Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17 - 10813S
Grantová Agentura České Republiky
NPU I, LO1504
Ministerstvo Školství, Mládeže a Tělovýchovy
IGA/CPS/2019/004
Internal Grant Agency of Tomas Bata University in Zlin
PubMed
31035326
PubMed Central
PMC6572684
DOI
10.3390/polym11050750
PII: polym11050750
Knihovny.cz E-zdroje
- Klíčová slova
- anticoagulant, blood coagulation, fucoidan, plasma treatment, polyethylene terephthalate, surface coating,
- Publikační typ
- časopisecké články MeSH
Biomaterial-based blood clot formation is one of the biggest drawbacks of blood-contacting devices. To avoid blood clot formation, their surface must be tailored to increase hemocompatibility. Most synthetic polymeric biomaterials are inert and lack bonding sites for chemical agents to bond or tailor to the surface. In this study, polyethylene terephthalate was subjected to direct current air plasma treatment to enhance its surface energy and to bring oxidative functional binding sites. Marine-sourced anticoagulant sulphated polysaccharide fucoidan from Fucus vesiculosus was then immobilized onto the treated polyethylene terephthalate (PET) surface at different pH values to optimize chemical bonding behavior and therefore anticoagulant performance. Surface properties of samples were monitored using the water contact angle; chemical analyses were performed by FTIR and X-ray photoelectron spectroscopy (XPS) and their anticoagulant activity was tested by means of prothrombin time, activated partial thromboplastin time and thrombin time. On each of the fucoidan-immobilized surfaces, anticoagulation activity was performed by extending the thrombin time threshold and their pH 5 counterpart performed the best result compared to others.
Zobrazit více v PubMed
Mozetic M., Ostrikov K., Ruzic D.N., Curreli D., Cvelbar U., Vesel A., Primc G., Leisch M., Jousten K., Malyshev O.B., et al. Recent advances in vacuum sciences and applications. J. Phys. D Appl. Phys. 2014;47:153001:1–153001:23. doi: 10.1088/0022-3727/47/15/153001. DOI
Mozetic M., Primc G., Vesel A., Zaplotnik R., Modic M., Junkar I., Recek N., Klanjsek-Gunde M., Guhy L., Sunkara M.K., et al. Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials. Plasma Sources Sci. Technol. 2015;24:015026:1–015026:12. doi: 10.1088/0963-0252/24/1/015026. DOI
Mozetic M., Vesel A., Primc G., Eisenmenger-Sittner C., Bauer J., Eder A., Schmid G.H.S., Ruzic D.N., Ahmed Z., Barker D., et al. Recent developments in surface science and engineering, thin films, nanoscience, biomaterials, plasma science, and vacuum technology. Thin Solid Films. 2018;660:120–160. doi: 10.1016/j.tsf.2018.05.046. DOI
Hasebe T., Nagashima S., Kamijo A., Moon M.W., Kashiwagi Y., Hotta A., Lee K.R., Takahashi K., Yamagami T., Suzuki T. Hydrophobicity and non-thrombogenicity of nanoscale dual rough surface coated with fluorine-incorporated diamond-like carbon films: Biomimetic surface for blood-contacting medical devices. Diam. Relat. Mater. 2015;38:14–18. doi: 10.1016/j.diamond.2013.06.001. DOI
Reviakine I., Jung F., Braune S., Brash J.L., Latour R., Gorbet M., Oeveren W.V. Stirred, shaken, or stagnant: What goes on at the blood–biomaterial interface. Blood Rev. 2017;31:11–21. doi: 10.1016/j.blre.2016.07.003. PubMed DOI
Alibeik S., Zhu S., Yau J.W., Weitz J.I., Brash J.L. Surface modification with polyethylene glycol–corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces. Acta Biomater. 2011;7:4177–4186. doi: 10.1016/j.actbio.2011.07.022. PubMed DOI
Qi P., Maitz M.F., Huang N. Surface modification of cardiovascular materials and implants. Surf. Coat. Technol. 2013;233:80–90. doi: 10.1016/j.surfcoat.2013.02.008. DOI
Zhang Z., Kuang G., Zong S., Liu S., Xiao H., Chen X., Zhou D., Huang Y. Sandwich-Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. Adv. Mater. 2018;30:1803217. doi: 10.1002/adma.201803217. PubMed DOI
Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Yamazoe H., Oyane A., Nashima T., Ito A. Reduced platelet adhesion and blood coagulation on cross-linked albumin films. Mater. Sci. Eng. C. 2010;30:812–816. doi: 10.1016/j.msec.2010.03.015. DOI
Biran R., Pond D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev. 2017;112:12–23. doi: 10.1016/j.addr.2016.12.002. PubMed DOI
Tengvall P. Protein Interactions with Biomaterials. In: Hutmacher D.W., Grainger D.W., Ducheyne P., editors. Comprehensive Biomaterials. 1st ed. Volume 4. Elsevier Ltd.; Philadelphia, PA, USA: 2011. pp. 63–73.
