Synthesis and Characterization of a Bioartificial Polymeric System with Potential Antibacterial Activity: Chitosan-Polyvinyl Alcohol-Ampicillin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-10813S
The Czech Science Foundation
PubMed
30486491
PubMed Central
PMC6321558
DOI
10.3390/molecules23123109
PII: molecules23123109
Knihovny.cz E-zdroje
- Klíčová slova
- ampicillin, bio-artificial polymeric system, chitosan, health-care associated infections, polyvinyl alcohol,
- MeSH
- ampicilin * chemie farmakologie MeSH
- antibakteriální látky * chemická syntéza chemie farmakologie MeSH
- chitosan * chemie farmakologie MeSH
- Escherichia coli růst a vývoj MeSH
- polyvinylalkohol * chemie farmakologie MeSH
- Staphylococcus aureus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampicilin * MeSH
- antibakteriální látky * MeSH
- chitosan * MeSH
- polyvinylalkohol * MeSH
Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
Zobrazit více v PubMed
Bernal A., Kuritka I., Saha P. Preparation and characterization of poly(vinyl alcohol)-poly(vinyl pyrrolidone) blend: A biomaterial with latent medical applications. J. Appl. Polym. Sci. 2013;127:3560–3568. doi: 10.1002/app.37723. DOI
Bernal A., Kuritka I., Kasparkova V., Saha P. The effect of microwave irradiation on poly(vinyl alcohol) dissolved in ethylene glycol. J. Appl. Polym. Sci. 2013;128:175–180. doi: 10.1002/app.38133. DOI
Bernal A., Balkova R., Kuritka I., Saha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2013;70:431–453. doi: 10.1007/s00289-012-0802-2. DOI
Cascone M.G. Dynamic-mechanical properties of bioartificial polymeric materials. Polym. Int. 1997;43:55–69. doi: 10.1002/(SICI)1097-0126(199705)43:1<55::AID-PI762>3.0.CO;2-#. DOI
Luckachan G.E., Pillai C.K.S. Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. J. Polym. Environ. 2011;19:637–676. doi: 10.1007/s10924-011-0317-1. DOI
Sionkowska A., Płanecka A., Kozłowska J., Skopińska-Wiśniewska J. Photochemical stability of poly(vinyl alcohol) in the presence of collagen. Polym. Degrad. Stab. 2009;94:383–388. doi: 10.1016/j.polymdegradstab.2008.11.020. DOI
Jagur-Grodzinski J. Biomedical application of functional polymers. React. Funct. Polym. 1999;39:99–138. doi: 10.1016/S1381-5148(98)00054-6. DOI
Langer R., Tirrell D.A. Designing materials for biology and medicine. Nature. 2004;428:487–492. doi: 10.1038/nature02388. PubMed DOI
Lazzeri L. Progress in bioartificial polymeric materials. Trends Polym. Sci. 1996;8:249–252.
Wong S.-S., Altinkaya S.A., Mallapragada S.K. Crystallization of poly (vinyl alcohol) during solvent removal: Infrared characterization and mathematical modeling. J. Polym. Sci. Part. B Polym. Phys. 2007;45:930–935. doi: 10.1002/polb.21101. DOI
Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011;36:1254–1276. doi: 10.1016/j.progpolymsci.2011.05.003. DOI
Mano V., Ribeiro e Silva M.E.S. Bioartificial polymeric materials based on collagen and poly(N-isopropylacrylamide) Mater. Res. 2007;10:165–170. doi: 10.1590/S1516-14392007000200012. DOI
Scotchford C.A., Cascone M.G., Downes S., Giusti P. Osteoblast responses to collagen-PVA bioartificial polymers in vitro: The effects of cross-linking method and collagen content. Biomaterials. 1998;19:1–11. doi: 10.1016/S0142-9612(97)00236-6. PubMed DOI
Vasheghani F.B., Rajabi F.H., Ahmadi M.H. Influence of solvent on thermodynamic parameters and stability of some multicomponent polymer complexes involving an acrylic polymer, poly (ethylene imine) and poly (vinyl pyrrolidone) Polym. Bull. 2007;58:553–563. doi: 10.1007/s00289-006-0693-1. DOI
Ahmad S.I., Hasan N., Zainul Abid C.K.V., Mazumdar N. Preparation and characterization of films based on crosslinked blends of gum acacia, polyvinylalcohol, and polyvinylpyrrolidone-iodine complex. J. Appl. Polym. Sci. 2008;109:775–781. doi: 10.1002/app.28140. DOI
Merchan M., Sedlarikova J., Friedrich M., Sedlarik V., Sáha P. Thermoplastic modification of medical grade polyvinyl chloride with various antibiotics: Effect of antibiotic chemical structure on mechanical, antibacterial properties, and release activity. Polym. Bull. 2011;67:997–1016. doi: 10.1007/s00289-011-0474-3. DOI
