Plasma Mediated Chlorhexidine Immobilization onto Polylactic Acid Surface via Carbodiimide Chemistry: Antibacterial and Cytocompatibility Assessment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-16861S
Grantová Agentura České Republiky
DKRVO (RP/CPS/2020/001)
Ministerstvo Školství, Mládeže a Tělovýchovy
DKRVO (RP/CPS/2020/005)
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33917700
PubMed Central
PMC8068050
DOI
10.3390/polym13081201
PII: polym13081201
Knihovny.cz E-zdroje
- Klíčová slova
- biomaterial associated infection, chlorhexidine, cytocompatibility, plasma treatment, polylactic acid,
- Publikační typ
- časopisecké články MeSH
The development of antibacterial materials has great importance in avoiding bacterial contamination and the risk of infection for implantable biomaterials. An antibacterial thin film coating on the surface via chemical bonding is a promising technique to keep native bulk material properties unchanged. However, most of the polymeric materials are chemically inert and highly hydrophobic, which makes chemical agent coating challenging Herein, immobilization of chlorhexidine, a broad-spectrum bactericidal cationic compound, onto the polylactic acid surface was performed in a multistep physicochemical method. Direct current plasma was used for surface functionalization, followed by carbodiimide chemistry to link the coupling reagents of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) and N-Hydroxysuccinimide (NHs) to create a free bonding site to anchor the chlorhexidine. Surface characterizations were performed by water contact angle test, X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The antibacterial activity was tested using Staphylococcus aureus and Escherichia coli. Finally, in vitro cytocompatibility of the samples was studied using primary mouse embryonic fibroblast cells. It was found that all samples were cytocompatible and the best antibacterial performance observed was the Chlorhexidine immobilized sample after NHs activation.
Zobrazit více v PubMed
Carrasco F., Pages P., Gamez-Perez J., Santana O.O., Maspoch M.L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 2010;95:116–125. doi: 10.1016/j.polymdegradstab.2009.11.045. DOI
Garlotta D. A literature review of poly(lactic acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI
Lehocky M., Stahel P., Koutny M., Cech J., Institoris J., Mracek A. Adhesion of Rhodococcus sp. S3E2 and Rhodococcus sp. S3E3 to plasma prepared Teflon-like and organosilicon surfaces. J. Mater. Process. Technol. 2009;209:2871–2875. doi: 10.1016/j.jmatprotec.2008.06.042. DOI
Adamczyk Z., Szyk-Warszynska L., Zembala M., Lehocky M. In situ studies of particle deposition on non-transparent substrates. Colloids. Surf. A Physicochem. Eng. Asp. 2004;235:65–72. doi: 10.1016/j.colsurfa.2003.12.021. DOI
Asadinezhad A., Lehocky M., Saha P., Mozetic M. Recent Progress in Surface Modification of Polyvinyl Chloride. Materials. 2012;5:2937–2959. doi: 10.3390/ma5122937. DOI
Bilek F., Sulovska K., Lehocky M., Saha P., Humpolicek P., Mozetic M., Junkar I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloids Surf. B Biointerfaces. 2013;102:842–848. doi: 10.1016/j.colsurfb.2012.08.026. PubMed DOI
Kale R.D., Gorade V.G., Madye N., Chaudhary B., Bangde P.S., Dandekar P.P. Preparation and characterization of biocomposite packaging film from poly(lactic acid) and acylated microcrystalline cellulose using rice bran oil. Int. J. Biol. Macromol. 2018;118:1090–1102. doi: 10.1016/j.ijbiomac.2018.06.076. PubMed DOI
Lehocky M., Amaral P.F.F., Coelho M.A.Z., Stahel P., Barros-Timmons A.M., Coutinho J.A.P. Attachment/detachment of Saccharomyces cerevisiae on plasma deposited organosilicon thin films. Czechoslov. J. Phys. 2006;56:1256–1262. doi: 10.1007/s10582-006-0359-0. DOI
Bilek F., Krizova T., Lehocky M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids Surf. B Biointerfaces. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI
Asadinezhad A., Novak I., Lehocky M., Sedlarik V., Vesel A., Junkar I., Saha P., Chodak I. An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf. B Biointerfaces. 2010;77:246–256. doi: 10.1016/j.colsurfb.2010.02.006. PubMed DOI
Junkar I., Cvelbar U., Lehocky M. Plasma treatment of biomedical materials. Mater. Tehnol. 2011;45:221–226.
