Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability

. 2013 Oct 30 ; 18 (11) : 13435-45. [epub] 20131030

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24177700

The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.

Zobrazit více v PubMed

Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929–958. doi: 10.1146/annurev.biochem.77.032207.120833. PubMed DOI PMC

Banerjee I., Mishra D., Das T., Maiti S., Maiti T.K. Caprine (Goat) collagen: A potential biomaterial for skin tissue engineering. J. Biomater. Sci. Polym. Ed. 2012;23:355–373. doi: 10.1163/092050610X551943. PubMed DOI

Bernal A., Balková R., Kuřítka I., Sáha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2012;70:431–453.

López-García J., Humpolíček P., Lehocký M., Junkar I., Mozetič M. Different source atelocollagen thin films: Preparation, process optimisation and its influence on the interaction with eukaryotic cells. Mater. Tehnol. 2013;47:473–479.

Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-based biomaterials for tissue enginnering applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI

Langer R., Tirell D.A. Designing materials for biology and medicine. Nature. 2004;18:487–492. doi: 10.1038/nature02388. PubMed DOI

Tabata Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface. 2009;6:311–324. doi: 10.1098/rsif.2008.0448.focus. PubMed DOI PMC

Garcia J.L., Asadinezhad A., Pacherník J., Lehocký M., Junkar I., Humpolíček P., Sáha P., Valášek P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 2010;15:2845–2856. doi: 10.3390/molecules15042845. PubMed DOI PMC

Štajner D., Čanadanović-Brunet J., Pavlović A. Allium schoenoprasum L., as a natural antioxidant. Phytother. Res. 2004;18:522–524. doi: 10.1002/ptr.1472. PubMed DOI

Anačkov G., Božin B., Zorić L., Vukov D., Mimica-Dukić N., Merkulov L., Igić R., Jovanović M., Boža P. Chemical composition of essential oil and leaf anatomy of Salvia bertolonii vis. and Salvia pratensis L. (Sect. Plethiosphace, Lamiaceae) Molecules. 2009;14:1–9. PubMed PMC

Hearst C., McCollum G., Nelson D., Ballard L.M., Millar B.C., Goldsmith C.E., Rooney P.J., Loughrey A., Moore J.E., Rao J.R. Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. J. Med. Plants. Res. 2010;4:1805–1809.

Kirschner J., Stepanek J. Typification of Leontodon taraxacum L. (Taraxacum officinale FH Wigg.) and the generic name Taraxacum: A review and a new typification proposal. Taxon. 2011;60:216–220.

Shirshova T.I., Beshlei I.V., Deryagina V.P., Ryzhova N.I., Matistov N.V. Chemical composition of Allium schoenoprasum leaves and inhibitory effect of their extract on tumor growth in mice. Pharm. Chem. J. 2013;46:672–675. doi: 10.1007/s11094-013-0867-8. DOI

Vlase L., Parvu M., Parvu E.A., Toiu A. Chemical constituents of three Allium species from Romania. Molecules. 2013;18:114–127. PubMed PMC

Kuceková Z., Mlček J., Humpolíček P., Rop O. Edible flowers–Antioxidant activity and impact on cell viability. Cent. Eur. J. Biol. 2013;8:1023–1031. doi: 10.2478/s11535-013-0212-y. DOI

Rodrigues A.S., Pérez-Gregorio M.R., García-Falcón M.S., Simal-Gándara J. Effect of curing and cooking on flavonols and anthocyanins in traditional varieties of onion bulbs. Food Res. Int. 2009;42:1331–1336. doi: 10.1016/j.foodres.2009.04.005. DOI

Pérez-Gregorio M.R., García-Falcón M.S., Simal-Gándara J., Rodrigues A.S., Almeida D.P.F. Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. J. Food Compos. Anal. 2010;23:592–598. doi: 10.1016/j.jfca.2009.08.013. DOI

Figueiredo-González M., Cancho-Grande B., Simal-Gándara J. Evolution of colour and phenolic compounds during Garnacha Tintorera grape raisining. Food Chem. 2013;141:3230–3240. doi: 10.1016/j.foodchem.2013.05.142. PubMed DOI

Rop O., Mlček J., Juřiková T., Valsikova M., Sochor J., Reznicek J., Kramarova D. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J. Med. Plants Res. 2010;4:2431–2437.