Merchan M., Sedlarikova J., Sedlarik V., Machovsky M., Svobodová J., Sáha P. Antibacterial polyvinyl chloride/antibiotic films: The effect of solvent on morphology, antibacterial activity, and release kinetics. J. Appl. Polym. Sci. 2010;118:2369–2378. doi: 10.1002/app.32185. DOI
Goy R.C., de Britto D., Assis O.B.G. A review of the antimicrobial activity of chitosan. Polimeros. 2009;19:241–247. doi: 10.1590/S0104-14282009000300013. DOI
Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013;49:780–792. doi: 10.1016/j.eurpolymj.2012.12.009. DOI
Kong M., Chen X.G., Xing K., Park H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010;144:51–63. doi: 10.1016/j.ijfoodmicro.2010.09.012. PubMed DOI
Liang S., Liu L., Huang Q., Yam K.L. Preparation of single or double-network chitosan/poly (vinyl alcohol) gel films through selectively cross-linking method. Carbohydr. Polym. 2009;77:718–724. doi: 10.1016/j.carbpol.2009.02.007. DOI
Sarasam A., Madihally S. V Characterization of chitosan—Polycaprolactone blends for tissue engineering applications. Biomaterials. 2005;26:5500–5508. doi: 10.1016/j.biomaterials.2005.01.071. PubMed DOI
Suyatma N.E., Copinet A., Tighzert L., Coma V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J. Polym. Environ. 2004;12:1–6. doi: 10.1023/B:JOOE.0000003121.12800.4e. DOI
Martinez-Camacho A.P., Cortez-Rocha M.O., Ezquerra-Brauer J.M., Graciano-Verdugo A.Z., Rodriguez-Félix F., Castillo-Ortega M.M., Yépiz-Gómez M.S., Plascencia-Jatomea M. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydr. Polym. 2010;82:305–315. doi: 10.1016/j.carbpol.2010.04.069. DOI
Kaczmarek H., Podgórski A. The effect of UV-irradiation on poly (vinyl alcohol) composites with montmorillonite. J. Photochem. Photobiol. A Chem. 2007;191:209–215. doi: 10.1016/j.jphotochem.2007.04.025. DOI
Ding B., Kim H.-Y., Lee S.-C., Lee D.-R., Choi K.-J. Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fibers Polym. 2002;3:73–79. doi: 10.1007/BF02875403. DOI
Zhou W.Y., Guo B., Liu M., Liao R., Rabie A.B.M., Jia D. Poly(vinyl alcohol)/Halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. J. Biomed. Mater. Res. Part A. 2010;93:1574–1587. doi: 10.1002/jbm.a.32656. PubMed DOI
Hajji S., Chaker A., Jridi M., Maalej H., Jellouli K., Boufi S., Nasri M. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ. Sci. Pollut. Res. 2016;23:15310–15320. doi: 10.1007/s11356-016-6699-9. PubMed DOI
Pineda-Castillo S., Bernal-Ballén A., Bernal-López C., Segura-Puello H., Nieto-Mosquera D., Villamil-Ballesteros A., Muñoz-Forero D., Munster L. Synthesis and Characterization of Poly (Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration. Molecules. 2018;23:2414. doi: 10.3390/molecules23102414. PubMed DOI PMC
Raafat D., Sahl H.-G. Chitosan and its antimicrobial potential—A critical literature survey. Microb. Biotechnol. 2009;2:186–201. doi: 10.1111/j.1751-7915.2008.00080.x. PubMed DOI PMC
De Souza Costa-Júnior E., Pereira M.M., Mansur H.S. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J. Mater. Sci. Mater. Med. 2009;20:553–561. doi: 10.1007/s10856-008-3627-7. PubMed DOI
Mansur H.S., Costa E.D.S., Mansur A.A.P., Barbosa-Stancioli E.F. Cytocompatibility evaluation in cell-culture systems of chemically crosslinked chitosan/PVA hydrogels. Mater. Sci. Eng. C. 2009;29:1574–1583. doi: 10.1016/j.msec.2008.12.012. DOI
Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 2008;28:539–548. doi: 10.1016/j.msec.2007.10.088. DOI
Yang J.M., Su W.Y., Leu T.L., Yang M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci. 2004;236:39–51. doi: 10.1016/j.memsci.2004.02.005. DOI
Holland B.J., Hay J.N. The thermal degradation of poly(vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI
Finch C.A. Polyvinyl Alcohol: Developments. Wiley; New York, NY, USA: 1992.
Lambert J.B., Gronert S., Shurvell H.F., Lightner D., Cooks R.G. Organic Structural Spectroscopy. Prentice Hall; New York, NY, USA: 2001.
