxidative hypothesis of senescence. J. Postgrad. Med. 2007;53:207–213. doi: 10.4103/0022-3859.33869. PubMed DOI
Ruiz D., Egea J., Gil M.I., Tomas-Barberan F.A. Phytonutrient Content in New Apricot (prunus armeniaca l.) Varieties. In: Romojaro F., Dicenta F., MartinezGomez P., editors. Proceedings of the Xiiith International Symposium on Apricot Breeding and Culture. International Society Horticultural Science; Leuven, Belgium: 2006. pp. 363–367.
Teow C.C., Truong V.D., McFeeters R.F., Thompson R.L., Pecota K.V., Yencho G.C. Antioxidant activities, phenolic and beta-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007;103:829–838. doi: 10.1016/j.foodchem.2006.09.033. DOI
Wang W., Bostic T.R., Gu L.W. Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 2010;122:1193–1198. doi: 10.1016/j.foodchem.2010.03.114. DOI
Ishiwata K., Yamaguchi T., Takamura H., Matoba I. Dpph radical-scavenging activity and polyphenol content in dried fruits. Food Sci. Technol. Res. 2004;10:152–156. doi: 10.3136/fstr.10.152. DOI
Yigit D., Yigit N., Mavi A. Antioxidant and antimicrobial activities of bitter and sweet apricot (prunus armeniaca l.) kernels. Braz. J. Med. Biol. Res. 2009;42:346–352. doi: 10.1590/S0100-879X2009000400006. PubMed DOI
Borochov-Neori H., Judeinstein S., Greenberg A., Fuhrman B., Attias J., Volkova N., Hayek T., Aviram M. Phenolic antioxidants and antiatherogenic effects of marula (sclerocarrya birrea subsp caffra) fruit juice in healthy humans. J. Agric. Food Chem. 2008;56:9884–9891. doi: 10.1021/jf801467m. PubMed DOI
Kuda T., Tsunekawa M., Goto H., Araki Y. Antioxidant properties of four edible algae harvested in the noto peninsula, japan. J. Food Compos. Anal. 2005;18:625–633. doi: 10.1016/j.jfca.2004.06.015. DOI
Ndhlala A.R., Kasiyamhuru A., Mupure C., Chitindingu K., Benhura M.A., Muchuweti M. Phenolic composition of flacourtia indica, opuntia megacantha and sclerocarya birrea. Food Chem. 2007;103:82–87. doi: 10.1016/j.foodchem.2006.06.066. DOI
Martinez-Calvo J., Llacer G., Badenes M.L. 'Rafel' and 'belgida', two apricot cultivars resistant to sharka. Hortscience. 2010;45:1904–1905.
Schildberger B. Assessment of the colonization of apricot trees by pseudomonas syringae. Mitt. Klosterneubg. 2010;60:214–215.
Liu L.X., Sun Y., Laura T., Liang X.F., Ye H., Zeng X.X. Determination of polyphenolic content and antioxidant activity of kudingcha made from ilex kudingcha c.J. Tseng. Food Chem. 2009;112:35–41. doi: 10.1016/j.foodchem.2008.05.038. DOI
Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Oxidants and Antioxidants, pt A. Volume 299. Academic Press Inc.; San Diego, CA, USA: 1999. Analysis of Total Phenols and other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent; pp. 152–178.
Leccese A., Viti R., Bartolini S. The effect of solvent extraction on antioxidant properties of apricot fruit. Cent. Eur. J. Biol. 2010;6:199–204. doi: 10.2478/s11535-010-0113-2. DOI
Zitka O., Sochor J., Rop O., Skalickova S., Sobrova P., Zehnnalek J., Beklova M., Krska B., Adam V., Kizek R. Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. Molecules. 2011;16:2914–2936. doi: 10.3390/molecules16042914. PubMed DOI PMC
Sochor J., Ryvolova M., Krystofova O., Salas P., Hubalek J., Adam V., Trnkova L., Havel L., Beklova M., Zehnalek J., et al. Fully automated spectrometric protocols for determination of antioxidant activity: Advantages and disadvantages. Molecules. 2010;15:8618–8641. doi: 10.3390/molecules15128618. PubMed DOI PMC