HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation

. 2014 May 08 ; 5 (2) : 43-57. [epub] 20140508

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24956439

The effective and widely tested biocides: Benzalkonium chloride, bronopol, chitosan, chlorhexidine and irgasan were added in different concentrations to atelocollagen matrices. In order to assess how these antibacterial agents influence keratinocytes cell growth, cell viability and proliferation were determined by using MTT assay. Acquired data indicated a low toxicity by employing any of these chemical substances. Furthermore, cell viability and proliferation were comparatively similar to the samples where there were no biocides. It means that regardless of the agent, collagen-cell-attachment properties are not drastically affected by the incorporation of those biocides into the substrate. Therefore, these findings suggest that these atelocollagen substrates enhanced by the addition of one or more of these agents may render effectiveness against bacterial stains and biofilm formation, being the samples referred to herein as "antimicrobial substrates" a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.

Zobrazit více v PubMed

Parenteau-Bareil R., Gauvin R., Berthod F. Collagen-based biomaterials for tissue enginnering applications. Materials. 2010;3:1863–1887. doi: 10.3390/ma3031863. DOI

López-García J., Humpolíček P., Lehocký M., Junkar I., Mozetič M. Different source atelocollagen thin films: Preparation, process optimisation and its influence on the interaction with eukaryotic cells. Mater. Tehnol. 2013;47:473–479. doi: 10.1016/j.matdes.2012.12.069. DOI

Bernal A., Balková R., Kuřítka I., Sáha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2012;70:431–453.

Tanaka Y., Yamaoka H., Nishizawa S., Nagata S., Ogasawara T., Asawa Y., Fujihara Y., Takato T., Hoshi K. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials. 2010;31:4506–4516. doi: 10.1016/j.biomaterials.2010.02.028. PubMed DOI

Banerjee I., Mishra D., Das T., Maiti S., Maiti T.K. Caprine (Goat) collagen: A potential biomaterial for skin tissue engineering. J. Biomater. Sci. Polym. Ed. 2012;23:355–373. doi: 10.1163/092050610X551943. PubMed DOI

Lehmann B. HaCaT cell line as a model system for vitamin D3 metabolism in human skin. J. Invest. Dermatol. 1997;108:78–82. PubMed

Boukamp P., Petrussevska R.T., Breitkreutz D., Hornung J., Markham A. Normal keratinization in a spontaneously immortalized aneuploid keratinocyte cell line. J. Cell Biol. 1998;106:761–771. PubMed PMC

García J.L., Pacherník J., Lehocký M., Junkar I., Humpolíček P., Sáha P. Enhanced keratinocyte cell attachment to atelocollagen thin films through air and nitrogen plasma treatment. Prog. Colloid Polym. Sci. 2011;138:89–94.

Hacek D.M., Suriano T., Noskin G.A., Krusynski J., Reisberg B., Peterson L.R. Medical and economic benefit of a comprehensive infection control program that includes routine determination of microbial clonality. Am. J. Clin. Pathol. 1999;111:647–654. PubMed

Bechert T., Steinrücke P., Guggenbichler J.P. A new method for screening anti-infective biomaterials. Nat. Med. 2003;6:1053–1056. PubMed

Popelka A., Novák I., Lehocký M., Junkar I., Mozetič M., Kleinová A., Janigová I., Šlouf M., Bílek F., Chodák I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012;90:1501–1508. doi: 10.1016/j.carbpol.2012.07.021. PubMed DOI

Kuceková Z., Humpolíček P., Kasparkova V., Perecko T., Lehocký M., Hauerlandová I., Sáha P., Stejskal J. Colloidal polyaniline dispersion: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf. B. 2014;116:411–417. doi: 10.1016/j.colsurfb.2014.01.027. PubMed DOI

Hetrick E.M., Schoenfisch M.H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006;35:780–789. doi: 10.1039/b515219b. PubMed DOI

Campoccia D., Montanaro L., Arciola C.R. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 2006;27:2331–2339. PubMed

Kenawy E.R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI

Sehgal P.K., Srinivasan A. Collagen-coated microparticles in drug delivery. Expert Opin. Drug Deliv. 2009;6:687–695. doi: 10.1517/17425240903025736. PubMed DOI

Lee J.E., Park J.C., Kim J.G., Suh H. Preparation of collagen modified hyaluronan microparticles as antibiotics carrier. Yonsei Med. J. 2001;42:291–298. PubMed

Hume E.B.H., Baveja J., Muir B.W., Schubert T.L., Kumar N., Kjelleberg S., Griesser H.J., Thissen H., Read R., Poole-Warren L.A., et al. The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials. 2004;25:5023–5030. doi: 10.1016/j.biomaterials.2004.01.048. PubMed DOI

Merchan M., Sedlaříkova J., Sedlařík V., Machovsky M., Svobodova J., Sáha P. Antibacterial polyvinyl chloride/antibiotic films: The effect of solvent on morphology, antibacterial activity and release kinetics. J. Appl. Polym. Sci. 2010;118:2369–2378.

