Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22051932
PubMed Central
PMC6264378
DOI
10.3390/molecules16119207
PII: molecules16119207
Knihovny.cz E-zdroje
- MeSH
- fenoly chemie farmakologie MeSH
- květy chemie MeSH
- lidé MeSH
- nádorové buněčné linie účinky léků MeSH
- pažitka anatomie a histologie chemie MeSH
- protinádorové látky chemie farmakologie MeSH
- rostlinné extrakty chemie farmakologie MeSH
- Rumex anatomie a histologie chemie MeSH
- screeningové testy protinádorových léčiv MeSH
- Tragopogon anatomie a histologie chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fenoly MeSH
- protinádorové látky MeSH
- rostlinné extrakty MeSH
Experimental studies have shown that phenolic compounds have antiproliferative and tumour arresting effects. The aim of this original study was to investigate the content of phenolic compounds (PhC) in flowers of Allium schoenoprasum (chive), Tragopogon pratensis (meadow salsify) and Rumex acetosa (common sorrel) and their effect on proliferation of HaCaT cells. Antiproliferative effects were evaluated in vitro using the following concentrations of phenolic compounds in cultivation medium: 100, 75, 50 and 25 µg/mL. Phenolic composition was also determined by HPLC. The results indicate that even low concentrations of these flowers' phenolic compounds inhibited cell proliferation significantly and the possible use of the studied herb's flowers as sources of active phenolic compounds for human nutrition.
Zobrazit více v PubMed
Katiyar S.K., Agarwal R., Mukhtar H. Protective effects of green tea polyphenols administered by oral intubation against chemical carcinogen-induced forestomach and pulmonary neoplasia in A/J mice. Cancer Lett. 1993;73:167–172. doi: 10.1016/0304-3835(93)90260-G. PubMed DOI
Sharif T., Auger C., Alhosin M., Ebel C., Achour M., Etienne-Selloum N., Fuhrmann G., Bronner C., Schini-Kerth V.B. Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redoxsensitive up-regulation of p73 and down-regulation of UHRF1. Eur. J. Cancer. 2010;46:983–994. doi: 10.1016/j.ejca.2009.12.029. PubMed DOI
Luceri C., Caderni G., Sanna A., Dolara P. Red Wine and Black Tea Polyphenols Modulate the Expression of Cycloxygenase-2, Inducible Nitric Oxide Synthase and Glutathione-Related Enzymes in Azoxymethane-Induced F344 Rat Colon Tumors. J. Nutr. 2002;132:1376–1379. PubMed
Iwasawa H., Morita E., Yui S., Yamazaki M. Anti-oxidant Effects of Kiwi Fruit in Vitro and in Vivo. Biol. Pharm. Bull. 2011;34:128–134. doi: 10.1248/bpb.34.128. PubMed DOI
Rop O., Sochor J., Jurikova T., Zitka O., Skutkova H., Mlcek J., Salas P., Krska B., Babula P., Adam V., Kramarova D., Beklova M., Provaznik I., Kizek R. Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.) Molecules. 2011;16:74–91. PubMed PMC
Kuroda Y., Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 1999;436:69–97. doi: 10.1016/S1383-5742(98)00019-2. PubMed DOI
Castillo-Pichardo L., Martínez-Montemayor M.M., Martínez J.E., Wall K.M., Cubano L.A., Dharmawardhane S. Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin. Exp. Metastasis. 2009;26:505–516. doi: 10.1007/s10585-009-9250-2. PubMed DOI PMC
Jin H., Tan X., Liu X., Ding Y. The Study of Effect of Tea Polyphenols on Microsatellite Instability Colorectal Cancer and Its Molecular Mechanism. Int. J. Colorectal Dis. 2010;25:1407–1415. doi: 10.1007/s00384-010-1047-x. PubMed DOI
Mlček J., Rop O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Tech. 2011 In Press.
Rop O., Mlček J., Juríková T., Valšíková M., Sochor J., Reznicek V., Kramarova D. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J. Med. Plants Res. 2010;4:2431–2437.