Horbett T.A. Adsorbed proteins on biomaterials. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science, an Introduction to Materials in Medicine. 3rd ed. Elsevier Inc.; Oxford, UK: 2013. pp. 394–408.
Xu L.C., Siedlecki C.A. Heparin coatings for improving blood compatibility of medical devices. Biomaterials. 2007;28:3273–3283. doi: 10.1016/j.biomaterials.2007.03.032. PubMed DOI PMC
Rana D., Matsuura T. Surface Modifications for Antifouling Membranes. Chem. Rev. 2010;110:2448–2471. doi: 10.1021/cr800208y. PubMed DOI
Seyfert U.T., Biehl V., Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng. 2002;19:91–96. doi: 10.1016/S1389-0344(02)00015-1. PubMed DOI
Xu L.C., Bauer J.W., Siedlecki C.A. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf. B. 2014;124:49–68. doi: 10.1016/j.colsurfb.2014.09.040. PubMed DOI PMC
Courtney J.M., Lamba N.M.K., Sundaram S., Forbes C.D. Biomaterials for blood-contacting applications. Biomaterials. 1994;15:737–744. doi: 10.1016/0142-9612(94)90026-4. PubMed DOI
Faxalv L., Ekblad T., Liedberg B., Lindahl T.L. Blood compatibility of photografted hydrogel coatings. Acta Biomater. 2010;6:2599–2608. doi: 10.1016/j.actbio.2009.12.046. PubMed DOI
Cashman J.D., Kennah E., Shuto A., Winternitz C., Springate C.M.K. Fucoidan film safely inhibits surgical adhesions in a rat model. J. Surg. Res. 2011;171:495–503. doi: 10.1016/j.jss.2010.04.043. PubMed DOI
Ikada Y. Surface modification of polymers for medical applications. Biomaterials. 1994;15:725–736. doi: 10.1016/0142-9612(94)90025-6. PubMed DOI
Hsiao C.R., Lin C.W., Chou C.M., Chung C.J., He J.L. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors. Appl. Surf. Sci. 2015;346:50–56. doi: 10.1016/j.apsusc.2015.03.208. DOI
Lehocky M., Amaral P.F.F., Coelho M.A.Z., Stahel P., Barros-Timmons A.M., Coutinho J.A.P. Attachment/detachment of Saccharomyces cerevisiae on plasma deposited organosilicon thin films. Czechoslov. J. Phys. 2006;56:1256–1262. doi: 10.1007/s10582-006-0359-0. DOI
Lehocky M., Lapcik L., Dlabaja R., Rachunek L. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials. Czechoslov. J. Phys. 2004;54:C533–C538.
Lehocky M., Amaral P.F.F., Stahel P., Coelho M.A.Z., Barros-Timmons A.M., Coutinho J.A.P. Preparation and characterization of organosilicon thin films for selective adhesion of Yarrowia lipolytica yeast cells. J. Chem. Technol. 2007;82:360–366.
