Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.)

. 2010 Dec 28 ; 16 (1) : 74-91. [epub] 20101228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21189456

The study of changes of nutritional value of fruit during the ripening process can help estimate the optimal date for fruit harvesting to achieve the best quality for direct consumption and further utilization. The aim of this study was to monitor the changes of chemical composition of medlar fruit (Mespilus germanica L.) measured at five various ripening stages including 134, 144, 154, 164 and 174 days after full bloom (DAFB). Fruits were analyzed and ascorbic acid (AA) and total phenolic compound content with respect to the total antioxidant activity were determined. In addition, selected micronutrients and macronutrients were monitored. The results of our experiments demonstrate that ascorbic acid, total phenolic compound content and total antioxidant activity decreased significantly with increasing time of ripeness. The decreasing tendency in potassium, calcium and magnesium contents during the ripening stages was also determined. During the ripening period, the content of all micronutrients as well as phosphorus and sodium was balanced, with no statistically significant differences between the monitored ripening stages, which can be considered as a positive fact with respect to ideal consumption quality of fruit.

Zobrazit více v PubMed

Shulaev V., Korban S.S., Sosinski B., Abbott A.G., Aldwinckle H.S., Folta K.M., Iezzoni A., Main D., Arus P., Dandekar A.M., Lewers K., Brown S.K., Davis T.M., Gardiner S.E., Potter D., Veilleux R.E. Multiple models for Rosaceae genomics. Plant Physiol. 2008;147:985–1003. doi: 10.1104/pp.107.115618. PubMed DOI PMC

Dirlewanger E., Cosson P., Tavaud M., Aranzana M.J., Poizat C., Zanetto A., Arus P., Laigret F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.) Theor. Appl. Genet. 2002;105:127–138. PubMed

Kishore G.M., Shewmaker C. Biotechnology: Enhancing human nutrition in developing and developed worlds. Proc. Natl. Acad. Sci. USA. 1999;96:5968–5972. doi: 10.1073/pnas.96.11.5968. PubMed DOI PMC

Klejdus B., Vacek J., Adam V., Zehnalek J., Kizek R., Trnkova L., Kuban V. Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. J. Chromatogr. B. 2004;806:101–111. doi: 10.1016/j.jchromb.2004.03.044. PubMed DOI

Klejdus B., Mikelova R., Petrlova J., Potesil D., Adam V., Stiborova M., Hodek P., Vacek J., Kizek R., Kuban V. Determination of isoflavones in soy bits by fast column high-performance liquid chromatography coupled with diode-array detector. J. Chromatogr. A. 2005;1084:71–79. doi: 10.1016/j.chroma.2005.05.070. PubMed DOI

Klejdus B., Mikelova R., Petrlova J., Potesil D., Adam V., Stiborova M., Hodek P., Vacek J., Kizek R., Kuban V. Evaluation of isoflavones distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with diode-array detector. J. Agr. Food Chem. 2005;53:5848–5852. doi: 10.1021/jf0502754. PubMed DOI

Haffner K., Vestrheim S. Fruit quality of strawberry cultivars. In: vanderScheer H.A.T., Lieten F., Dijkstr J., editors. Third International Strawberry Symposium. Volume 1-2. International Society Horticultural Science; Veldhoven, The Netherlands: 1997. pp. 325–332.

Mazur W.M., Uehara M., Wahala K., Adlercreutz H. Phyto-oestrogen content of berries, and plasma concentrationsand urinary excretion of enterolactone after asingle strawberry-meal in human subjects. Br. J. Nutr. 2000;83:381–387. PubMed

Oszmianski J., Wojdylo A., Lamer-Zarawska E., Swiader K. Antioxidant tannins from Rosaceae plant roots. Food Chem. 2007;100:579–583. doi: 10.1016/j.foodchem.2005.09.086. DOI

Halvorsen B.L., Holte K., Myhrstad M.C.W., Barikmo I., Hvattum E., Remberg S.F., Wold A.B., Haffner K., Baugerod H., Andersen L.F., Moskaug J.O., Jacobs D.R., Blomhoff R. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002;132:461–471. doi: 10.1093/jn/132.3.461. PubMed DOI

Kraft T.F.B., Dey M., Rogers R.B., Ribnicky D.M., Gipp D.M., Cefalu W.T., Raskin I., Lila M.A. Phytochemical composition and metabolic performance-enhancing activity of dietary berries traditionally used by native North Americans. J. Agr. Food Chem. 2008;56:654–660. doi: 10.1021/jf071999d. PubMed DOI PMC