Osorio C., Carriazo J.G., Almanza O. Antioxidant activity of corozo (Bactris guineensis) fruit byelectron paramagnetic resonance (EPR) spectroscopy. Eur. Food Res. Technol. 2011;233:103–108. doi: 10.1007/s00217-011-1499-4. DOI

Mlček J., Rop O. Fresh edible flowers of ornamental plants–A new source of nutraceutical foods. Trends Food Sci. Tech. 2011;22:561–569. doi: 10.1016/j.tifs.2011.04.006. DOI

Rodrigues A.S., Pérez-Gregorio M.R., García-Falcón M.S., Simal-Gándara J., Almeida D.P.F. Effect of post-harvest practices on flavonoid content of red and white onion cultivars. Food Control. 2010;21:878–884. doi: 10.1016/j.foodcont.2009.12.003. DOI

Pérez-Gregorio M.R., Regueiro J., González-Barreiro C., Rial-Otero R., Simal-Gándara J. Changes in antioxidant flavonoids during freeze-drying of red onions and subsequent storage. Food Control. 2011;22:1108–1113. doi: 10.1016/j.foodcont.2011.01.006. DOI

Hetrick E.M., Schoenfisch M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006;35:780–789. doi: 10.1039/b515219b. PubMed DOI

Kenawy E.R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI

Ferrer J.L., Austin M.B., Stewart C., Noel J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Bioch. 2008;46:356–370. doi: 10.1016/j.plaphy.2007.12.009. PubMed DOI PMC

Figueiredo-González M., Simal-Gándara J., Boso S., Martínez M.C., Santiago J.L., Cancho-Grande B. Flavonoids in Gran Negro berries collected from shoulders and tips within the cluster, and comparison with Brancellao and Mouratón varieties. Food Chem. 2012;133:806–815. doi: 10.1016/j.foodchem.2012.01.095. PubMed DOI

Graf E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 1992;13:435–448. doi: 10.1016/0891-5849(92)90184-I. PubMed DOI

Kuceková Z., Mlček J., Humpolíček P., Rop O., Valášek P., Sáha P. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules. 2011;16:9207–9217. doi: 10.3390/molecules16119207. PubMed DOI PMC

Araim O., Ballantyne J., Waterhouse A.L., Sumpio B.E. Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols. J. Vasc. Surg. 2002;35:1226–1232. doi: 10.1067/mva.2002.124358. PubMed DOI

Figueiredo-González M., Simal-Gándara J., Boso S., Martínez M.C., Santiago J.L., Cancho-Grande B. Anthocyanins and flavonols berries from Vitis vinifera L. cv. Brancellao separately collected from two different positions within the cluster. Food Chem. 2012;135:47–56. doi: 10.1016/j.foodchem.2012.04.054. DOI

Quijada-Morín N., Regueiro J., Simal-Gándara J., Tomás E., Rivas-Gonzalo J.C., Escribano-Bailón T. Relationship between the sensory-determined astringency and the flavanolic composition of red wines. J. Agric. Food Chem. 2012;60:12355–12361. doi: 10.1021/jf3044346. PubMed DOI

Katalinic V., Mozina S.S., Generalic I., Skroza D., Ljubenkov I., Klancnik A. Phenolic profile, antioxidant capacity and antimicrobial activity of leaf extracts from six Vitis Viniferea L. varieties. Int. J. Food Prop. 2013;16:45–60. doi: 10.1080/10942912.2010.526274. DOI

Hashimoto S., Miyazawa M., Kameoka H. Volatile flavour component of chive Allium Schoenprasum. J. Food Sci. 1983;48:1858–1863. doi: 10.1111/j.1365-2621.1983.tb05101.x. DOI

