A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity

. 2016 Jun 09 ; 17 (6) : . [epub] 20160609

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27294915

Beside biomaterials' bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT).

Zobrazit více v PubMed

Jung F., Braune S., Lendlein A. Hemocompatibility testing of biomaterials using human platelets. Clin. Hemorheol. Microc. 2003;53:97–115. PubMed

Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Horbett T.A. Adsorbed proteis on biomaterials. In: Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E., editors. Biomaterials Science, an Introduction to Materials in Medicine. 3rd ed. Elsevier INC.; London, UK: 2013. pp. 394–408.

Xu L.C., Siedlecki C.A. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28:3273–3283. doi: 10.1016/j.biomaterials.2007.03.032. PubMed DOI PMC

Xu L.C., Bauer J.W., Siedlecki C.A. Proteins, platelets and blood coagulation at biomaterial interfaces. Biointerfaces. 2014;124:49–68. doi: 10.1016/j.colsurfb.2014.09.040. PubMed DOI PMC

Seyfert U.T., Biehl V., Schenk J. In vitro hemocompatibility testing of biomaterials according to the ISO 10993–4. Biomol. Eng. 2002;19:91–96. doi: 10.1016/S1389-0344(02)00015-1. PubMed DOI

Rana D., Matsuura T. Surface modifications for antifouling membranes. Chem. Rev. 2010;110:2448–2471. doi: 10.1021/cr800208y. PubMed DOI

Vendra V.K., Wu L., Krishnan S. Polymer Thin Films for Biomedical Applications. In: Kumar C., editor. Nanostructured Thin Films and Surfaces. 1st ed. Wiley-VCH; Weinheim, Germany: 2010. pp. 1–54.

Courtney J.M., Lamba N.M.K., Sundaram S., Forbes C.D. Biomaterials for blood-contacting applications. Biomaterials. 1994;15:737–744. doi: 10.1016/0142-9612(94)90026-4. PubMed DOI

Ikada Y. Surface modifications of polymers for medical applications. Biomaterials. 1994;15:725–736. doi: 10.1016/0142-9612(94)90025-6. PubMed DOI

Faxalv L., Ekblad T., Liedberg B., Lindahl T.L. Blood compatibility of photografted hydrogel coatings. Acta Biomater. 2010;6:2599–2608. doi: 10.1016/j.actbio.2009.12.046. PubMed DOI

Cashman J.D., Kennah E., Shuto A., Winternitz C., Springate C.M.K. Fucoidan film safely inhibits surgical adhesions in a rat model. J. Surg. Res. 2011;171:495–503. doi: 10.1016/j.jss.2010.04.043. PubMed DOI

Chen H., Yuan L., Song W., Wu Z., Li D. Biocompatible polymer materials: Role of protein-surface interactions. Prog. Polym. Sci. 2008;33:1059–1087. doi: 10.1016/j.progpolymsci.2008.07.006. DOI

Kaleekkal N.J., Thanigaivelan A., Durga M., Girish R., Rana D., Soundararajan P., Mohan D. Graphene oxide nanocomposite incorporated poly(ether imide) mixed matrix membranes for in vitro evaluation of its efficacy in blood purification applications. Ind. Eng. Chem. Res. 2015;54:7899–7913. doi: 10.1021/acs.iecr.5b01655. DOI

Chen Z., Wang Z., Fu Q., Ma Z., Fang P., He C. Microstructure and surface state of plasma-treated high-density polyethylene elucidated by energy-tunable positron annihilation and water contact angle measurements. JJAP Conf. Proc. 2014 doi: 10.7567/JJAPCP.2.011202. DOI

Lehocky M., Lapcik L., Neves M.C., Trindade T., Szyk-Warszynska L., Warszynski P., Hui D. Deposition/detachment of particles on plasma treated polymer surfaces. Mater. Sci. Forum Vols. 2003;426–432:2533–2538. doi: 10.4028/www.scientific.net/MSF.426-432.2533. DOI