Cao H., Liu X. Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010;2:670–684. doi: 10.1002/wnan.113. PubMed DOI
Lehocky M., Amaral P.F.F., Stahel P., Coelho M.A.Z., Barros-Timmons A.M., Coutinho J.A.P. Deposition of Yarrowia lipolytica on plasma prepared teflonlike thin films. Surf. Eng. 2008;24:23–27. doi: 10.1179/174329408X271444. DOI
Hughes C., Ferguson J. Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology. 2017;49:633–637. doi: 10.1016/j.pathol.2017.05.008. PubMed DOI
Greenhalgh R., Dempsey-Hibbert N.C., Whitehead K.A. Antimicrobial strategies to reduce polymer biomaterial infections and their economic implications and considerations. Int. Biodeterior. Biodegrad. 2019;136:1–14. doi: 10.1016/j.ibiod.2018.10.005. DOI
Lobato-Aguilar H., Uribe-Calderon J.A., Herrera-Kao W., Duarte-Aranda S., Baas-Lopez J.M., Escobar-Morales B., Cauich-Rodriguez J.V., Cervantes-Uc J.M. Synthesis, characterization and chlorhexidine release from either montmorillonite or palygorskite modified organoclays for antibacterial applications. J. Drug Deliv. Sci. Technol. 2018;46:452–460. doi: 10.1016/j.jddst.2018.06.007. DOI
Scheibler E., da-Silva R.M., Leite C.E., Campos M.M., Figueiredo M.A., Salum F.G., Cherubini K. Stability and efficacy of combined nystatin and chlorhexidine against suspensions and biofilms of Candida albicans. Arch. Oral. Biol. 2018;89:70–76. doi: 10.1016/j.archoralbio.2018.02.009. PubMed DOI
Kao H.F., Chen I.C., Hsu C., Chang S.Y., Chien S.F., Chen Y.C., Hu F.C., Yang J.C.H., Cheng A.L., Yeh K.H. Chlorhexidine for the prevention of bloodstream infection associated with totally implantable venous ports in patients with solid cancers. Support. Care Cancer. 2014;22:1189–1197. doi: 10.1007/s00520-013-2071-5. PubMed DOI
Keerthisinghe T.P., Nguyen L.N., Kwon E.E., Oh S. Antiseptic chlorhexidine in activated sludge: Biosorption, antimicrobial susceptibility, and alteration of community structure. J. Environ. Manag. 2019;237:629–635. doi: 10.1016/j.jenvman.2019.02.043. PubMed DOI
Zhang Y., Zhao Y., Xu C., Zhang X., Li J., Dong G., Cao J., Zhou T. Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int. J. Antimicrob. Agents. 2019;53:864–867. doi: 10.1016/j.ijantimicag.2019.02.012. PubMed DOI
Bonez P.C., Alves C.F.D.S., Dalmolin T.V., Agertt V.A., Mizdal C.R., Flores V.D.C., Marques J.B., Santos R.C.V., Campos M.M.A.D. Chlorhexidine activity against bacterial biofilms. Am. J. Infect. Control. 2013;41:119–122. doi: 10.1016/j.ajic.2013.05.002. PubMed DOI
Popelka A., Novak I., Lehocky M., Chodak I., Sedliacik J., Gajtanska M., Sedliacikova M., Vesel A., Junkar I., Kleinova A., et al. Anti-bacterial treatment of polyethylene by cold plasma for medical purposes. Molecules. 2012;17:762–785. doi: 10.3390/molecules17010762. PubMed DOI PMC
Vesel A., Mozetic M. Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum. 2012;86:634–637. doi: 10.1016/j.vacuum.2011.07.005. DOI
Lehocky M., Lapcik L., Neves M.C., Trindade T., Szyk-Warszynska L., Warszynski P., Hui D. Deposition/Detachment of Particles on Plasma Treated Polymer Surfaces. Mater. Sci. Forum. 2003;426:2533–2538. doi: 10.4028/www.scientific.net/MSF.426-432.2533. DOI
Lehocky M., Lapcik L., Dlabaja R., Rachunek L., Stoch J. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials. Czech. J. Phys. 2004;54:533–538. doi: 10.1007/BF03166446. DOI
Patel D., Wu J., Chan P., Upreti S., Turcotte G., Ye T. Surface modification of low density polyethylene films by homogeneous catalytic ozonation. Chem. Eng. Res. Des. 2012;90:1800–1806. doi: 10.1016/j.cherd.2012.03.009. DOI