Bílek F., Sulovská K., Lehocký M., Sáha P., Humpolíček P., Mozetič M., Junkar I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloids Surf. B. 2013;102:842–848. doi: 10.1016/j.colsurfb.2012.08.026. PubMed DOI

López-García J., Kuceková Z., Humpolíček P., Mlček J., Sáha P. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability. Molecules. 2013;18:13435–13445. doi: 10.3390/molecules181113435. PubMed DOI PMC

Kenawy E.R. Biologically active polymers. IV. Synthesis and antimicrobial activity of polymers containing 8-hydroxyquinoline moiety. J. Appl. Polym. Sci. 2001;82:1364–1374. doi: 10.1002/app.1973. DOI

Rees E.N., Tebbs S.E., Elliott T.S.J. Role of antimicrobial-impregnated polymer and teflon in the prevention of biliary stent blockage. J. Hosp. Infect. 1998;39:323–329. doi: 10.1016/S0195-6701(98)90298-5. PubMed DOI

Imbert C., Lassy E., Daniault G., Jacquemin J.L., Rodier M.H. Treatment of plastic and extracellular matrix components with chlorhexidine or benzalkonium chloride: Effect on Candida albicans adherence capacity in vitro. J. Antimicrob. Chemother. 2003;51:281–287. doi: 10.1093/jac/dkg088. PubMed DOI

Bryce D.M., Croshaw B., Hall H.E., Holland V.R., Lessel B. The activity and safety of the antimicrobial agent bronopol (2-bromo-2-nitropropan-1,3-diol) J. Soc. Cosmet. Chem. 1978;29:3–24.

Legin G.Y. 2-Bromo-2-nitro-1,3-propanediol (Bronopol) and its derivatives: Synthesis, properties, and application (a review) Pharm. Chem. J. 1994;30:54–64.

Van Rijkom H.M., Truin G.J., van’t Hof M.A. A meta-analysis of clinical studies on the caries-inhibiting effect of chlorhexidine treatment. J. Dent. Res. 1996;75:790–795. doi: 10.1177/00220345960750020901. PubMed DOI

Lee D.H., Spångberg L.S.W., Bok Y.B., Lee C.Y., Kum K.Y. The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2005;100:105–111. doi: 10.1016/j.tripleo.2004.08.027. PubMed DOI

Junker L.M., Hay A.G. Effects of triclosan incorporation into ABS plastic on biofilm communities. J. Antimicrob. Chemother. 2004;53:989–996. doi: 10.1093/jac/dkh196. PubMed DOI

Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4:1457–1465. doi: 10.1021/bm034130m. PubMed DOI

D’Ayala G.G., Malinconico M., Laurienzo P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules. 2008;13:2069–2106. doi: 10.3390/molecules13092069. PubMed DOI PMC

ISO 10993-5:2009 Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization; Geneva, Switzerland: 2009.

Hasobe M., Mckee J.G., Borchardt R.T. Relationship between intracellular concentration of S-Adenosylhomocysteine and inhibition of vaccinia virus replication and inhibition of murine L-929 cell growth. Antimicrob. Agents Chemother. 1989;33:828–834. doi: 10.1128/AAC.33.6.828. PubMed DOI PMC

Monsk A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991;83:757–766. doi: 10.1093/jnci/83.11.757. PubMed DOI

Sun T., Li Z.L., Tian H., Wang S.C., Cai J. Synthesis and biological evaluation of novel 1-alkyltryptophan analogs as potential antitumor agents. Molecules. 2009;14:5339–5348. doi: 10.3390/molecules14125339. PubMed DOI PMC

Han D.W., Lee M.H., Kwon B.J., Kim H.L., Hyon S.H., Park J.C. Selective inhibitory effect of epigallocatechin-3-gallate on migration of vascular smooth muscle cells. Molecules. 2010;15:8488–8500. doi: 10.3390/molecules15118488. PubMed DOI PMC

Stretton R.J., Manson T.W. Some aspects of the mode of action of the antibacterial compound bronopol (2-bromo-2-nitropropan-1,3-diol) J. Appl. Microbiol. 1973;36:61–76. PubMed

Russell A.D., Path F.R.C. Chlorhexidine-antibacterial action and bacterial resistance. Infection. 1986;14:212–215. doi: 10.1007/BF01644264. PubMed DOI

Marple B., Roland P., Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: An overview of conflicting data and opinions. Otolaryngol. Head Neck Surgery. 2004;130:131–141. doi: 10.1016/j.otohns.2003.07.005. PubMed DOI

Qin C., Li H., Xiao Q., Liu Y., Zhu J., Du J. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006;63:367–374. doi: 10.1016/j.carbpol.2005.09.023. DOI

Aragón D.M., Ruidiaz M.A., Vargas E.F., Bregni C., Chiappetta D.A., Sosnik A., Martínez F. Solubility of the antimicrobial agent triclosan in organic solvents of different hydrogen bonding capabilities at several temperatures. J. Chem. Eng. Data. 2008;53:2576–2580. doi: 10.1021/je800426w. DOI

Tadmor Z., Gogos C.G. Principles of Polymer Processing. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2006. pp. 322–328.

