Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects

. 2011 Nov 03 ; 16 (11) : 9207-17. [epub] 20111103

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22051932

Experimental studies have shown that phenolic compounds have antiproliferative and tumour arresting effects. The aim of this original study was to investigate the content of phenolic compounds (PhC) in flowers of Allium schoenoprasum (chive), Tragopogon pratensis (meadow salsify) and Rumex acetosa (common sorrel) and their effect on proliferation of HaCaT cells. Antiproliferative effects were evaluated in vitro using the following concentrations of phenolic compounds in cultivation medium: 100, 75, 50 and 25 µg/mL. Phenolic composition was also determined by HPLC. The results indicate that even low concentrations of these flowers' phenolic compounds inhibited cell proliferation significantly and the possible use of the studied herb's flowers as sources of active phenolic compounds for human nutrition.

Zobrazit více v PubMed

Katiyar S.K., Agarwal R., Mukhtar H. Protective effects of green tea polyphenols administered by oral intubation against chemical carcinogen-induced forestomach and pulmonary neoplasia in A/J mice. Cancer Lett. 1993;73:167–172. doi: 10.1016/0304-3835(93)90260-G. PubMed DOI

Sharif T., Auger C., Alhosin M., Ebel C., Achour M., Etienne-Selloum N., Fuhrmann G., Bronner C., Schini-Kerth V.B. Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redoxsensitive up-regulation of p73 and down-regulation of UHRF1. Eur. J. Cancer. 2010;46:983–994. doi: 10.1016/j.ejca.2009.12.029. PubMed DOI

Luceri C., Caderni G., Sanna A., Dolara P. Red Wine and Black Tea Polyphenols Modulate the Expression of Cycloxygenase-2, Inducible Nitric Oxide Synthase and Glutathione-Related Enzymes in Azoxymethane-Induced F344 Rat Colon Tumors. J. Nutr. 2002;132:1376–1379. PubMed

Iwasawa H., Morita E., Yui S., Yamazaki M. Anti-oxidant Effects of Kiwi Fruit in Vitro and in Vivo. Biol. Pharm. Bull. 2011;34:128–134. doi: 10.1248/bpb.34.128. PubMed DOI

Rop O., Sochor J., Jurikova T., Zitka O., Skutkova H., Mlcek J., Salas P., Krska B., Babula P., Adam V., Kramarova D., Beklova M., Provaznik I., Kizek R. Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.) Molecules. 2011;16:74–91. PubMed PMC

Kuroda Y., Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat. Res. 1999;436:69–97. doi: 10.1016/S1383-5742(98)00019-2. PubMed DOI

Castillo-Pichardo L., Martínez-Montemayor M.M., Martínez J.E., Wall K.M., Cubano L.A., Dharmawardhane S. Inhibition of mammary tumor growth and metastases to bone and liver by dietary grape polyphenols. Clin. Exp. Metastasis. 2009;26:505–516. doi: 10.1007/s10585-009-9250-2. PubMed DOI PMC

Jin H., Tan X., Liu X., Ding Y. The Study of Effect of Tea Polyphenols on Microsatellite Instability Colorectal Cancer and Its Molecular Mechanism. Int. J. Colorectal Dis. 2010;25:1407–1415. doi: 10.1007/s00384-010-1047-x. PubMed DOI

Mlček J., Rop O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Tech. 2011 In Press.

Rop O., Mlček J., Juríková T., Valšíková M., Sochor J., Reznicek V., Kramarova D. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J. Med. Plants Res. 2010;4:2431–2437.