Hu C., Kwok B.H.L., Kitts D.D. Saskatoon berries (Amelanchier alnifolia Nutt.) scavenge free radicals and inhibit intracellular oxidation. Food Res. Int. 2005;38:1079–1085. doi: 10.1016/j.foodres.2005.02.024. DOI

Campbell C.S., Donoghue M.J., Baldwin B.G., Wojciechowski M.F. Phylogenetic-relationships in maloideae (rosaceae)—Evidence from sequences of the internal transcribed spacers of nuclear ribosomal dna and its congruence with morphology. Amer. J. Bot. 1995;82:903–918. doi: 10.1002/j.1537-2197.1995.tb15707.x. DOI

Evans R.C., Alice L.A., Campbell C.S., Kellogg E.A., Dickinson T.A. The granule-bound starch synthase (GBSSI) gene in the rosaceae: Multiple loci and phylogenetic utility. Mol. Phylogenet. Evol. 2000;17:388–400. doi: 10.1006/mpev.2000.0828. PubMed DOI

Evans R.C., Campbell C.S. The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer. J. Bot. 2002;89:1478–1484. doi: 10.3732/ajb.89.9.1478. PubMed DOI

Ayaz F.A., Glew R.H., Huang H.S., Chuang L.T., VanderJagt D.J., Strnad M. Evolution of fatty acids in mediar (Mespilus germanica L.) mesocarp at different stages of ripening. Grasas Aceites. 2002;53:352–356.

Glew R.H., Ayaz F.A., Sanz C., Vanderjagt D.J., Huang H.S., Chuang L.T., Strnad M. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem. 2003;83:363–369. doi: 10.1016/S0308-8146(03)00097-9. DOI

Dincer B., Colak A., Aydin N., Kadioglu A., Guner S. Characterization of polyphenoloxidase from medlar fruits (Mespilus germanica L., Rosaceae) Food Chem. 2002;77:1–7. doi: 10.1016/S0308-8146(01)00359-4. DOI

Haciseferogullari H., Ozcan M., Sonmete M.H., Ozbek O. Some physical and chemical parameters of wild medlar (Mespilus germanica L.) fruit grown in Turkey. J. Food Eng. 2005;69:1–7. doi: 10.1016/j.jfoodeng.2004.07.004. DOI

Murcia M.A., Martinez-Tome M., Jimenez-Monreal A.M. Evaluation of antioxidant activity of tomato treated with an ethylene inhibitor. FEBS J. 2005;272:417–417.

de Pascual-Teresa S., Santos-Buelga C., Rivas-Gonzalo J.C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agr. Food Chem. 2000;48:5331–5337. doi: 10.1021/jf000549h. PubMed DOI

Glew R.H., Ayaz F.A., Vanderjagt D.J., Millson M., Dris R., Niskanen R. A research note mineral composition of medlar (Mespilus germanica) fruit at different stages of maturity. J. Food Qual. 2003;26:441–447. doi: 10.1111/j.1745-4557.2003.tb00258.x. DOI

Glew R.H., Ayaz F.A., Sanz C., VanderJagt D.J., Huang H.S., Chuang L.T., Strnad M. Effect of postharvest period on sugars, organic acids and fatty acids composition in commercially sold medlar (Mespilus germanica 'Dutch') fruit. Eur. Food Res. Technol. 2003;216:390–394. doi: 10.1007/s00217-002-0654-3. DOI

Romero-Rodriguez A., Simal-Lozano J., Vazquez-Oderiz L., Lopez-Hernandez J., Gonzalez-Castro M.J. Physical, physicochemical and chemical changes during maturation of medlards and persimmons. Dtsch. Lebensm.-Rundsch. 2000;96:142–145.

Altunkaya A., Becker E.M., Gokmen V., Skibsted L.H. Antioxidant activity of lettuce extract (Lactuca sativa) and synergism with added phenolic antioxidants. Food Chem. 2009;115:163–168. doi: 10.1016/j.foodchem.2008.11.082. PubMed DOI

Gorinstein S., Zachwieja Z., Folta M., Barton H., Piotrowicz J., Zemser M., Weisz M., Trakhtenberg S., Martin-Belloso O. Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J. Agr. Food Chem. 2001;49:952–957. doi: 10.1021/jf000947k. PubMed DOI

Brown G.S., Kitchener A.E., McGlasson W.B., Barnes S. The effects of copper and calcium foliar sprays on cherry and apple fruit quality. Sci. Hort. 1996;67:219–227. doi: 10.1016/S0304-4238(96)00937-5. DOI

Sabrine H., Afif H., Mohamed B., Hamadi B., Maria H. Effects of cadmium and copper on pollen germination and fruit set in pea (Pisum sativum L.) Sci. Hort. 2010;125:551–555. doi: 10.1016/j.scienta.2010.05.031. DOI

Sharma Y.M., Rathore G.S., Jesani J.C. Effect of soil and foliar application of zinc and copper on yield and fruit quality of seedless lemon (Citrus limon) Indian J. Agr. Sci. 1999;69:236–238.