Tayyari S.F., Zahedi-Tabrizi M., Laleh S., Moosavi-Tekyeh Z., Rahemi H., Wang Y.A. Structure and vibrational assignment of 3,4-diacetyl-2,5-hexanedione. A density functional theoretical study. J. Mol. Struct. 2007;827:176–187. doi: 10.1016/j.molstruc.2006.05.028. DOI
Wong J.Y., Bronzino J.D. Biomaterials. 1st ed. CRC Press; Boca Raton, FL, USA: 2007.
Bhat N.V., Nate M.M., Kurup M.B., Bambole V.A., Sabharwal S. Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2005;237:585–592. doi: 10.1016/j.nimb.2005.04.058. DOI
Petrova N.V., Evtushenko A.M., Chikhacheva I.P., Zubov V.P., Kubrakova I.V. Effect of microwave irradiation on the cross-linking of polyvinyl alcohol. Russ. J. Appl. Chem. 2005;78:1158–1161. doi: 10.1007/s11167-005-0470-1. DOI
Natalia V.A., Evtushenko A.M., Chikhacheva I.P., Zubov V.P., Kubrakova I. V Effect of microwave irradiation on the structuring of polyvinyl alcohol. Mendeleev Commun. 2005;15:170–172.
Kumar G.N.H., Rao J.L., Gopal N.O., Narasimhulu K.V., Chakradhar R.P.S., Rajulu A.V. Spectroscopic investigations of Mn2+ ions doped polyvinylalcohol films. Plymer. 2004;45:5407–5415. doi: 10.1016/j.polymer.2004.05.068. DOI
Pawlak A., Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta. 2003;396:153–166. doi: 10.1016/S0040-6031(02)00523-3. DOI
Marsano E., Vicini S., Skopińska J., Wisniewski M., Sionkowska A. Chitosan and poly(vinyl pyrrolidone): Compatibility and miscibility of blends. Macromol. Symp. 2004;218:251–260. doi: 10.1002/masy.200451426. DOI
Oliveira J.M., Rodrigues M.T., Silva S.S., Malafaya P.B., Gomes M.E., Viegas C.A., Dias I.R., Azevedo J.T., Mano J.F., Reis R.L. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–6137. doi: 10.1016/j.biomaterials.2006.07.034. PubMed DOI
Li M., Cheng S., Yan H. Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength. Green Chem. 2007;9:894. doi: 10.1039/b618045k. DOI
Li Y., Liu T., Zheng J., Xu X. Glutaraldehyde-crosslinked chitosan/hydroxyapatite bone repair scaffold and its application as drug carrier for icariin. J. Appl. Polym. Sci. 2013;130:1539–1547. doi: 10.1002/app.39339. DOI
Coates J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. 2000;12:10815–10837.
Bernal-Ballén A., Kuritka I., Saha P. Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetate-PVA. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/3172545. DOI
Hussein-Al-Ali S.H., El Zowalaty M.E., Hussein M.Z., Geilich B.M., Webster T.J. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int. J. Nanomed. 2014;9:3801. doi: 10.2147/IJN.S61143. PubMed DOI PMC
Srinivasa P.C., Ramesh M.N., Kumar K.R., Tharanathan R.N. Properties and sorption studies of chitosan—Polyvinyl alcohol blend films. Carbohydr. Polym. 2003;53:431–438. doi: 10.1016/S0144-8617(03)00105-X. DOI
Kumar H.M.P.N., Prabhakar M.N., Prasad C.V., Rao K.M., Reddy T.V.A.K., Rao K.C., Subha M.C.S. Compatibility studies of chitosan/PVA blend in 2% aqueous acetic acid solution at 30 °C. Carbohydr. Polym. 2010;82:251–255. doi: 10.1016/j.carbpol.2010.04.021. DOI
Zheng H., Du Y., Yu J., Huang R., Zhang L. Preparation and characterization of chitosan/poly (vinyl alcohol) blend fibers. J. Appl. Polym. Sci. 2001;80:2558–2565. doi: 10.1002/app.1365. DOI
Bhajantri R.F., Ravindrachary V., Harisha A., Crasta V., Nayak S.P., Poojary B. Microstructural studies on BaCl2 doped poly(vinyl alcohol) Polymer. 2006;47:3591–3598. doi: 10.1016/j.polymer.2006.03.054. DOI
Liang S., Yang J., Zhang X., Bai Y. The thermal-electrical properties of polyvinyl alcohol/AgNO3 films. J. Appl. Polym. Sci. 2011;122:813–818. doi: 10.1002/app.34060. DOI
Marciniec B., Plotkowiak Z., Wachowski L., Kozak M., Popielarz-Brzezinska M. Analytical study of β-irradiated antibiotics in the solid state. J. Therm. Anal. Calorim. 2002;68:423–436.
