Antibacterial Activity and Cytotoxicity of Immobilized Glucosamine/Chondroitin Sulfate on Polylactic Acid Films

. 2019 Jul 15 ; 11 (7) : . [epub] 20190715

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31311162

Grantová podpora
17-05095S Grantová Agentura České Republiky
IGA/CPS/2019/004 Univerzita Tomáše Bati ve Zlíně

Polylactic acid (PLA) is one of the most produced polymeric materials, due to its exceptional chemical and mechanical properties. Some of them, such as biodegradability and biocompatibility, make them attractive for biomedical applications. Conversely, the major drawback of PLA in the biomedical field is their vulnerability to bacterial contamination. This study focuses on the immobilization of saccharides onto the PLA surface by a multistep approach, with the aim of providing antibacterial features and evaluting the synergistic effect of these saccharides. In this approach, after poly (acrylic acid) (PAA) brushes attached non-covalently to the PLA surface via plasma post-irradiation grafting technique, immobilization of glucosamine (GlcN) and chondroitin sulfate (ChS) to the PAA brushes was carried out. To understand the changes in surface properties, such as chemical composition, surface topography and hydrophilicity, the untreated and treated PLA films were analyzed using various characterization techniques (contact angle, scanning electron microscopy, X-ray photoelectron spectroscopy). In vitro cytotoxicity assays were investigated by the methyl tetrazolium test. The antibacterial activity of the PLA samples was tested against Escherichia coli and Staphylococcus aureus bacteria strains. Plasma-treated films immobilized with ChS and GlcN, separately and in combination, demonstrated bactericidal effect against the both bacteria strains and also the results revealed that the combination has no synergistic effect on antibacterial action.

Zobrazit více v PubMed

Vert M. After soft tissues, bone, drug delivery and packaging, PLA aims at blood. Eur. Polym. J. 2015;68:516–525. doi: 10.1016/j.eurpolymj.2015.03.051. DOI

He C., Chen Q., Yarmolenko M., Rogachev A., Piliptsou D., Jiang X., Rogachev A. Structure and antibacterial activity of PLA-based biodegradable nanocomposite coatings by electron beam deposition from active gas phase. Prog. Org. Coat. 2018;123:282–291. doi: 10.1016/j.porgcoat.2018.02.030. DOI

Xiao L., Wang B., Yang G., Gauthier M. Biomedical Science Engineering Technology. Intech Open; Berlin, Germany: 2012. Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications.

Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI

Swilem A.E., Lehocký M., Humpolíček P., Kucekova Z., Novák I., Mičušík M., Abd El-Rehim H.A., Hegazy E.A., Hamed A.A., Kousal J. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials. J. Biomed. Mater. Res. Part A. 2017;105:3176–3188. doi: 10.1002/jbm.a.36158. PubMed DOI

Stankevich K.S., Danilenko N.V., Gadirov R.M., Goreninskii S.I., Tverdokhlebov S.I., Filimonov V.D. A new approach for the immobilization of poly(acrylic) acid as a chemically reactive cross-linker on the surface of poly(lactic) acid-based biomaterials. Mater. Sci. Eng. C. 2017;71:862–869. doi: 10.1016/j.msec.2016.10.078. PubMed DOI

Pandiyaraj K.N., Ferraria A.M., Rego A.M., Deshmukh R.R., Su P., Halleluyah J.M., Halim A.S. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications. Appl. Surf. Sci. 2015;328:1–12. doi: 10.1016/j.apsusc.2014.12.030. DOI

Ozaltin K., Lehocky M., Humpolicek P., Pelkova J., Martino A.D., Karakurt I., Saha P. Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization. Polymers. 2019;11:750. doi: 10.3390/polym11050750. PubMed DOI PMC

Popelka A., Novák I., Lehocký M., Junkar I., Mozetič M., Kleinová A., Janigová I., Slouf M., Bílek F., Chodák I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012;90:1501–1508. doi: 10.1016/j.carbpol.2012.07.021. PubMed DOI