Ding Q., Xu X., Yue Y., Mei C., Huang C., Jiang S., Wu Q., Han J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Appl. Mater. Interfaces. 2018;10:27987–28002. doi: 10.1021/acsami.8b09656. PubMed DOI
Lopez-Garcia J., Bilek F., Lehocky M., Junkar I., Mozetic M., Sowe M. Enhanced printability of polyethylene through air plasma treatment. Vacuum. 2013;95:43–49. doi: 10.1016/j.vacuum.2013.02.008. DOI
Mozetic M. Plasma-Stimulated Super-Hydrophilic Surface Finish of Polymers. Polymers. 2020;12:2498. doi: 10.3390/polym12112498. PubMed DOI PMC
Niemczyk-Soczynska B., Arkadiusz Gradys A., Sajkiewicz P. Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering. Polymers. 2020;12:2636. doi: 10.3390/polym12112636. PubMed DOI PMC
Wieland F., Bruch R., Bergmann M., Partel S., Urban G.A., Dincer C. Enhanced Protein Immobilization on Polymers—A Plasma Surface Activation Study. Polymers. 2020;12:104. doi: 10.3390/polym12010104. PubMed DOI PMC
Slepicka P., Kasalkova N.S., Stranska E., Bacakova L., Svorcik V. Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 2013;7:535–545. doi: 10.3144/expresspolymlett.2013.50. DOI
Vidaurre E.F.C., Achete C.A., Gallo F., Garcia D., Simao R., Habert A.C. Surface Modification of Polymeric Materials by Plasma Treatment. Mater. Res. 2002;5:37–41. doi: 10.1590/S1516-14392002000100006. DOI
Asadinezhad A., Novak I., Lehocky M., Sedlarik V., Vesel A., Junkar I., Saha P., Chodak I. A physicochemical approach to render antibacterial surfaces on plasma-treated medical-grade PVC: Irgasan coating. Plasma Process. Polym. 2010;7:504–514. doi: 10.1002/ppap.200900132. DOI
Asadinezhad A., Novak I., Lehocky M., Bilek F., Vesel A., Junkar I., Saha P., Popelka A. Polysaccharides Coatings on Medical-Grade PVC: A Probe into Surface Characteristics and the Extent of Bacterial Adhesion. Molecules. 2010;15:1007–1027. doi: 10.3390/molecules15021007. PubMed DOI PMC
Castillo J.A., Clapes P., Infante M.R., Comas J., Manresa A. Comparative study of the antimicrobial activity of bis(Nα-caproyl-L-arginine)-1,3-propanediamine dihydrochloride and chlorhexidine dihydrochloride against Staphylococcus aureus and Escherichia coli. J. Antimicrob. Chemother. 2006;57:691–698. doi: 10.1093/jac/dkl012. PubMed DOI
Ozaltin K., Lehocky M., Kucekova Z., Humpolicek P., Saha P. A novel multistep method for chondroitin sulphate immobilization and its interaction with fibroblast cells. Mater. Sci. Eng. C. 2017;70:94–100. doi: 10.1016/j.msec.2016.08.065. PubMed DOI
Esmail A., Pereira J.R., Zoio P., Silvestre S., Menda U.D., Sevrin C., Grandfils C., Fortunato E., Reis M.A.M., Henriques C., et al. Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers. 2021;13:1056. doi: 10.3390/polym13071056. PubMed DOI PMC
Karakurt I., Ozaltin K., Vesela D., Lehocky M., Humpolicek P., Mozetic M. Antibacterial Activity and Cytotoxicity ofImmobilized Glucosamine/Chondroitin Sulfate on Polylactic Acid Films. Polymers. 2019;11:1186. doi: 10.3390/polym11071186. PubMed DOI PMC
Ozaltin K., Vargun E., Martino A.D., Capakova Z., Lehocky M., Humpolicek P., Kazantseva N., Saha P. Cell response to PLA scaffolds functionalized with various seaweedpolysaccharides. Int. J. Polym. Mater. Polym. Biomater. 2020 doi: 10.1080/00914037.2020.1798443. DOI
Bernal-Ballen A., Lopez-Garcia J.A., Ozaltin K. (PVA/Chitosan/Fucoidan)-Ampicillin: A BioartificialPolymeric Material with Combined Properties in CellRegeneration and Potential Antibacterial Features. Polymers. 2020;11:1325. doi: 10.3390/polym11081325. PubMed DOI PMC