Lehocky M., Amaral P.F.F., Coelho M.A.Z., Stahel P., Barros-Timmons A.M., Coutinho J.A.P. Attachment/detachment of Saccharomyces Cerevisiae on plasma deposited organosilicon thin films. Czechoslov. J. Phys. 2006;56:B1256–B1262. doi: 10.1007/s10582-006-0359-0. DOI

Lehocky M., Lapcik L., Dlabaja R., Rachunek L. Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials. Czechoslov. J. Phys. 2004;54:C533–C538. doi: 10.1007/BF03166446. DOI

Patel D., Wu J., Chan P., Upreti S., Turcotte G., Ye T. Surface modification of low density polyethylene films by homogeneous catalytic ozonation. Chem. Eng. Res. Des. 2012;90:1800–1806. doi: 10.1016/j.cherd.2012.03.009. DOI

Garcia J.L., Asadinezhad A., Pachernik J., Lehocky M., Junkar I., Humpolicek P., Saha P., Valasek P. Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules. 2010;15:2845–2856. doi: 10.3390/molecules15042845. PubMed DOI PMC

Popelka A., Novak I., Lehocky M., Junkar I., Mozetic M., Kleinova A., Janigova I., Slouf M., Bilek F., Chodak I. A new route for chitosan immobilization onto polyethylene surface. Carbohydr. Polym. 2012;90:1501–1508. doi: 10.1016/j.carbpol.2012.07.021. PubMed DOI

Garcia J.L., Bilek F., Lehocky M., Junkar I., Mozetic I., Sowe M. Enhanced printability of polyethylene through air plasma treatment. Vacuum. 2013;95:43–49. doi: 10.1016/j.vacuum.2013.02.008. DOI

Bilek F., Krizova T., Lehocky M. Preparation of active antibacterial LDPE surface through multistep physicochemical approach: I. Allylamine grafting, attachment of antibacterial agent and antibacterial activity assessment. Colloids Surf. B Biointerfaces. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI

Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

Azevedo T.C.G., Bezerra M.E.B., Santos M.D.G.D.L., Souza L.A., Marques C.T., Benevides N.M.B., Leite E.L. Heparinoids algal and their anticoagulant, hemorrhagic activities and platelet aggregation. Biomed. Pharmacother. 2009;63:477–483. doi: 10.1016/j.biopha.2008.09.012. PubMed DOI

Dore C.M.P.G., Alves M.G.C.F., Will L.S.E.P., Costa T.G., Sabry D.A., Rego L.A.R.S., Accardo C.M., Rocha H.A.O., Filgueira L.G.A., Leite E.L. A sulfated polysaccharide, fucans, isolated from brown algae Sargassum vulgare with anticoagulant, antithrombotic, antioxidant and anti-inflammatory effects. Carbohydr. Polym. 2013;91:467–475. doi: 10.1016/j.carbpol.2012.07.075. PubMed DOI

Hu Y., Li S., Li J., Ye X., Ding T., Liu D., Chen J., Ge Z., Chen S. Identification of a highly sulfated fucoidan from sea cucumber Pearsonothuria graeffei with well-repeated tetrasaccharides units. Carbohydr. Polym. 2015;134:808–816. doi: 10.1016/j.carbpol.2015.06.088. PubMed DOI

Jin W., Zhang Q., Wang J., Zhang W. A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydr. Polym. 2013;91:1–6. doi: 10.1016/j.carbpol.2012.07.067. PubMed DOI

Yang Q., Yang R., Li M., Liang X., Elmada Z.C. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfisch (Pelteobagrus fulvidraco) Fish Shelfish Immunol. 2014;41:264–270. doi: 10.1016/j.fsi.2014.09.003. PubMed DOI

Tengdelius M., Lee C.J., Grenegard M., Griffith M., Pahlsson P., Konradsson P. Synthesis and biological evaluation of fucoidan-mimetic glycopolymers through cyanoxyl-mediated free-radical polymerization. Biomacromolecules. 2014;15:2359–2368. doi: 10.1021/bm5002312. PubMed DOI

Vesel A., Mozetic M., Strnad S. Improvement of adhesion of fucoidan on polyethylene terephthalate surface using gas plasma treatments. Vacuum. 2011;85:1083–1086. doi: 10.1016/j.vacuum.2010.12.016. DOI

Pielesz A., Binias W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in fucus vesiculosus linnaeus. Carbohydr. Res. 2010;345:2676–2682. doi: 10.1016/j.carres.2010.09.027. PubMed DOI

Rabanal M., Ponce N.M., Navarro D., Gomez R.M., Stortz C. The system of fucoidans from the brown seaweed dictyota dichotoma: Chemical analysis and antiviral activity. Carbohydr. Polym. 2014;101:804–811. doi: 10.1016/j.carbpol.2013.10.019. PubMed DOI

Zhao X., Dong S., Wang J., Li F., Chen A., Li B. A comparative study of antithrombotic and antiplatelet activities of different fucoidans from Laminaria japonica. Thromb. Res. 2012;129:771–778. doi: 10.1016/j.thromres.2011.07.041. PubMed DOI

Ale M.T., Maruyama H., Tamauchi H., Mikkelsen J.D., Meyer A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int. J. Biol. Macromol. 2011;49:331–336. doi: 10.1016/j.ijbiomac.2011.05.009. PubMed DOI

Ustyuzhanina N.E., Bilan M.I., Gerbst A.G., Ushakova N.A., Tsvetkova E.A., Dmitrenok A.S., Usov A.I., Nifantiev N.E. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr. Polym. 2016;136:826–833. doi: 10.1016/j.carbpol.2015.09.102. PubMed DOI

Zhu Z., Zhang Q., Chen L., Ren S., Xu P., Tang Y. Luo, D. Higher specificity of the activity of low molecular weight fucoidan for thrombin-induced platelet aggregation. Thromb. Res. 2010;125:419–426. doi: 10.1016/j.thromres.2010.02.011. PubMed DOI

Durig J., Bruhn T., Zurborn K.H., Gutensohn K., Bruhn H.D., Beress L. Anticoagulant fucoidan fractions from fucus vesiculosus induce platelet activation in vitro. Thromb. Res. 1997;85:479–491. doi: 10.1016/S0049-3848(97)00037-6. PubMed DOI

Fitton J.H. Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs. 2011;9:1731–1760. doi: 10.3390/md9101731. PubMed DOI PMC

Bilek F., Sulovska K., Lehocky M., Saha P., Humpolicek P., Mozetic M., Junkar I. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: Graft type effect on antibacterial properties. Colloids Surf. B Biointerfaces. 2013;102:842–848. doi: 10.1016/j.colsurfb.2012.08.026. PubMed DOI

Huang L.Y., Yang M.C. Surface immobilization of chondroitin 6-sulfate/heparin multilayer on stainless steel for developing drug-eluting coronary stents. Colloids Surf. B Biointerfaces. 2008;61:43–52. doi: 10.1016/j.colsurfb.2007.07.004. PubMed DOI

Humpolicek P., Kucekova Z., Kasparkova V., Pelkova J., Modic M., Junkar I., Trchova M., Bober P., Stejskal J., Lehocky M. Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf. B Biointerfaces. 2015;133:278–285. doi: 10.1016/j.colsurfb.2015.06.008. PubMed DOI

Wijesinghe W.A.J.P., Jeon Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012;88:13–20. doi: 10.1016/j.carbpol.2011.12.029. DOI

Friedrich J. The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design. Wiley-VCH; Weinheim, Germany: 2012. Polymer surface modification with monosort functional groups; pp. 249–302.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...