Prat R., Shi M., Clouet F. Interactions of Cold Plasmas with Polymers and Their Model Molecules: Degradation vs. Functionalzation. J. Macromol. Sci. Part A. 1997;34:471–488. doi: 10.1080/10601329708014974. DOI

Bolbasov E., Rybachuk M., Golovkin A., Antonova L., Shesterikov E., Malchikhina A., Novikov V.A., Anissimov Y.G., Tverdokhlebov S.I. Surface modification of poly(l-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target. Mater. Lett. 2014;132:281–284. doi: 10.1016/j.matlet.2014.06.115. DOI

Yu D., Lin W., Lin C., Yang M. Cytocompatibility and Antibacterial Activity of a PHBV Membrane with Surface-Immobilized Water-Soluble Chitosan and Chondroitin-6-sulfate. Macromol. Biosci. 2006;6:348–357. doi: 10.1002/mabi.200600026. PubMed DOI

Stoleru E., Dumitriu R.P., Munteanu B.S., Zaharescu T., Tănase E.E., Mitelut A., Ailiesei G.L., Vasile C. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Appl. Surf. Sci. 2016;367:407–417. doi: 10.1016/j.apsusc.2016.01.200. DOI

Saxena S., Ray A.R., Gupta B. Chitosan immobilization on polyacrylic acid grafted polypropylene monofilament. Carbohydr. Polym. 2010;82:1315–1322. doi: 10.1016/j.carbpol.2010.07.014. DOI

Chang S., Chian C. Plasma surface modification effects on biodegradability and protein adsorption properties of chitosan films. Appl. Surf. Sci. 2013;282:735–740. doi: 10.1016/j.apsusc.2013.06.044. DOI

Maslakci N.N., Ulusoy S., Oksuz A.U. Investigation of the effects of plasma-treated chitosan electrospun fibers onto biofilm formation. Sens. Actuators B Chem. 2017;246:887–895. doi: 10.1016/j.snb.2017.02.089. DOI

Ando Y., Miyamoto H., Noda I., Sakurai N., Akiyama T., Yonekura Y., Shimazaki T., Miyazaki M., Mawatari M., Hotokebuchi T. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion. Mater. Sci. Eng. C. 2010;30:175–180. doi: 10.1016/j.msec.2009.09.015. DOI

Campoccia D., Visai L., Renò F., Cangini I., Rizzi M., Poggi A., Montanaro L., Rimondini L.A., Arciola C.R. Bacterial adhesion to poly-(d,l)lactic acid blended with vitamin E: Toward gentle anti-infective biomaterials. J. Biomed. Mater. Res. Part A. 2014;103:1447–1458. doi: 10.1002/jbm.a.35284. PubMed DOI

Barton A.J., Sagers R.D., Pitt W.G. Bacterial adhesion to orthopedic implant polymers. J. Biomed. Mater. Res. 1996;30:403–410. doi: 10.1002/(SICI)1097-4636(199603)30:3<403::AID-JBM15>3.0.CO;2-K. PubMed DOI

Hawser S., Lociuro S., Islam K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol. 2006;71:941–948. doi: 10.1016/j.bcp.2005.10.052. PubMed DOI

Munteanu N.S., Pâslaru E., Zemljič L.F., Anamaria S., Pricope G.M., Vasile C. Chitosan coatings applied to polyethylene surface to obtain food-packaging materials. Cell. Chem. Technol. 2014;48:565–575.

Machovsky M., Kuritka I., Bazant P., Vesela D., Saha P. Antibacterial performance of ZnO-based fillers with mesoscale structured morphology in model medical PVC composites. Mater. Sci. Eng. C. 2014;41:70–77. doi: 10.1016/j.msec.2014.04.034. PubMed DOI

Badaraev A., Nemoykina A., Bolbasov E., Tverdokhlebov S. PLLA scaffold modification using magnetron sputtering of the copper target to provide antibacterial properties. Resour.-Eff. Technol. 2017;3:204–211. doi: 10.1016/j.reffit.2017.05.004. DOI

Silva F.D., Cinca N., Dosta S., Cano I., Guilemany J., Caires C., Lima A.R., Silva C.M., Oliveira S.L., Caires A.R., et al. Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surf. Coat. Technol. 2019;361:292–301. doi: 10.1016/j.surfcoat.2019.01.029. DOI

