Polysaccharides coatings on medical-grade PVC: a probe into surface characteristics and the extent of bacterial adhesion
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20335959
PubMed Central
PMC6263189
DOI
10.3390/molecules15021007
PII: 15021007
Knihovny.cz E-zdroje
- MeSH
- absorpce účinky léků MeSH
- bakteriální adheze účinky léků MeSH
- biofilmy účinky léků MeSH
- biokompatibilní potahované materiály farmakologie MeSH
- Escherichia coli cytologie účinky léků fyziologie MeSH
- fotoelektronová spektroskopie MeSH
- mikroskopie elektronová rastrovací MeSH
- molekulární modely MeSH
- polysacharidy farmakologie MeSH
- polyvinylchlorid farmakologie MeSH
- smáčivost účinky léků MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Staphylococcus aureus cytologie účinky léků fyziologie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní potahované materiály MeSH
- polysacharidy MeSH
- polyvinylchlorid MeSH
- voda MeSH
Medical-grade polyvinyl chloride was coated by polysaccharides through a novel physicochemical approach. An initial surface activation was performed foremost via diffuse coplanar surface barrier discharge plasma in air at ambient temperature and pressure. Then, radical graft copolymerization of acrylic acid through grafting-from pathway was directed to render a well-defined brush of high density, and finally a chitosan monolayer and chitosan/pectin alternating multilayer were bound onto the functionalized surfaces. Surface characteristics were systematically investigated using several probe techniques. In vitro bacterial adhesion and biofilm formation assays indicated that a single chitosan layer was incapable of hindering the adhesion of a Staphylococcus aureus bacterial strain, while up to 30% reduction was achieved by the chitosan/pectin layered assembly. On the other hand, chitosan and chitosan/pectin multilayer could retard Escherichia coli adhesion by 50% and 20%, respectively. Furthermore, plasma treated and graft copolymerized samples were also found effective to diminish the degree of adherence of Escherichia coli.
Zobrazit více v PubMed
Desmet T., Morent R., Geyter N.D., Leys C., Schacht E., Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2009;10:2351–2378. doi: 10.1021/bm900186s. PubMed DOI
Speranza G., Gottardi G., Pederzolli C., Lunelli L., Canteri R., Pasquardini L., Carli E., Lui A., Maniglio D., Brugnara M., Anderle M. Role of chemical interactions in bacterial adhesion to polymer surfaces. Biomaterials. 2004;25:2029–2037. doi: 10.1016/j.biomaterials.2003.08.061. PubMed DOI
Triandafillu K., Balazs D.J., Aronsson B.O., Descouts P., Quo P.T., van Delden C., Mathieu H.J., Harms H. Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials. 2003;24:1507–1518. doi: 10.1016/S0142-9612(02)00515-X. PubMed DOI
Kenawy E.R., Worley S.D., Broughton R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules. 2007;8:1359–1384. doi: 10.1021/bm061150q. PubMed DOI
Denes F.S., Manolache S. Macromolecular plasma-chemistry: An emerging field of polymer science. Prog. Polym. Sci. 2004;29:815–885.
Chu P.K., Chen J.Y., Wang L. Plasma-surface modification of biomaterials. Mat. Sci. Eng. 2002;R36:143–206.
černák M., černáková L., Hudec I., Kováčik D., Zahoranová A. Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009;47:22806p1–22806p6.
Šimor M., Ráhel J., Vojtek P., černák M. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl. Phys. Lett. 2002;81:2716–2718.
Černák M., Ráhel J., Kováčik D., Šimor M., Brablec A., Slavíček P. Generation of thin surface plasma layers for atmospheric-pressure surface treatments. Contrib. Plasma Phys. 2004;44:492–495. doi: 10.1002/ctpp.200410069. DOI
Bhattacharyaa A., Misra B.N. Grafting: A versatile means to modify polymers techniques, factors and applications. Prog. Polym. Sci. 2004;29:767–814. doi: 10.1016/j.progpolymsci.2004.05.002. DOI
Zhao B., Brittain W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000;25:677–710. doi: 10.1016/S0079-6700(00)00012-5. DOI
Tripathi S., Mehrotra G.K., Dutta P.K. Chitosan based antimicrobial films for food packaging applications. e-Polymers. 2008:093.
Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules. 2003;4:1457–1465. doi: 10.1021/bm034130m. PubMed DOI
Elsabee M.Z., Entsar S.A., Khaled S.A. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohyd. Polym. 2008;71:187–195.
Jou C.H., Lee J.S., Chou W.L., Yu D.G., Yang M.C. Effect of immobilization with chondroitin-6-sulfate and grafting with chitosan on fibroblast and antibacterial activity of polyester fibers. Polym. Adv. Technol. 2005;16:821–826. doi: 10.1002/pat.658. DOI
Thakur B.R., Singh R.K., Handa A.K. Chemistry and uses of pectin-A review. Crit. Rev. Food Sci. 1997;37:47–73. doi: 10.1080/10408399709527767. PubMed DOI
Marudova M., Lang S., Brownsey G.J., Ring S.G. Pectin-chitosan multilayer formation. Carbohyd. Res. 2005;340:2144–2149. doi: 10.1016/j.carres.2005.07.004. PubMed DOI
Chen K.S., Ku Y.A., Lee C.H., Lin H.R., Lin F.H., Chen T.M. Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface. Mater. Sci. Eng. 2005;C25:472–478.
Yang M.R., Chen K.S., Tsai J.C., Tseng C.C., Lin S.F. The antibacterial activities of hydrophilic-modified nonwoven PET. Mat. Sci. Eng. 2002;C20:167–173.
Huh M.W., Kang I.K., Lee D.H., Kim W.S., Lee D.H., Park L.S., Min K.E., Seo K.H. Surface characterization and antibacterial activity of chitosan-grafted poly(ethylene terephthalate) prepared by plasma glow discharge. J. Appl. Polym. Sci. 2001;81:2769–2788.
Chang Y.B., Tu P.C., Wu M.W., Hsueh T.H., Hsu S. A study on chitosan modification of polyester fabrics by atmospheric pressure plasma and its antibacterial effects. Fiber. Polym. 2008;9:307–311.
Nigmatullin R., Konovalova V., Pobigay G. Development of Antimicrobial membranes via the surface tethering of chitosan. J. Appl. Polym. Sci. 2009;111:1697–1705. doi: 10.1002/app.29135. DOI
Tseng H.J., Hsu S., Wu M.W., Hsueh T.H., Tu P.C. Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fiber. Polym. 2009;10:53–59. doi: 10.1007/s12221-009-0053-5. DOI
Abdou E.S., Elkholy S.S., Elsabee M.Z., Mohamed E. Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan. J. Appl. Polym. Sci. 2008;108:2290–2296. doi: 10.1002/app.25937. DOI
Hu S.G., Jou C.H., Yang M.C. Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment. J. Appl. Polym. Sci. 2003;88:2797–2803. doi: 10.1002/app.12055. DOI
Hu S.G., Jou C.H., Yang M.C. Surface grafting of polyester fiber with chitosan and the antibacterial activity of pathogenic bacteria. J. Appl. Polym. Sci. 2002;86:2977–2983. doi: 10.1002/app.11261. DOI
El-tahlawy K.F., El-bendary M.A., Elhendawy A.G., Hudson S.M. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohyd. Polym. 2005;60:421–430.
Yang M.C., Lin W.C. The grafting of chitosan oligomer to polysulfone membrane via ozone-treatment and its effect on anti-bacterial activity. J. Polym. Res. 2002;9:135–140. doi: 10.1023/A:1021150120408. DOI
Nakajima N., Ikada Y. Mechanism of amide formation by carbodiimide for bioconjugation in aqueous-media. Bioconjug. Chem. 1995;6:123–130. doi: 10.1021/bc00031a015. PubMed DOI
Carey F.A., Sundberg R.J. Advanced Organic Chemistry, Part B: Reactions and Synthesis. Springer; New York, NY, USA: 2007.
