Antibacterial performance of alginic acid coating on polyethylene film
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25196604
PubMed Central
PMC4159875
DOI
10.3390/ijms150814684
PII: ijms150814684
Knihovny.cz E-zdroje
- MeSH
- algináty chemie MeSH
- antibakteriální látky chemie farmakologie MeSH
- Escherichia coli účinky léků MeSH
- kyselina glukuronová chemie MeSH
- kyseliny hexuronové chemie MeSH
- mikrobiální testy citlivosti MeSH
- polyethylen chemie MeSH
- Staphylococcus aureus účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- algináty MeSH
- antibakteriální látky MeSH
- kyselina glukuronová MeSH
- kyseliny hexuronové MeSH
- polyethylen MeSH
Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance.
Centre of Polymer Systems Tomas Bata University in Zlín Zlín 76001 Czech Republic
Department of Chemical Engineering Isfahan University of Technology Esfahan 84156 83111 Iran
Department of Surface Engineering Jožef Stefan Institute Ljubljana 1000 Slovenia
Polymer Institute Slovak Academy of Sciences Bratislava 84236 Slovakia
Zobrazit více v PubMed
Goddard J.M., Hotchkiss J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007;32:698–725. doi: 10.1016/j.progpolymsci.2007.04.002. DOI
Chu P.K., Chen J.Y., Wang L.P., Huang N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. 2002;36:143–206.
Desmet T., Morent R., de Geyter N., Leys C., Schacht E., Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules. 2007;10:2351–2378. PubMed
Mozetic M., Ostrikov K., Ruzic D.N., Curreli D., Cvelbar U., Vesel A., Primc G., Leisch M., Jousten K., Malyshev O.B., et al. Recent advances in vacuum sciences and applications. J. Phys. D: Appl. Phys. 2014;47:153001–153023. doi: 10.1088/0022-3727/47/15/153001. DOI
Bhattacharya A., Misra B.N. Grafting: A versatile means to modify polymers techniques, factors and applications. Prog. Polym. Sci. 2004;29:767–814. doi: 10.1016/j.progpolymsci.2004.05.002. DOI
Zhao B., Brittain W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000;25:677–710. doi: 10.1016/S0079-6700(00)00012-5. DOI
Ayres N. Polymer brushes: Applications in biomaterials and nanotechnology. Polym. Chem. 2010;1:769–777. doi: 10.1039/b9py00246d. DOI
Waschinski C.J., Tiller J.C. Poly(oxazoline)s with telechelic antimicrobial functions. Biomacromolecules. 2005;6:235–243. doi: 10.1021/bm049553i. PubMed DOI
Elsabee M.Z., Abdou E.S., Nagy K.S.A., Eweis M. Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydr. Polym. 2008;71:187–195. doi: 10.1016/j.carbpol.2007.05.022. DOI
El-tahlawy K.F., El-bendary M.A., El-hendawy A.G., Hudson S.M. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr. Polym. 2005;60:421–430. doi: 10.1016/j.carbpol.2005.02.019. DOI
Ikeda A., Takemura A., Ono H. Preparation of low-molecular weight alginic acid by acid hydrolysis. Carbohydr. Polym. 2000;42:421–425. doi: 10.1016/S0144-8617(99)00183-6. DOI
Yoshioka T., Tsuru K., Hayakawa S., Osaka A. Preparation of alginic acid layers on stainless-steel substrates for biomedical applications. Biomaterials. 2003;24:2889–2894. doi: 10.1016/S0142-9612(03)00127-3. PubMed DOI
Morra M., Cassinelli C. Simple model for the XPS analysis of polysaccharide-coated surfaces. Surf. Interface Anal. 1998;26:742–746. doi: 10.1002/(SICI)1096-9918(199809)26:10<742::AID-SIA417>3.0.CO;2-P. DOI
Morra M., Cassinelli C. Surface studies on a model cell-resistant system. Langmuir. 1999;15:4658–4663. doi: 10.1021/la981345m. DOI
Morra M., Cassinelli C. Non-fouling properties of polysaccharide-coated surfaces. J. Biomater. Sci-Polym. E. 1999;10:1107–1124. doi: 10.1163/156856299X00711. PubMed DOI
Morra M., Cassinelli C. Force measurements on cell repellant and cell adhesive alginic acid coated surfaces. Colloid Surf. B. 2000;18:249–259. doi: 10.1016/S0927-7765(99)00151-4. PubMed DOI
Bilek F., Krizova T., Lehocky M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloid Surf. B. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI
Bilek F., Sulovska K., Lehocky M., Saha P., Humpolicek P., Mozetic M., Junkar I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloid Surf. B. 2013;102:842–848. doi: 10.1016/j.colsurfb.2012.08.026. PubMed DOI
Asadinezhad A., Novak I., Lehocky M., Sedlarik V., Vesel A., Junkar I., Saha P., Chodak I. A physicochemical approach to render antibacterial surfaces on medical-grade PVC. Plasma Process. Polym. 2010;7:504–514.
Asadinezhad A., Novak I., Lehocky M., Sedlarik V., Vesel A., Junkar I., Saha P., Chodak I. An in vitro bacterial adhesion assessment of surface modified medical-grade PVC. Colloid Surf. B. 2010;77:246–256. doi: 10.1016/j.colsurfb.2010.02.006. PubMed DOI
Asadinezhad A., Novak I., Lehocky M., Bilek F., Vesel A., Junkar I., Saha P., Popelka A. Polysaccharide coatings on medical-grade PVC: A probe into surface characteristics and bacterial adhesion extent. Molecules. 2010;15:1007–1027. doi: 10.3390/molecules15021007. PubMed DOI PMC
Fan C.W., Lee S.C. Surface free energy effects in sputter-deposited WNx films. Mater. Trans. 2007;48:2449–2453. doi: 10.2320/matertrans.MRA2007095. DOI
Parija S.C. Textbook of Microbiology & Immunology. Elsevier; Amsterdam, The Netherlands: 2009. pp. 71–74.