Li X., Li P., Saravanan R., Basu A., Mishra B., Lim S.H., Su X., Tambyah P.A., Leong S.S. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater. 2014;10:258–266. doi: 10.1016/j.actbio.2013.09.009. PubMed DOI

Santiago-Ortiz L., Hitchner M., Palmer T., Caputo G.A. Characterization of a Histidine Containing Antimicrobial Peptide with pH Dependent Activity. Biophys. J. 2019;116:83a. doi: 10.1016/j.bpj.2018.11.493. DOI

Li Z., Yang X., Liu H., Yang X., Shan Y., Xu X., Shang S., Song Z. Dual-functional antimicrobial coating based on a quaternary ammonium salt from rosin acid with in vitro and in vivo antimicrobial and antifouling properties. Chem. Eng. J. 2019;374:564–575. doi: 10.1016/j.cej.2019.05.208. DOI

Russo L., Gloria A., Russo T., Damora U., Taraballi F., Santis R.D., Ambrosio L., Nicotra F., Cipolla L. Glucosamine grafting on poly(ε-caprolactone): A novel glycated polyester as a substrate for tissue engineering. RSC Adv. 2013;3:6286. doi: 10.1039/c3ra40408k. DOI

Dawlee S., Sugandhi A., Balakrishnan B., Labarre D., Jayakrishnan A. Oxidized Chondroitin Sulfate-Cross-Linked Gelatin Matrixes: A New Class of Hydrogels. Biomacromolecules. 2005;6:2040–2048. doi: 10.1021/bm050013a. PubMed DOI

Yeh M., Cheng K., Hu C., Huang Y., Young J. Novel protein-loaded chondroitin sulfate–chitosan nanoparticles: Preparation and characterization. Acta Biomater. 2011;7:3804–3812. doi: 10.1016/j.actbio.2011.06.026. PubMed DOI

Yuan H., Xue J., Qian B., Chen H., Zhu Y., Lan M. Preparation and antifouling property of polyurethane film modified by chondroitin sulfate. Appl. Surf. Sci. 2017;394:403–413. doi: 10.1016/j.apsusc.2016.10.083. DOI

Burge K.Y., Hannah L., Eckert J.V., Gunasekaran A., Chaaban H. The Protective Influence of Chondroitin Sulfate, a Component of Human Milk, on Intestinal Bacterial Invasion and Translocation. J. Hum. Lact. 2019;35:538–549. doi: 10.1177/0890334419845338. PubMed DOI PMC

Tóth I.Y., Illés E., Szekeres M., Tombácz E. Preparation and characterization of chondroitin-sulfate-A-coated magnetite nanoparticles for biomedical applications. J. Magn. Magn. Mater. 2015;380:168–174. doi: 10.1016/j.jmmm.2014.09.080. DOI

Dalirfardouei R., Karimi G., Jamialahmadi K. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci. 2016;152:21–29. doi: 10.1016/j.lfs.2016.03.028. PubMed DOI

Jeong K., Ahn K., Lee B.I., Lee C., Kim S. The mechanism of transglutaminase 2 inhibition with glucosamine: Implications of a possible anti-inflammatory effect through transglutaminase inhibition. J. Cancer Res. Clin. Oncol. 2009;136:143–150. doi: 10.1007/s00432-009-0645-x. PubMed DOI PMC

Xing R., Liu S., Guo Z., Yu H., Li C., Ji X., Feng J., Li P. The antioxidant activity of glucosamine hydrochloride in vitro. Bioorg. Med. Chem. 2006;14:1706–1709. doi: 10.1016/j.bmc.2005.10.018. PubMed DOI

Rozin A.P. Glucosamine sulfate—Environmental antibacterial activity. Clin. Rheumatol. 2009;28:1221–1223. doi: 10.1007/s10067-009-1209-9. PubMed DOI

Appelt H.R., Oliveira J.S., Santos R.C., Rodrigues O.E., Santos M.Z., Heck E.F., Rosa L.C. Synthesis and Antimicrobial Activity of Carbohydrate Based Schiff Bases: Importance of Sugar Moiety. Int. J. Carbohydr. Chem. 2013;2013:320892. doi: 10.1155/2013/320892. DOI

Malik S., Singh M., Mathur A. Antimicrobial Activity of Food Grade Glucosamine. Int. J. Biotechnol. Bioeng. Res. 2013;4:307–312.