Walter A., Etienne-Selloum N., Sarr M., Kane M.O., Beretz A., Schini-Kerth V.B. Angiotensin II induces the vascular expression of VEGF and MMP-2 in vivo: Preventive effect of red wine polyphenols. J. Vasc. Res. 2008;45:386–394. doi: 10.1159/000121408. PubMed DOI

Schlachterman A., Valle F., Wall K.M., Azios N.G., Castillo L., Morell L., Washington A.V., Cubano L.A., Dharmawardhane S.F. Combined Resveratrol, Quercetin, and Catechin Treatment Reduces Breast Tumor Growth in a Nude Mouse Model. Transl. Oncol. 2008;1:19–27. PubMed PMC

Oak M.H., El Bedoui J., Schini-Kerth V.B. Antiangiogenic properties of natural polyphenols from red wine and green tea. J. Nutr. Biochem. 2005;16:1–8. doi: 10.1016/j.jnutbio.2004.09.004. PubMed DOI

Harris D.M., Besselink E., Henning S.M., Go V.L., Heber D. Phytoestrogens induce differential estrogen receptor alpha- or beta-mediated responses in transfected breast cancer cells. Exp. Biol. Med. 2005;230:558–568. PubMed

Roussou I., Lambropoulos I., Pagoulatos G.N., Roussis I.G. Decrease of heat shock protein levels in hela tumor cells by red wine extracts. Ital. J. Food Sci. 2004;16:381–386. PubMed

Lin J.K., Liang Y.C., Lin-Shiau S.Y. Cancer Chemoprevention by Tea Polyphenols through Mitotic Signal Transduction Blockade. Biochem. Pharmacol. 1999;58:911–915. doi: 10.1016/S0006-2952(99)00112-4. PubMed DOI

Soleas G.J., Grass L., Josephy P.D., Goldberg D.M., Diamandis E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 2002;35:119–124. doi: 10.1016/S0009-9120(02)00275-8. PubMed DOI

Nichenametla S.N., Taruscio T.G., Barney D.L., Exon J.H. A Review of the Effects and Mechanisms of Polyphenolics in Cancer. Crit. Rev. Food Sci. 2006;46:161–183. doi: 10.1080/10408390591000541. PubMed DOI

Link A., Balaguer F., Goel A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010;80:1771–1792. doi: 10.1016/j.bcp.2010.06.036. PubMed DOI PMC

Navarro-Perán E., Cabezas-Herrera J., Campo L.S., Rodríguez-López J.N. Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate. Int. J. Biochem. Cell Biol. 2007;39:2215–2225. doi: 10.1016/j.biocel.2007.06.005. PubMed DOI

Yilmaz Y., Toledo R.T. Major Flavonoids in Grape Seeds and Skins: Antioxidant Capacity of Catechin, Epicatechin, and Gallic Acid. J. Agric. Food. Chem. 2004;52:255–260. doi: 10.1021/jf030117h. PubMed DOI

Aggarwal B.B., Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 2006;71:1397–1421. doi: 10.1016/j.bcp.2006.02.009. PubMed DOI

Proestos C., Sereli D., Komaitis M. Determination of PhC in aromatic plants by RP-HPLC and GC-MS. Food Chem. 2006;95:44–52. doi: 10.1016/j.foodchem.2004.12.016. DOI

Proestos C., Kapsokefalou M., Komaitis M. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC and GC-MS after silylation. J. Food Qual. 2008;31:402–414. doi: 10.1111/j.1745-4557.2008.00208.x. PubMed DOI PMC

Lin X.F., Min W., Luo D. Anticarcinogenic effect of ferulic acid on ultraviolet-B irradiated human keratinocyte HaCaT cells. J. Med. Plants Res. 2010;4:1686–1694.

Baskaran N., Manoharan S., Balakrishnan S., Pugalendhi P. Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague—Dawley rats. Eur. J. Pharmacol. 2010;637:22–29. doi: 10.1016/j.ejphar.2010.03.054. PubMed DOI

Salucci M., Stivala L.A., Maiani G., Bugianesi R., Vannini V. Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2) Br. J. Cancer. 2002;86:1645–1651. doi: 10.1038/sj.bjc.6600295. PubMed DOI PMC

Sohi K.K., Mittal N., Hundal M.K., Khanduja K.L. Gallic acid, an antioxidant, exhibits anti apoptotic potential in normal human lymphocytes: a Bcl-2 independent mechanism. J. Nutr. Sci. Vitaminol. 2003;49:221–227. doi: 10.3177/jnsv.49.221. PubMed DOI