Walter A., Etienne-Selloum N., Sarr M., Kane M.O., Beretz A., Schini-Kerth V.B. Angiotensin II induces the vascular expression of VEGF and MMP-2 in vivo: Preventive effect of red wine polyphenols. J. Vasc. Res. 2008;45:386–394. doi: 10.1159/000121408. PubMed DOI
Schlachterman A., Valle F., Wall K.M., Azios N.G., Castillo L., Morell L., Washington A.V., Cubano L.A., Dharmawardhane S.F. Combined Resveratrol, Quercetin, and Catechin Treatment Reduces Breast Tumor Growth in a Nude Mouse Model. Transl. Oncol. 2008;1:19–27. PubMed PMC
Oak M.H., El Bedoui J., Schini-Kerth V.B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J. Nutr. Biochem. 2005;16:1–8. doi: 10.1016/j.jnutbio.2004.09.004. PubMed DOI
Harris D.M., Besselink E., Henning S.M., Go V.L., Heber D. Phytoestrogens induce differential estrogen receptor alpha- or beta-mediated responses in transfected breast cancer cells. Exp. Biol. Med. 2005;230:558–568. PubMed
Roussou I., Lambropoulos I., Pagoulatos G.N., Roussis I.G. Decrease of heat shock protein levels in hela tumor cells by red wine extracts. Ital. J. Food Sci. 2004;16:381–386. PubMed
Lin J.K., Liang Y.C., Lin-Shiau S.Y. Cancer Chemoprevention by Tea Polyphenols through Mitotic Signal Transduction Blockade. Biochem. Pharmacol. 1999;58:911–915. doi: 10.1016/S0006-2952(99)00112-4. PubMed DOI
Soleas G.J., Grass L., Josephy P.D., Goldberg D.M., Diamandis E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 2002;35:119–124. doi: 10.1016/S0009-9120(02)00275-8. PubMed DOI
Nichenametla S.N., Taruscio T.G., Barney D.L., Exon J.H. A Review of the Effects and Mechanisms of Polyphenolics in Cancer. Crit. Rev. Food Sci. 2006;46:161–183. doi: 10.1080/10408390591000541. PubMed DOI
Link A., Balaguer F., Goel A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010;80:1771–1792. doi: 10.1016/j.bcp.2010.06.036. PubMed DOI PMC
Navarro-Perán E., Cabezas-Herrera J., Campo L.S., Rodríguez-López J.N. Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate. Int. J. Biochem. Cell Biol. 2007;39:2215–2225. doi: 10.1016/j.biocel.2007.06.005. PubMed DOI
Yilmaz Y., Toledo R.T. Major Flavonoids in Grape Seeds and Skins: Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. J. Agric. Food. Chem. 2004;52:255–260. doi: 10.1021/jf030117h. PubMed DOI
Aggarwal B.B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006;71:1397–1421. doi: 10.1016/j.bcp.2006.02.009. PubMed DOI
Proestos C., Sereli D., Komaitis M. Determination of PhC in aromatic plants by RP-HPLC and GC-MS. Food Chem. 2006;95:44–52. doi: 10.1016/j.foodchem.2004.12.016. DOI
Proestos C., Kapsokefalou M., Komaitis M. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC and GC-MS after silylation. J. Food Qual. 2008;31:402–414. doi: 10.1111/j.1745-4557.2008.00208.x. PubMed DOI PMC
Lin X.F., Min W., Luo D. Anticarcinogenic effect of ferulic acid on ultraviolet-B irradiated human keratinocyte HaCaT cells. J. Med. Plants Res. 2010;4:1686–1694.