Lehocky M., Stahel P., Koutny M., Cech J., Institoris J., Mracek A. Adhesion of Rhodococcus sp. S3E2 and Rhodococcus sp. S3E3 to plasma prepared Teflon-like and organosilicon surfaces. J. Mater. Process. Technol. 2009;209:2871–2875. doi: 10.1016/j.jmatprotec.2008.06.042. DOI
Goa S., Tang G., Hua D., Xiong R., Han J., Jiang S., Zhang Q., Huang C. Stimuli-responsive bio-based polymeric systems and their applications. J. Mater. Chem. B. 2019;7:709–729. PubMed
Ding Q., Xu X., Yue Y., Mei C., Huang C., Jiang S., Wu X., Han J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Appl. Mater. Interfaces. 2018;10:27987–28002. doi: 10.1021/acsami.8b09656. PubMed DOI
Chen Z., Wang Z., Fu Q., Ma Z., Fang P., He C. Microstructure and surface state of plasma-treated high-density polyethylene elucidated by energy-tunable positron annihilation and water contact angle measurements. JJAP Conf. Proc. 2014;2:011202. doi: 10.7567/JJAPCP.2.011202. DOI
Azevedo T.C.G., Bezerra M.E.B., Santos M.D.G.D.L., Souza L.A., Marques C.T., Benevides N.M.B., Leite E.L. Heparinoids algal and their anticoagulant, hemorrhagic activities and platelet aggregation. Biomed. Pharmacother. 2009;63:477–483. doi: 10.1016/j.biopha.2008.09.012. PubMed DOI
Dore C.M.P.G., Alves M.G.C.F., Will L.S.E.P., Costa T.G., Sabry D.A., Rego L.A.R.S., Accardo C.M., Rocha H.A.O., Filgueira L.G.A., Leite E.L. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr. Polym. 2013;91:467–475. doi: 10.1016/j.carbpol.2012.07.075. PubMed DOI
Hu Y., Li S., Li J., Ye X., Ding T., Liu D., Chen J., Ge Z., Chen S. Identification of a highly sulfated fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated tetrasaccharides units. Carbohydr. Polym. 2015;134:808–816. doi: 10.1016/j.carbpol.2015.06.088. PubMed DOI
Mracek A., Varhanikova J., Lehocky M., Grundelova L., Pokopcova A., Velebny V. The influence of hofmeister series ions on hyaluronan swelling and viscosity. Molecules. 2008;13:1025–1034. doi: 10.3390/molecules13051025. PubMed DOI PMC
Ustyuzhanina N.E., Bilan M.I., Gerbst A.G., Ushakova N.A., Tsvetkova E.A., Dmitrenok A.S., Usov A.I., Nifantiev N.E. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr. Polym. 2016;136:826–833. doi: 10.1016/j.carbpol.2015.09.102. PubMed DOI
Zhu Z., Zhang Q., Chen L., Ren S., Xu P., Tang Y. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb. Res. 2010;125:419–426. doi: 10.1016/j.thromres.2010.02.011. PubMed DOI
Fitton J.H. Therapies from Fucoidan; Multifunctional marine polymers. Mar. Drugs. 2011;9:1731–1760. doi: 10.3390/md9101731. PubMed DOI PMC
Liewert I., Ehrig K., Alban S. Effects of fucoidans and heparin on reactions of neutrophils induced by IL-8 and C5a. Carbohydr. Polym. 2017;165:462–469. doi: 10.1016/j.carbpol.2017.02.051. PubMed DOI
Kim J.M., Bae I.H., Lima K.S., Park J.K., Park D.S., Lee S.Y., Jang E.J., Ji M.S., Sim D.S., Hong Y.J., et al. A method for coating fucoidan onto bare metal stent and in vivo evaluation. Prog. Org. Coat. 2015;78:348–356. doi: 10.1016/j.porgcoat.2014.07.013. DOI
Yang Q., Yang R., Li M., Liang X., Elmada Z.C. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco) Fish Shelfish Immun. 2014;41:264–270. doi: 10.1016/j.fsi.2014.09.003. PubMed DOI
Ale M.T., Maruyama H., Tamauchi H., Mikkelsen J.D., Meyer A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int. J. Biol. Macromol. 2011;49:331–336. doi: 10.1016/j.ijbiomac.2011.05.009. PubMed DOI
Pielesz A., Binias W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in Fucus vesiculosus Linnaeus. Carbohydr. Res. 2010;345:2676–2682. doi: 10.1016/j.carres.2010.09.027. PubMed DOI
Zhao X., Dong S., Wang J., Li F., Chen A., Li B. A comparative study of antithrombotic and antiplatelet activities of different fucoidans from Laminaria japonica. Thromb. Res. 2012;129:771–778. doi: 10.1016/j.thromres.2011.07.041. PubMed DOI
Tengdelius M., Lee C.J., Grenegard M., Griffith M., Pahlsson P., Konradsson P. Synthesis and biological evaluation of fucoidan-mimetic glycopolymers through cyanoxyl-mediated free-radical polymerization. Biomacromolecules. 2014;15:2359–2368. doi: 10.1021/bm5002312. PubMed DOI
Rabanal M., Ponce N.M., Navarro D., Gomez R.M., Stortz C. The system of fucoidans from the brown seaweed Dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydr. Polym. 2014;101:804–811. doi: 10.1016/j.carbpol.2013.10.019. PubMed DOI
Wu L., Sun J., Su X., Yu Q., Yu Q., Zhang P. A review about the development of fucoidan in antitumor activity: Progress and challenges. Carbohydr. Polym. 2016;154:96–111. doi: 10.1016/j.carbpol.2016.08.005. PubMed DOI
Vesel A., Mozetic M., Strnad S. Improvement of adhesion of fucoidan on polyethylene terephthalate surface using gas plasma treatments. Vacuum. 2011;85:1083–1086. doi: 10.1016/j.vacuum.2010.12.016. DOI
Ozaltin K., Lehocky M., Humpolicek P., Pelkova J., Saha P. A new route of fucoidan immobilization on low density polyethylene and its blood compatibility and anticoagulation activity. Int. J. Mol. Sci. 2016;17:908. doi: 10.3390/ijms17060908. PubMed DOI PMC
Mracek A., Lehocky M., Smolka P., Grulich O., Velebny V. The allyamine grafting on the plasma pre-treated polyester nonwowen fabric: Preperation, characterization and utilization. Fiber Polym. 2010;11:1106–1110. doi: 10.1007/s12221-010-1106-5. DOI
Almazan M.C.A., Paredes J.I., Mendoza M.P., Garcia M.D., Garzon F.J.L., Alonso A.M., Tascon J.M.D. Surface characterisation of plasma-modified poly(ethylene terephthalate) J. Colloid Interface Sci. 2006;293:353–363. doi: 10.1016/j.jcis.2005.06.073. PubMed DOI
Andanson J.M., Kazarian S.G. In situ ATR-FTIR spectroscopy of poly(ethylene terephthalate) subjected to high-temperature methanol. Macromol. Symp. 2008;265:195–204. doi: 10.1002/masy.200850521. DOI
Huang L.Y., Yang M.C. Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Colloids Surf. B. 2008;61:43–52. doi: 10.1016/j.colsurfb.2007.07.004. PubMed DOI
Humpolicek P., Kucekova Z., Kasparkova V., Pelkova J., Modic M., Junkar I., Trchova M., Bober P., Stejskal J., Lehocky M. Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf. B. 2015;133:278–285. doi: 10.1016/j.colsurfb.2015.06.008. PubMed DOI
Wijesinghe W.A., Jeon Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012;88:13–20. doi: 10.1016/j.carbpol.2011.12.029. DOI
Harris L.F., Lopez V.C., Killard A.J. Coagulation monitoring devices: Past, present, and future at the point of care. Trends Anal. Chem. 2013;50:85–95. doi: 10.1016/j.trac.2013.05.009. DOI
Furcellaran Surface Deposition and Its Potential in Biomedical Applications