Lehocký M., Drnovská H., Lapčíková B., Barros-Timmons A.M., Trindade T., Zembala M., Lapčík L. Plasma surface modification of polyethylene. Colloid Surf. A. 2003;222:125–130.
Novák I., Pollák V., Chodák I. Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Process. Polym. 2006;3:355–364. doi: 10.1002/ppap.200500163. DOI
Sharma P.K., Rao K.H. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv. Colloid Interface Sci. 2002;98:341–463. doi: 10.1016/S0001-8686(02)00004-0. PubMed DOI
Janćzuk B., Białopiotrowicz T., Zdziennicka A. Some remarks on the components of the liquid surface free energy. J. Colloid Interface Sci. 1999;211:96–103. PubMed
James N.R., Jayakrishnan J.A. Surface thiocyanation of plasticized poly (vinyl chloride) and its effect on bacterial adhesion. Biomaterials. 2003;24:2205–2212. doi: 10.1016/S0142-9612(03)00022-X. PubMed DOI
Yang M.R., Chen K.S., Tsai J.C., Tseng C.C., Lin S.F. The antibacterial activities of hydrophilic-modified nonwoven PET. Mater. Sci. Eng. 2002;C20:167–173.
Chen K.S., Ku Y.A., Lin H.R., Yan T.R., Sheu D.C., Chen T.M. Surface grafting polymerization of N-vinyl-2-pyrrolidone onto a poly(ethylene terephthalate) nonwoven by plasma pretreatment and its antibacterial activities. J. Appl. Polym. Sci. 2006;100:803–809.
Vesel A., Junkar I., Cvelbar U., Kovač J., Mozetič M. Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal. 2008;40:1444–1453. doi: 10.1002/sia.2923. DOI
Gupta B., Plummer C., Bisson I., Frey P., Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials. 2002;23:863–871. doi: 10.1016/S0142-9612(01)00195-8. PubMed DOI
Sartori S., Rechichi A., Vozzi G., D’Acunto M., Heine E., Giusti P., Ciardelli G. Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers. React. Func. Polym. 2008;68:809–821. doi: 10.1016/j.reactfunctpolym.2007.12.002. DOI
Gupta B., Shalini S., Ray A. Plasma induced graft polymerization of acrylic acid onto polypropylene monofilament. J. Appl. Polym. Sci. 2008;10:324–330.
Stuart B. In Infrared Spectroscopy: Fundamentals and Applications. Wiley; New York, NY, USA: 2004.
Kumagai H., Tashiro T., Kobayashi T. Formation of conjugated carbon bonds on poly (vinyl chloride) films by microwave-discharge oxygen-plasma treatments. J. Appl. Polym. Sci. 2005;96:589–594. doi: 10.1002/app.21487. DOI
Chan C.M. In Polymer Surface Modification and Characterization. Hanser Gardner; Cincinnati, OH, USA: 1994.
Balazs D.J., Triandafillu K., Chevolot Y., Aronsson B.O., Harms H., Descouts P., Mathieu H.J. Surface modification of PVC endotracheal tubes by oxygen glow discharge to reduce bacterial adhesion. Surf. Interface Anal. 2003;35:301–309.
An Y.H., Friedman R.J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J. Biomed. Mater. Res. 1998;43:338–348. PubMed
Tortora G.J., Funke B.R., Case C.L. In Microbiology:An Introduction. Benjamin/Cummings Publishing; San Francisco, CA, USA: 2006.
Zhang W., Chu P.K., Ji J., Zhang Y., Ng S.C., Yan Q. Surface antibacterial characteristics of plasma-modified polyethylene. Biopolymers. 2006;83:62–68. doi: 10.1002/bip.20527. PubMed DOI
Antibacterial performance of alginic acid coating on polyethylene film