Parr A.J., Bolwell G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agr. 2000;80:985–1012. doi: 10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7. DOI

Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000;130:2073S–2085S. doi: 10.1093/jn/130.8.2073S. PubMed DOI

Gazdik Z., Krska B., Adam V., Saloun J., Pokorna T., Reznicek V., Horna A., Kizek R. Electrochemical Determination of the Antioxidant Potential of Some Less Common Fruit Species. Sensors. 2008;8:7564–7570. doi: 10.3390/s8127564. PubMed DOI PMC

Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrolstad R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agr. Food Chem. 2002;50:519–525. doi: 10.1021/jf011062r. PubMed DOI

Weaver C., Charley H. Enzymatic browning of ripening bananas. J. Food Sci. 1974;39:1200–1202. doi: 10.1111/j.1365-2621.1974.tb07353.x. DOI

Naczk M., Shahidi F. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J. Pharm. Biomed. Anal. 2006;41:1523–1542. doi: 10.1016/j.jpba.2006.04.002. PubMed DOI

Andersen F., Lygren B., Maage A., Waagbo R. Interaction between two dietary levels of iron and two forms of ascorbic acid and the effect on growth, antioxidant status and some non-specific immune parameters in Atlantic salmon (Salmo salar) smolts. Aquaculture. 1998;161:437–451. doi: 10.1016/S0044-8486(97)00291-3. DOI

Benvenuti S., Pellati F., Melegari M., Bertelli D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004;69:C164–C169. doi: 10.1111/j.1365-2621.2004.tb13352.x. DOI

Hasler A., Sticher O., Meier B. High-performance liquid-chromatographic determination of 5 widespread flavonoid aglycones. J. Chromatogr. 1990;508:236–240. doi: 10.1016/S0021-9673(00)91262-7. PubMed DOI

Marin F.R., Del Rio J.A. Selection of hybrids and edible Citrus species with a high content in the diosmin functional compound. Modulating effect of plant growth regulators on contents. J. Agr. Food Chem. 2001;49:3356–3362. doi: 10.1021/jf010052n. PubMed DOI

Versari A., Parpinello G.P., Tornielli G.B., Ferrarini R., Giulivo C. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina. J. Agr. Food Chem. 2001;49:5531–5536. doi: 10.1021/jf010672o. PubMed DOI

Guyot S., Marnet N., Laraba D., Sanoner P., Drilleau J.F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien) J. Agr. Food Chem. 1998;46:1698–1705. doi: 10.1021/jf970832p. DOI

Kobayashi H., Wang C.Z., Pomper K.W. Phenolic content and antioxidant capacity of pawpaw fruit (Asimina triloba L.) at different ripening stages. Hortscience. 2008;43:268–270.

Kuca P., Majsky J., Kopecek F., Jongepierova I. Biele Karpaty. 1st ed. Ekologia; Bratislava, Slovak Republic: 1992. pp. 258–262.

Rupasinghe H.P.V., Jayasankar S., Lay W. Variation in total phenolics and antioxidant capacity among European plum genotypes. Sci. Hort. 2006;108:243–246. doi: 10.1016/j.scienta.2006.01.020. DOI

Sulc M., Lachman J., Hamouz K., Orsak M., Dvorak P., Horackova V. Selection and evaluation of methods for determination of antioxidant activity of purple- and red-fleshed potato varieties. Chem. Listy. 2007;101:584–591.

Gazdik Z., Zitka O., Petrlova J., Adam V., Zehnalek J., Horna A., Reznicek V., Beklova M., Kizek R. Determination of Vitamin C (Ascorbic Acid) Using High Performance Liquid Chromatography Coupled with Electrochemical Detection. Sensors. 2008;8:7097–7112. doi: 10.3390/s8117097. PubMed DOI PMC

Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Kizek R. Content of phenolic compounds and antioxidant capacity in fruits of selected genotypes of apricot with resistance against Plum pox virus. Molecules. 2010;15:6285–6305. doi: 10.3390/molecules15096285. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...