Baskaran N., Manoharan S., Balakrishnan S., Pugalendhi P. Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague—Dawley rats. Eur. J. Pharmacol. 2010;637:22–29. doi: 10.1016/j.ejphar.2010.03.054. PubMed DOI
Salucci M., Stivala L.A., Maiani G., Bugianesi R., Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2) Br. J. Cancer. 2002;86:1645–1651. doi: 10.1038/sj.bjc.6600295. PubMed DOI PMC
Sohi K.K., Mittal N., Hundal M.K., Khanduja K.L. Gallic acid, an antioxidant, exhibits anti apoptotic potential in normal human lymphocytes: a Bcl-2 independent mechanism. J. Nutr. Sci. Vitaminol. 2003;49:221–227. doi: 10.3177/jnsv.49.221. PubMed DOI
Kampa M., Alexaki V.I., Notas G., Nifli A.P., Nistikaki A., Hatzoglou A., Bakogeorgou B., Kouimtzoglou E., Blekas G., Boskou D., Gravanis A., Castanas E. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004;6:63–74. PubMed PMC
Murugan R.S., Priyadarsini R.V., Ramalingam K., Hara Y., Karunagaran D., Nagini S. Intrinsic apoptosis and NF-κB signaling are potential molecular targets for chemoprevention by black tea polyphenols in HepG2 cells in vitro and in a rat hepatocarcinogenesis model in vivo. Food Chem. Toxicol. 2010;48:3281–3287. doi: 10.1016/j.fct.2010.09.002. PubMed DOI
Way T.D., Lin H.Y., Hua K.T., Lee J.C., Li W.H., Lee M.R., Shuang C.H., Lin J.K. Beneficial effects of different tea flowers against human breast cancer MCF-7 cells. Food Chem. 2009;114:1231–1236. doi: 10.1016/j.foodchem.2008.10.084. DOI
Lin J.K. Cancer Chemoprevention by Tea Polyphenols through Modulating Signal Transduction Pathways. Arch. Pharm. Res. 2002;25:561–571. doi: 10.1007/BF02976924. PubMed DOI
Filomeni G., Graziani I., Rotilio G., Ciriolo M.R. trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr. 2007;2:295–305. doi: 10.1007/s12263-007-0059-9. PubMed DOI PMC
Yeh C.T., Yen G.C. Involvement of p38 MAPK and Nrf2 in phenolic acid-induced P-form phenol sulfotransferase expression in human hepatoma HepG2 cells. Carcinogenesis. 2006;27:1008–1017. PubMed
Ma Z.C., Hong Q., Wang Y.G., Tan H.L., Xiao C.R., Liang Q.D., Zhang B.L., Gao Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol. Pharm. Bull. 2010;33:29–34. doi: 10.1248/bpb.33.29. PubMed DOI
Maggi-Capeyron M.F., Ceballos P., Cristol J.P., Delbosc S., Le Doucen C., Pons M., Léger C.L., Descomps B. Wine phenolic antioxidants inhibit AP-1 transcriptional activity. J. Agric. Food Chem. 2001;49:5646–5652. doi: 10.1021/jf010595x. PubMed DOI
Owuor E.D., Kon A.N. Antioxidants and oxidants regulated signal transduction pathways. Biochem. Pharm. 2002;64:765–770. doi: 10.1016/S0006-2952(02)01137-1. PubMed DOI
Chen Y.C., Liang Y.C., Lin-Shiau S.Y., Ho C.T., Lin J.K. Inhibition of TPA-Induced Protein Kinase C and Transcription Activator Protein-1 Binding Activities by Theaflavin-3,3‘-digallate from Black Tea in NIH3T3 Cells. J. Agric. Food Chem. 1999;47:1416–1421. doi: 10.1021/jf981099k. PubMed DOI
Dhandapani K.M., Mahesh V.B., Brann D.W. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J. Neurochem. 2007;102:522–538. doi: 10.1111/j.1471-4159.2007.04633.x. PubMed DOI
Hakimuddin F., Tiwari K., Paliyath G., Meckling K. Grape and wine phenolic compounds down-regulate the expression of signal transduction genes and inhibit the growth of estrogen receptor—negative MDA-MB231 tumors in nu/nu mouse xenografts. Nutr. Res. 2008;28:702–713. doi: 10.1016/j.nutres.2008.06.009. PubMed DOI
Boukamp P., Petrussevska R., Breitkreutz D., Hornung J., Markham A. Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell. Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1973;65:53–63. PubMed
Lee B.L., Ong C.N. Comparative analysis of tea catechins and theaflavins by highperformance liquid chromatography and capillary electrophoresis. J. Chromatogr. 2000;881:439–447. doi: 10.1016/S0021-9673(00)00215-6. PubMed DOI