Mundargi R.C., Shelke N.B., Rokhade A.P., Patil S.A., Aminabhavi T.M. Formulation and in-vitro evaluation of novel starch-based tableted microspheres for controlled release of ampicillin. Carbohydr. Polym. 2008;71:42–53. doi: 10.1016/j.carbpol.2007.05.013. DOI
Gonzalez-Campos J.B., Prokhorov E., Luna-Barcenas G., Fonseca-Garcia A., Sanchez I.C. Dielectric relaxations of chitosan: The effect of water on the α-relaxation and the glass transition temperature. J. Polym. Sci. Part B Polym. Phys. 2009;47:2259–2271. doi: 10.1002/polb.21823. DOI
Alhosseini S.N., Moztarzadeh F., Mozafari M., Asgari S., Dodel M., Samadikuchaksaraei A., Kargozar S., Jalali N. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 2012;7:25. PubMed PMC
Cui Z., Zheng Z., Lin L., Si J., Wang Q., Peng X., Chen W. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Adv. Polym. Technol. 2017;37:1917–1928. doi: 10.1002/adv.21850. DOI
Bonilla J., Fortunati E., Atarés L., Chiralt A., Kenny J.M. Physical, structural and antimicrobial properties of poly vinyl alcohol—Chitosan biodegradable films. Food Hydrocolloids. 2014;35:463–470. doi: 10.1016/j.foodhyd.2013.07.002. DOI
Turalija M., Bischof S., Budimir A., Gaan S. Antimicrobial PLA films from environment friendly additives. Compos. Part. B Eng. 2016;102:94–99. doi: 10.1016/j.compositesb.2016.07.017. DOI
No H.K., Park N.Y., Lee S.H., Meyers S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002;74:65–72. doi: 10.1016/S0168-1605(01)00717-6. PubMed DOI
Liu N., Chen X.-G., Park H.-J., Liu C.-G., Liu C.-S., Meng X.-H., Yu L.-J. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym. 2006;64:60–65. doi: 10.1016/j.carbpol.2005.10.028. DOI
Tao Y., Qian L.-H., Xie J. Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus. Carbohydr. Polym. 2011;86:969–974. doi: 10.1016/j.carbpol.2011.05.054. DOI
Kowalczyk M.C., Kowalczyk P., Tolstykh O., Hanausek M., Walaszek Z., Slaga T.J. Synergistic effects of combined phytochemicals and skin cancer prevention in SENCAR mice. Cancer Prev. Res. 2010:1940–6207. doi: 10.1158/1940-6207.CAPR-09-0196. PubMed DOI
López-Garcia J., Kuceková Z., Humpoliček P., Mlček J., Sáha P. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability. Molecules. 2013;18:13435–13445. doi: 10.3390/molecules181113435. PubMed DOI PMC
Palmer-Young E.C., Sadd B.M., Irwin R.E., Adler L.S. Synergistic effects of floral phytochemicals against a bumble bee parasite. Ecol. Evol. 2017;7:1836–1849. doi: 10.1002/ece3.2794. PubMed DOI PMC
Dutta P.K., Tripathi S., Mehrotra G.K., Dutta J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009;114:1173–1182. doi: 10.1016/j.foodchem.2008.11.047. DOI
Giunchedi P., Genta I., Conti B., Muzzarelli R.A.A., Conte U. Preparation and characterization of ampicillin loaded methylpyrrolidinone chitosan and chitosan microspheres. Biomaterials. 1998;19:157–161. doi: 10.1016/S0142-9612(97)00181-6. PubMed DOI
Mitik-Dineva N., Wang J., Truong V.K., Stoddart P., Malherbe F., Crawford R.J., Ivanova E.P. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr. Microbiol. 2009;58:268–273. doi: 10.1007/s00284-008-9320-8. PubMed DOI
Lynch A.S., Robertson G.T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 2008;59:415–428. doi: 10.1146/annurev.med.59.110106.132000. PubMed DOI
Ma L., Gao C., Mao Z., Zhou J., Shen J., Hu X., Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24:4833–4841. doi: 10.1016/S0142-9612(03)00374-0. PubMed DOI
López-Garcia J., Lehocky M., Humpoliček P., Sáha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014;5:43–57. doi: 10.3390/jfb5020043. PubMed DOI PMC
Asadinezhad A., Novak I., Lehocky M. Polysaccharides coatings on medical-grade PVC: A probe into surface characteristics and the extent of bacterial adhesion. Molecules. 2010;15:1007–1027. doi: 10.3390/molecules15021007. PubMed DOI PMC
Dik D.A., Fisher J.F., Mobashery S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem. Rev. 2018;118:5952–5984. doi: 10.1021/acs.chemrev.8b00277. PubMed DOI PMC
Tenover F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control. 2006;34:S3–S10. doi: 10.1016/j.ajic.2006.05.219. PubMed DOI