Veličković D.T., Randelović N.V., Ristić M.S., Šmelcerović A.A., Veličković A.S. Chemical, composition and antimicrobial action of the ethanol extracts of Salvia pratensis L., Salvia glutinosa L. and Salvia aethiopis L. J. Serb. Chem. Soc. 2002;67:639–646. doi: 10.2298/JSC0210639V. DOI

Schmitzer V., Veberic R., Slatnar A., Stampar F. Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. J. Agric. Food Chem. 2010;58:10143–10146. doi: 10.1021/jf102083s. PubMed DOI

Alonso-García A., Cancho-Grande B., Simal-Gándara J. Development of a rapid method based on solid-phase extraction and liquid chromatography with ultraviolet detection for the determination of polyphenols in alcohol-free beers. J. Chromatogr. A. 2004;1054:175–180. PubMed

Figueiredo-González M., Cancho-Grande B., Simal-Gándara J. Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV-Vis spectrophotometry. Food Chem. 2013;140:217–224. doi: 10.1016/j.foodchem.2013.02.055. PubMed DOI

International Organization for Standardization . International Organization for Standardization; Geneva, Switzerland: 2009. ISO 10993 5: 2009. Biological evaluation of medical devices, Part 5: Tests for in vitro cytotoxicity.

Campbell J.K., King J.L., Harmston M., Lila M.A., Erdman J.W. Synergistic effects of flavonoids on cell proliferation in Hepa-1c1c7 and LNCaP cancer cell lines. J. Food Sci. 2006;71:358–363.

Kowalczyk M.C., Kowalczyk P., Tolstykh O., Hanausek M., Walaszek Z., Slaga T.J. Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice. Cancer Prev. Res. 2010;3:170–178. doi: 10.1158/1940-6207.CAPR-09-0196. PubMed DOI

Hole A., Grimmer S., Jensen M.R., Sahlstrøm S. Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem. 2012;133:969–977. doi: 10.1016/j.foodchem.2012.02.017. DOI

Yilmaz Y., Toledo R.T. Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004;52:255–260. doi: 10.1021/jf030117h. PubMed DOI

Fukumoto L.R., Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000;48:3597–3604. doi: 10.1021/jf000220w. PubMed DOI

García J.L., Pacherník J., Lehocký M., Junkar I., Humpolíček P., Sáha P. Enhanced keratinocyte cell attachment to atelocollagen thin films through air and nitrogen plasma treatment. Prog. Colloid Polym. Sci. 2011;138:89–94.

Huang C.-C., Wu W.-B., Fang J.-Y., Chiang H.-S., Chen S.-K., Chen B.-H., Chen Y.-T., Hung C.-F. (−)-Epicatechin-3-gallate, a green tea polyphenol is a potent agent against UVB-induced damage in HaCaT Keratinocytes. Molecules. 2007;12:1845–1858. doi: 10.3390/12081845. PubMed DOI PMC

Matić I., Žižak Ž., Simonović M., Simonović B., Godevadc D., Šavikin K., Juranić Z. Cytotoxic effect of wine polyphenolic extracts and resveratrol against human carcinoma cells and normal peripheral blood mononuclear cells. J. Med. Food. 2010;13:851–862. doi: 10.1089/jmf.2009.0193. PubMed DOI

Moravčíková D., Kuceková Z., Mlček J., Rop O., Humpolíček P. Compositions of polyphenols in wild chive, meadow salsify, garden sorrel and agyoncha and their anti-proliferative effect. Acta Univ. Agric. Silvic. Mendel. Brun. 2012;60:125–132.

Gollucke A.P.B., Aguiar O., Barbisan L.F., Ribeiro D.A. Use of grape polyphenols against carcinogenesis: Putative molecular mechanisms of action using in vitro and in vivo test systems. J. Med. Food. 2013;16:199–205. doi: 10.1089/jmf.2012.0170. PubMed DOI

Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A. Normal keratinizationin a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell Biol. 1998;106:761–771. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...