Calamia V., Mateos J., Fernández-Puente P., Lourido L., Rocha B., Fernández-Costa C., Montell E., Verges J., Ruiz-Romero J., Blanco F.J. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine. Sci. Rep. 2014;4:5069. doi: 10.1038/srep05069. PubMed DOI PMC

Lippiello L., Woodward J., Karpman R., Hammad T.A. In Vivo Chondroprotection and Metabolic Synergy of Glucosamine and Chondroitin Sulfate. Clin. Orthop. Relat. Res. 2000;381:229–240. doi: 10.1097/00003086-200012000-00027. PubMed DOI

Glucosamine, Chondroitin Sulfate, and the Two in Combination for Painful Knee Osteoarthritis. Obstet. Gynecol. 2006;107:1415. doi: 10.1097/01.AOG.0000209485.75921.bd. PubMed DOI

De Souza Lins Borba F.K., Felix G.L., Costa E.V., Silva L., Dias P.F., Nogueira R.D. Fractal analysis of extra-embryonic vessels of chick embryos under the effect of glucosamine and chondroitin sulfates. Microvasc. Res. 2016;105:114–118. doi: 10.1016/j.mvr.2016.02.005. PubMed DOI

Yue J., Yang M., Yi S., Dong B., Li W., Yang Z., Lu Z., Zhang R., Yong J. Chondroitin sulfate and/or glucosamine hydrochloride for Kashin-Beck disease: A cluster-randomized, placebo-controlled study. Osteoarthr. Cartil. 2012;20:622–629. doi: 10.1016/j.joca.2012.03.013. PubMed DOI

ISO 22196:2007-Plastics-Measurement of Antibacterial Activity on Plastics Surfaces. ISO; Geneva, Switzerland: 2007.

ISO 10993-5:2009-Biological Evaluation of Medical Devices. ISO; Geneva, Switzerland: 2009.

Graeser A., Giller K., Wiegand H., Barella L., Saadatmandi C.B., Rimbach G. Synergistic Chondroprotective Effect of α-Tocopherol, Ascorbic Acid, and Selenium as well as Glucosamine and Chondroitin on Oxidant Induced Cell Death and Inhibition of Matrix Metalloproteinase-3—Studies in Cultured Chondrocytes. Molecules. 2009;15:27–39. doi: 10.3390/molecules15010027. PubMed DOI PMC

Lv C., Wang L., Zhu X., Lin W., Chen X., Huang Z., Huang L., Yang S. Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomed. Pharmacother. 2018;99:271–277. doi: 10.1016/j.biopha.2018.01.066. PubMed DOI

Bascoul-Colombo C., Garaiova I., Plummer S.F., Harwood J.L., Caterson B., Hughes C.E. Glucosamine Hydrochloride but Not Chondroitin Sulfate Prevents Cartilage Degradation and Inflammation Induced by Interleukin-1α in Bovine Cartilage Explants. Cartilage. 2015;7:70–81. doi: 10.1177/1947603515603762. PubMed DOI PMC

Montell E., Contreras-Muñoz P., Torrent A., Varga M.D., Rodas G., Marotta M. Mechanisms of action of chondroitin sulfate and glucosamine in muscle tissue: In vitro and in vivo results. a new potential treatment for muscle injuries? Ann. Rheum. Dis. 2018;77:1228–1229.

Pankey G.A., Sabath L.D. Clinical Relevance of Bacteriostatic versus Bactericidal Mechanisms of Action in the Treatment of Gram-Positive Bacterial Infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

Augusta S., Gruber H.F., Streichsbier F. Synthesis and antibacterial activity of immobilized quaternary ammonium salts. J. Appl. Polym. Sci. 1994;53:1149–1163. doi: 10.1002/app.1994.070530903. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...