Altenburger R., Kissel T. The human keratinocyte cell line HaCaT: An in vitro cell model for keratinocyte testosterone metabolism. Pharm. Res. 1999;16:766–771. doi: 10.1023/A:1011945212831. PubMed DOI

Deyrieux A.F., Wilson V.G. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology. 2007;54:77–83. doi: 10.1007/s10616-007-9076-1. PubMed DOI PMC

Vistica D.T., Skehan P., Scudiero D., Monks A., Pittman A., Boyd M.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res. 1991;51:2515–2520. PubMed

Peschel G., Dashe H.M., Kanrad A. Growth of keratinocytes on porous films of poly(3-hydroxybutyrate) and poly(4-hydroxybutyrate) blended with hyaluronic acid and chitosan. J. Biomed. Res. Part A. 2007;85:1072–1081. PubMed

García J.L., Asadinezhad A., Pacherník J., Lehocký M., Junkar I., Humpolíček P., Sahá P., Valášek P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 2010;15:2845–2856. doi: 10.3390/molecules15042845. PubMed DOI PMC

Metcalfe A.D., Ferguson M.W.J. Tissue engineering of replacement skin: The crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J. R. Soc. Interface. 2007;4:413–437. doi: 10.1098/rsif.2006.0179. PubMed DOI PMC

Lynch A.S., Robertson G.T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 2008;59:415–428. doi: 10.1146/annurev.med.59.110106.132000. PubMed DOI

Asadinezhad A., Novák I., Lehocký M., Sedlařík V., Vesel A., Junkar I., Sáha P., Chodák I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf. B. 2010;77:246–256. doi: 10.1016/j.colsurfb.2010.02.006. PubMed DOI

Asadinezhad A., Novák I., Lehocký M., Bílek F., Vesel A., Junkar I. Polysaccharides coatings on medical-grade PVC: A probe into surface characteristics and the extent of bacterial adhesion. Molecules. 2010;15:1007–1027. doi: 10.3390/molecules15021007. PubMed DOI PMC

Odore R., Valle V.C., Re G. Efficacy of chlorhexidine against some strains of cultured and clinically isolated microorganisms. Vet. Res. Commun. 2000;24:229–238. doi: 10.1023/A:1006442715761. PubMed DOI

Asadinezhad A., Novák I., Lehocký M., Sedlařík V., Vesel A., Junkar I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating. Plasma Process Polym. 2010;7:504–514. doi: 10.1002/ppap.200900132. DOI

Tsibouklis J., Stone M., Thorpe A.A., Graham P., Peters V., Heerlien R., Smith J.R., Green K.L., Nevell T.G. Preventing bacterial adhesion onto surfaces: The low-surface-energy approach. Biomaterials. 1999;20:1229–1235. doi: 10.1016/S0142-9612(99)00023-X. PubMed DOI

Neu T.R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 1996;60:151–166. PubMed PMC

Esperanza G., Gottardi G., Pederzolli C., Lunelli L., Canteri R., Pasquardini L., Carli E., Lui A., Maniglio D., Brugnara M., et al. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials. 2004;25:2029–2037. doi: 10.1016/j.biomaterials.2003.08.061. PubMed DOI

Lichter J.A., Thompson M.T., Delgadillo M., Nishikawa T., Rubner M.F., van Vliet K.J. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules. 2008;9:1571–1578. doi: 10.1021/bm701430y. PubMed DOI

ISO 10993-12:2012 Biological Evaluation of Medical Devices. Part 12: Sample Preparation and Reference Materials. International Organization for Standardization; Geneva, Switzerland: 2007.

Weyermann J., Lochmann D., Zimmer A. A practical note on the use of cytotoxicity assays. Int. J. Pharm. 2005;288:369–376. doi: 10.1016/j.ijpharm.2004.09.018. PubMed DOI

Freshney R.I. Culture of Animal Cells: A Manual of Basic Techniques. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2005. pp. 359–373.

Roy N., Saha N., Humpoliček P., Sáha P. Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater. 2010;8:338–357. doi: 10.1080/1539445X.2010.502955. DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace