HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
24956439
PubMed Central
PMC4099973
DOI
10.3390/jfb5020043
PII: jfb5020043
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The effective and widely tested biocides: Benzalkonium chloride, bronopol, chitosan, chlorhexidine and irgasan were added in different concentrations to atelocollagen matrices. In order to assess how these antibacterial agents influence keratinocytes cell growth, cell viability and proliferation were determined by using MTT assay. Acquired data indicated a low toxicity by employing any of these chemical substances. Furthermore, cell viability and proliferation were comparatively similar to the samples where there were no biocides. It means that regardless of the agent, collagen-cell-attachment properties are not drastically affected by the incorporation of those biocides into the substrate. Therefore, these findings suggest that these atelocollagen substrates enhanced by the addition of one or more of these agents may render effectiveness against bacterial stains and biofilm formation, being the samples referred to herein as "antimicrobial substrates" a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
Zobrazit více v PubMed
Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-based biomaterials for tissue enginnering applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI
López-García J., Humpolíček P., Lehocký M., Junkar I., Mozetič M. Different source atelocollagen thin films: Preparation, process optimisation and its influence on the interaction with eukaryotic cells. Mater. Tehnol. 2013;47:473–479. doi: 10.1016/j.matdes.2012.12.069. DOI
Bernal A., Balková R., Kuřítka I., Sáha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2012;70:431–453.
Tanaka Y., Yamaoka H., Nishizawa S., Nagata S., Ogasawara T., Asawa Y., Fujihara Y., Takato T., Hoshi K. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials. 2010;31:4506–4516. doi: 10.1016/j.biomaterials.2010.02.028. PubMed DOI
Banerjee I., Mishra D., Das T., Maiti S., Maiti T.K. Caprine (Goat) collagen: A potential biomaterial for skin tissue engineering. J. Biomater. Sci. Polym. Ed. 2012;23:355–373. doi: 10.1163/092050610X551943. PubMed DOI
Lehmann B. HaCaT cell line as a model system for vitamin D3 metabolism in human skin. J. Invest. Dermatol. 1997;108:78–82. PubMed
Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A. Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell Biol. 1998;106:761–771. PubMed PMC
García J.L., Pacherník J., Lehocký M., Junkar I., Humpolíček P., Sáha P. Enhanced keratinocyte cell attachment to atelocollagen thin films through air and nitrogen plasma treatment. Prog. Colloid Polym. Sci. 2011;138:89–94.
Hacek D.M., Suriano T., Noskin G.A., Krusynski J., Reisberg B., Peterson L.R. Medical and economic benefit of a comprehensive infection control program that includes routine determination of microbial clonality. Am. J. Clin. Pathol. 1999;111:647–654. PubMed
Bechert T., Steinrücke P., Guggenbichler J.P. A new method for screening anti-infective biomaterials. Nat. Med. 2003;6:1053–1056. PubMed
Popelka A., Novák I., Lehocký M., Junkar I., Mozetič M., Kleinová A., Janigová I., Šlouf M., Bílek F., Chodák I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012;90:1501–1508. doi: 10.1016/j.carbpol.2012.07.021. PubMed DOI
Kuceková Z., Humpolíček P., Kasparkova V., Perecko T., Lehocký M., Hauerlandová I., Sáha P., Stejskal J. Colloidal polyaniline dispersion: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B. 2014;116:411–417. doi: 10.1016/j.colsurfb.2014.01.027. PubMed DOI
Hetrick E.M., Schoenfisch M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006;35:780–789. doi: 10.1039/b515219b. PubMed DOI
Campoccia D., Montanaro L., Arciola C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–2339. PubMed
Kenawy E.R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI
Sehgal P.K., Srinivasan A. Collagen-coated microparticles in drug delivery. Expert Opin. Drug Deliv. 2009;6:687–695. doi: 10.1517/17425240903025736. PubMed DOI
Lee J.E., Park J.C., Kim J.G., Suh H. Preparation of collagen modified hyaluronan microparticles as antibiotics carrier. Yonsei Med. J. 2001;42:291–298. PubMed
Hume E.B.H., Baveja J., Muir B.W., Schubert T.L., Kumar N., Kjelleberg S., Griesser H.J., Thissen H., Read R., Poole-Warren L.A., et al. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials. 2004;25:5023–5030. doi: 10.1016/j.biomaterials.2004.01.048. PubMed DOI
Merchan M., Sedlaříkova J., Sedlařík V., Machovsky M., Svobodova J., Sáha P. Antibacterial polyvinyl chloride/antibiotic films: The effect of solvent on morphology, antibacterial activity and release kinetics. J. Appl. Polym. Sci. 2010;118:2369–2378.
Bílek F., Sulovská K., Lehocký M., Sáha P., Humpolíček P., Mozetič M., Junkar I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloids Surf. B. 2013;102:842–848. doi: 10.1016/j.colsurfb.2012.08.026. PubMed DOI
López-García J., Kuceková Z., Humpolíček P., Mlček J., Sáha P. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability. Molecules. 2013;18:13435–13445. doi: 10.3390/molecules181113435. PubMed DOI PMC
Kenawy E.R. Biologically active polymers. IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety. J. Appl. Polym. Sci. 2001;82:1364–1374. doi: 10.1002/app.1973. DOI
Rees E.N., Tebbs S.E., Elliott T.S.J. Role of antimicrobial-impregnated polymer and teflon in the prevention of biliary stent blockage. J. Hosp. Infect. 1998;39:323–329. doi: 10.1016/S0195-6701(98)90298-5. PubMed DOI
Imbert C., Lassy E., Daniault G., Jacquemin J.L., Rodier M.H. Treatment of plastic and extracellular matrix components with chlorhexidine or benzalkonium chloride: Effect on Candida albicans adherence capacity in vitro. J. Antimicrob. Chemother. 2003;51:281–287. doi: 10.1093/jac/dkg088. PubMed DOI
Bryce D.M., Croshaw B., Hall H.E., Holland V.R., Lessel B. The activity and safety of the antimicrobial agent bronopol (2-bromo-2-nitropropan-1,3-diol) J. Soc. Cosmet. Chem. 1978;29:3–24.
Legin G.Y. 2-Bromo-2-nitro-1,3-propanediol (Bronopol) and its derivatives: Synthesis, properties, and application (a review) Pharm. Chem. J. 1994;30:54–64.
Van Rijkom H.M., Truin G.J., van’t Hof M.A. A meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. J. Dent. Res. 1996;75:790–795. doi: 10.1177/00220345960750020901. PubMed DOI
Lee D.H., Spångberg L.S.W., Bok Y.B., Lee C.Y., Kum K.Y. The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2005;100:105–111. doi: 10.1016/j.tripleo.2004.08.027. PubMed DOI
Junker L.M., Hay A.G. Effects of triclosan incorporation into ABS plastic on biofilm communities. J. Antimicrob. Chemother. 2004;53:989–996. doi: 10.1093/jac/dkh196. PubMed DOI
Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4:1457–1465. doi: 10.1021/bm034130m. PubMed DOI
D’Ayala G.G., Malinconico M., Laurienzo P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules. 2008;13:2069–2106. doi: 10.3390/molecules13092069. PubMed DOI PMC
ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009.
Hasobe M., Mckee J.G., Borchardt R.T. Relationship between intracellular concentration of S-Adenosylhomocysteine and inhibition of vaccinia virus replication and inhibition of murine L-929 cell growth. Antimicrob. Agents Chemother. 1989;33:828–834. doi: 10.1128/AAC.33.6.828. PubMed DOI PMC
Monsk A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991;83:757–766. doi: 10.1093/jnci/83.11.757. PubMed DOI
Sun T., Li Z.L., Tian H., Wang S.C., Cai J. Synthesis and biological evaluation of novel 1-alkyltryptophan analogs as potential antitumor agents. Molecules. 2009;14:5339–5348. doi: 10.3390/molecules14125339. PubMed DOI PMC
Han D.W., Lee M.H., Kwon B.J., Kim H.L., Hyon S.H., Park J.C. Selective inhibitory effect of epigallocatechin-3-gallate on migration of vascular smooth muscle cells. Molecules. 2010;15:8488–8500. doi: 10.3390/molecules15118488. PubMed DOI PMC
Stretton R.J., Manson T.W. Some aspects of the mode of action of the antibacterial compound bronopol (2-bromo-2-nitropropan-1,3-diol) J. Appl. Microbiol. 1973;36:61–76. PubMed
Russell A.D., Path F.R.C. Chlorhexidine-antibacterial action and bacterial resistance. Infection. 1986;14:212–215. doi: 10.1007/BF01644264. PubMed DOI
Marple B., Roland P., Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: An overview of conflicting data and opinions. Otolaryngol. Head Neck Surgery. 2004;130:131–141. doi: 10.1016/j.otohns.2003.07.005. PubMed DOI
Qin C., Li H., Xiao Q., Liu Y., Zhu J., Du J. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006;63:367–374. doi: 10.1016/j.carbpol.2005.09.023. DOI
Aragón D.M., Ruidiaz M.A., Vargas E.F., Bregni C., Chiappetta D.A., Sosnik A., Martínez F. Solubility of the antimicrobial agent triclosan in organic solvents of different hydrogen bonding capabilities at several temperatures. J. Chem. Eng. Data. 2008;53:2576–2580. doi: 10.1021/je800426w. DOI
Tadmor Z., Gogos C.G. Principles of Polymer Processing. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2006. pp. 322–328.
Altenburger R., Kissel T. The human keratinocyte cell line HaCaT: An in vitro cell model for keratinocyte testosterone metabolism. Pharm. Res. 1999;16:766–771. doi: 10.1023/A:1011945212831. PubMed DOI
Deyrieux A.F., Wilson V.G. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology. 2007;54:77–83. doi: 10.1007/s10616-007-9076-1. PubMed DOI PMC
Vistica D.T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res. 1991;51:2515–2520. PubMed
Peschel G., Dashe H.M., Kanrad A. Growth of keratinocytes on porous films of poly(3-hydroxybutyrate) and poly(4-hydroxybutyrate) blended with hyaluronic acid and chitosan. J. Biomed. Res. Part A. 2007;85:1072–1081. PubMed
García J.L., Asadinezhad A., Pacherník J., Lehocký M., Junkar I., Humpolíček P., Sahá P., Valášek P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 2010;15:2845–2856. doi: 10.3390/molecules15042845. PubMed DOI PMC
Metcalfe A.D., Ferguson M.W.J. Tissue engineering of replacement skin: The crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface. 2007;4:413–437. doi: 10.1098/rsif.2006.0179. PubMed DOI PMC
Lynch A.S., Robertson G.T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 2008;59:415–428. doi: 10.1146/annurev.med.59.110106.132000. PubMed DOI
Asadinezhad A., Novák I., Lehocký M., Sedlařík V., Vesel A., Junkar I., Sáha P., Chodák I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf. B. 2010;77:246–256. doi: 10.1016/j.colsurfb.2010.02.006. PubMed DOI
Asadinezhad A., Novák I., Lehocký M., Bílek F., Vesel A., Junkar I. Polysaccharides coatings on medical-grade PVC: A probe into surface characteristics and the extent of bacterial adhesion. Molecules. 2010;15:1007–1027. doi: 10.3390/molecules15021007. PubMed DOI PMC
Odore R., Valle V.C., Re G. Efficacy of chlorhexidine against some strains of cultured and clinically isolated microorganisms. Vet. Res. Commun. 2000;24:229–238. doi: 10.1023/A:1006442715761. PubMed DOI
Asadinezhad A., Novák I., Lehocký M., Sedlařík V., Vesel A., Junkar I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating. Plasma Process Polym. 2010;7:504–514. doi: 10.1002/ppap.200900132. DOI
Tsibouklis J., Stone M., Thorpe A.A., Graham P., Peters V., Heerlien R., Smith J.R., Green K.L., Nevell T.G. Preventing bacterial adhesion onto surfaces: The low-surface-energy approach. Biomaterials. 1999;20:1229–1235. doi: 10.1016/S0142-9612(99)00023-X. PubMed DOI
Neu T.R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 1996;60:151–166. PubMed PMC
Esperanza G., Gottardi G., Pederzolli C., Lunelli L., Canteri R., Pasquardini L., Carli E., Lui A., Maniglio D., Brugnara M., et al. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials. 2004;25:2029–2037. doi: 10.1016/j.biomaterials.2003.08.061. PubMed DOI
Lichter J.A., Thompson M.T., Delgadillo M., Nishikawa T., Rubner M.F., van Vliet K.J. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules. 2008;9:1571–1578. doi: 10.1021/bm701430y. PubMed DOI
ISO 10993-12:2012 Biological Evaluation of Medical Devices. Part 12: Sample Preparation and Reference Materials. International Organization for Standardization; Geneva, Switzerland: 2007.
Weyermann J., Lochmann D., Zimmer A. A practical note on the use of cytotoxicity assays. Int. J. Pharm. 2005;288:369–376. doi: 10.1016/j.ijpharm.2004.09.018. PubMed DOI
Freshney R.I. Culture of Animal Cells: A Manual of Basic Techniques. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2005. pp. 359–373.
Roy N., Saha N., Humpoliček P., Sáha P. Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater. 2010;8:338–357. doi: 10.1080/1539445X.2010.502955. DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI