-
Je něco špatně v tomto záznamu ?
Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor
J. Průša, M. Cifra,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- časové faktory MeSH
- elektřina * MeSH
- kineziny chemie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- simulace molekulární dynamiky * MeSH
- tubulin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20028703
- 003
- CZ-PrNML
- 005
- 20210114154801.0
- 007
- ta
- 008
- 210105s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-019-56052-3 $2 doi
- 035 __
- $a (PubMed)31873109
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Průša, Jiří $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic. Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 16628, Czech Republic.
- 245 10
- $a Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor / $c J. Průša, M. Cifra,
- 520 9_
- $a Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
- 650 12
- $a elektřina $7 D004560
- 650 _2
- $a kineziny $x chemie $x metabolismus $7 D016547
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a tubulin $x metabolismus $7 D014404
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cifra, Michal $u Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic. cifra@ufe.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 9, č. 1 (2019), s. 19721
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31873109 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20210105 $b ABA008
- 991 __
- $a 20210114154759 $b ABA008
- 999 __
- $a ok $b bmc $g 1609038 $s 1119883
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 9 $c 1 $d 19721 $e 20191223 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20210105