Kampa M., Alexaki V.I., Notas G., Nifli A.P., Nistikaki A., Hatzoglou A., Bakogeorgou B., Kouimtzoglou E., Blekas G., Boskou D., Gravanis A., Castanas E. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: Potential mechanisms of action. Breast Cancer Res. 2004;6:63–74. PubMed PMC

Murugan R.S., Priyadarsini R.V., Ramalingam K., Hara Y., Karunagaran D., Nagini S. Intrinsic apoptosis and NF-κB signaling are potential molecular targets for chemoprevention by black tea polyphenols in HepG2 cells in vitro and in a rat hepatocarcinogenesis model in vivo. Food Chem. Toxicol. 2010;48:3281–3287. doi: 10.1016/j.fct.2010.09.002. PubMed DOI

Way T.D., Lin H.Y., Hua K.T., Lee J.C., Li W.H., Lee M.R., Shuang C.H., Lin J.K. Beneficial effects of different tea flowers against human breast cancer MCF-7 cells. Food Chem. 2009;114:1231–1236. doi: 10.1016/j.foodchem.2008.10.084. DOI

Lin J.K. Cancer Chemoprevention by Tea Polyphenols through Modulating Signal Transduction Pathways. Arch. Pharm. Res. 2002;25:561–571. doi: 10.1007/BF02976924. PubMed DOI

Filomeni G., Graziani I., Rotilio G., Ciriolo M.R. trans-Resveratrol induces apoptosis in human breast cancer cells MCF-7 by the activation of MAP kinases pathways. Genes Nutr. 2007;2:295–305. doi: 10.1007/s12263-007-0059-9. PubMed DOI PMC

Yeh C.T., Yen G.C. Involvement of p38 MAPK and Nrf2 in phenolic acid-induced P-form phenol sulfotransferase expression in human hepatoma HepG2 cells. Carcinogenesis. 2006;27:1008–1017. PubMed

Ma Z.C., Hong Q., Wang Y.G., Tan H.L., Xiao C.R., Liang Q.D., Zhang B.L., Gao Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol. Pharm. Bull. 2010;33:29–34. doi: 10.1248/bpb.33.29. PubMed DOI

Maggi-Capeyron M.F., Ceballos P., Cristol J.P., Delbosc S., Le Doucen C., Pons M., Léger C.L., Descomps B. Wine phenolic antioxidants inhibit AP-1 transcriptional activity. J. Agric. Food Chem. 2001;49:5646–5652. doi: 10.1021/jf010595x. PubMed DOI

Owuor E.D., Kon A.N. Antioxidants and oxidants regulated signal transduction pathways. Biochem. Pharm. 2002;64:765–770. doi: 10.1016/S0006-2952(02)01137-1. PubMed DOI

Chen Y.C., Liang Y.C., Lin-Shiau S.Y., Ho C.T., Lin J.K. Inhibition of TPA-Induced Protein Kinase C and Transcription Activator Protein-1 Binding Activities by Theaflavin-3,3‘-digallate from Black Tea in NIH3T3 Cells. J. Agric. Food Chem. 1999;47:1416–1421. doi: 10.1021/jf981099k. PubMed DOI

Dhandapani K.M., Mahesh V.B., Brann D.W. Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors. J. Neurochem. 2007;102:522–538. doi: 10.1111/j.1471-4159.2007.04633.x. PubMed DOI

Hakimuddin F., Tiwari K., Paliyath G., Meckling K. Grape and wine phenolic compounds down-regulate the expression of signal transduction genes and inhibit the growth of estrogen receptor—negative MDA-MB231 tumors in nu/nu mouse xenografts. Nutr. Res. 2008;28:702–713. doi: 10.1016/j.nutres.2008.06.009. PubMed DOI

Boukamp P., Petrussevska R., Breitkreutz D., Hornung J., Markham A. Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell. Biol. 1988;106:761–771. doi: 10.1083/jcb.106.3.761. PubMed DOI PMC

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1973;65:53–63. PubMed

Lee B.L., Ong C.N. Comparative analysis of tea catechins and theaflavins by highperformance liquid chromatography and capillary electrophoresis. J. Chromatogr. 2000;881:439–447. doi: 10.1016/S0021-9673(00)00215-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace