Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor

J. Průša, M. Cifra,

. 2019 ; 9 (1) : 19721. [pub] 20191223

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20028703

Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20028703
003      
CZ-PrNML
005      
20210114154801.0
007      
ta
008      
210105s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-019-56052-3 $2 doi
035    __
$a (PubMed)31873109
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Průša, Jiří $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic. Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 16628, Czech Republic.
245    10
$a Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor / $c J. Průša, M. Cifra,
520    9_
$a Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
650    12
$a elektřina $7 D004560
650    _2
$a kineziny $x chemie $x metabolismus $7 D016547
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a časové faktory $7 D013997
650    _2
$a tubulin $x metabolismus $7 D014404
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Cifra, Michal $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic. cifra@ufe.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 19721
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31873109 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20210105 $b ABA008
991    __
$a 20210114154759 $b ABA008
999    __
$a ok $b bmc $g 1609038 $s 1119883
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 9 $c 1 $d 19721 $e 20191223 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20210105

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...