Furcellaran Surface Deposition and Its Potential in Biomedical Applications

. 2022 Jul 04 ; 23 (13) : . [epub] 20220704

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35806443

Surface coatings of materials by polysaccharide polymers are an acknowledged strategy to modulate interfacial biocompatibility. Polysaccharides from various algal species represent an attractive source of structurally diverse compounds that have found application in the biomedical field. Furcellaran obtained from the red algae Furcellaria lumbricalis is a potential candidate for biomedical applications due to its gelation properties and mechanical strength. In the present study, immobilization of furcellaran onto polyethylene terephthalate surfaces by a multistep approach was studied. In this approach, N-allylmethylamine was grafted onto a functionalized polyethylene terephthalate (PET) surface via air plasma treatment. Furcellaran, as a bioactive agent, was anchored on such substrates. Surface characteristics were measured by means of contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Subsequently, samples were subjected to selected cell interaction assays, such as antibacterial activity, anticoagulant activity, fibroblasts and stem cell cytocompatibility, to investigate the Furcellaran potential in biomedical applications. Based on these results, furcellaran-coated PET films showed significantly improved embryonic stem cell (ESC) proliferation compared to the initial untreated material.

Zobrazit více v PubMed

Fasl H., Stana J., Stropnik D., Strnad S., Stana-Kleinschek K., Ribitsch V. Improvement of the Hemocompatibility of PET Surfaces Using Different Sulphated Polysaccharides as Coating Materials. Biomacromolecules. 2010;11:377–381. doi: 10.1021/bm9010084. PubMed DOI

Muhamad I.I., Zulkifli N., Selvakumaran S.A.P., Lazim N.A.M. Bioactive Algal-Derived Polysaccharides: Multi-Functionalization, Therapeutic Potential and Biomedical Applications. CPD Curr. Pharm. Des. 2019;25:1147–1162. doi: 10.2174/1381612825666190618152133. PubMed DOI

Xu S.-Y., Huang X., Cheong K.-L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar. Drugs. 2017;15:388. doi: 10.3390/md15120388. PubMed DOI PMC

Lee Y.-E., Kim H., Seo C., Park T., Lee K.B., Yoo S.-Y., Hong S.-C., Kim J.T., Lee J. Marine Polysaccharides: Therapeutic Efficacy and Biomedical Applications. Arch. Pharm. Res. 2017;40:1006–1020. doi: 10.1007/s12272-017-0958-2. PubMed DOI PMC

Ghanbarzadeh M., Golmoradizadeh A., Homaei A. Carrageenans and Carrageenases: Versatile Polysaccharides and Promising Marine Enzymes. Phytochem. Rev. 2018;17:535–571. doi: 10.1007/s11101-018-9548-2. DOI

Silva F.R.F., Dore C.M.P.G., Marques C.T., Nascimento M.S., Benevides N.M.B., Rocha H.A.O., Chavante S.F., Leite E.L. Anticoagulant Activity, Paw Edema and Pleurisy Induced Carrageenan: Action of Major Types of Commercial Carrageenans. Carbohydr. Polym. 2010;79:26–33. doi: 10.1016/j.carbpol.2009.07.010. DOI

Liang W., Mao X., Peng X., Tang S. Effects of Sulfate Group in Red Seaweed Polysaccharides on Anticoagulant Activity and Cytotoxicity. Carbohydr. Polym. 2014;101:776–785. doi: 10.1016/j.carbpol.2013.10.010. PubMed DOI

van de Velde F., Rollema H.S., Grinberg N.V., Burova T.V., Grinberg V.Y., Tromp R.H. Coil-Helix Transition of ?-Carrageenan as a Function of Chain Regularity. Biopolymers. 2002;65:299–312. doi: 10.1002/bip.10250. PubMed DOI

Jamróz E., Para G., Jachimska B., Szczepanowicz K., Warszyński P., Para A. Albumin–Furcellaran Complexes as Cores for Nanoencapsulation. Colloids Surf. A Physicochem. Eng. Asp. 2014;441:880–884. doi: 10.1016/j.colsurfa.2013.01.002. DOI

Laos K., Brownsey G., Ring S. Interactions between Furcellaran and the Globular Proteins Bovine Serum Albumin and β-Lactoglobulin. Carbohydr. Polym. 2007;67:116–123. doi: 10.1016/j.carbpol.2006.04.021. DOI

Jamroz E., Konieczna-Molenda A., Para A. Ternary Potato Starch-Furcellaran-Gelatin Film—A New Generation of Biodegradable Foils. Polimery. 2017;62:673–679. doi: 10.14314/polimery.2017.673. DOI

Alsharabasy A.M., Moghannem S.A., El-Mazny W.N. Physical Preparation of Alginate/Chitosan Polyelectrolyte Complexes for Biomedical Applications. J. Biomater. Appl. 2016;30:1071–1079. doi: 10.1177/0885328215613886. PubMed DOI

Seal B.L., Panitch A. Physical Polymer Matrices Based on Affinity Interactions between Peptides and Polysaccharides. Biomacromolecules. 2003;4:1572–1582. doi: 10.1021/bm0342032. PubMed DOI

Jamróz E., Janik M., Juszczak L., Kruk T., Kulawik P., Szuwarzyński M., Kawecka A., Khachatryan K. Composite Biopolymer Films Based on a Polyelectrolyte Complex of Furcellaran and Chitosan. Carbohydr. Polym. 2021;274:118627. doi: 10.1016/j.carbpol.2021.118627. PubMed DOI

Meka V.S., Sing M.K.G., Pichika M.R., Nali S.R., Kolapalli V.R.M., Kesharwani P. A Comprehensive Review on Polyelectrolyte Complexes. Drug Discov. Today. 2017;22:1697–1706. doi: 10.1016/j.drudis.2017.06.008. PubMed DOI

Jamróz E., Kulawik P., Guzik P., Duda I. The Verification of Intelligent Properties of Furcellaran Films with Plant Extracts on the Stored Fresh Atlantic Mackerel during Storage at 2 °C. Food Hydrocoll. 2019;97:105211. doi: 10.1016/j.foodhyd.2019.105211. DOI

Jamróz E., Juszczak L., Kucharek M. Investigation of the Physical Properties, Antioxidant and Antimicrobial Activity of Ternary Potato Starch-Furcellaran-Gelatin Films Incorporated with Lavender Essential Oil. Int. J. Biol. Macromol. 2018;114:1094–1101. doi: 10.1016/j.ijbiomac.2018.04.014. PubMed DOI

Jamróz E., Khachatryan G., Kopel P., Juszczak L., Kawecka A., Krzyściak P., Kucharek M., Bębenek Z., Zimowska M. Furcellaran Nanocomposite Films: The Effect of Nanofillers on the Structural, Thermal, Mechanical and Antimicrobial Properties of Biopolymer Films. Carbohydr. Polym. 2020;240:116244. doi: 10.1016/j.carbpol.2020.116244. PubMed DOI

Anderson J.M., Miller K.M. Biomaterial Biocompatibility and the Macrophage. Biomaterials. 1984;5:5–10. doi: 10.1016/0142-9612(84)90060-7. PubMed DOI

Hubbell J.A. Biomaterials in Tissue Engineering. Biotechnology. 1995;13:565–576. doi: 10.1038/nbt0695-565. PubMed DOI

Jaffer I.H., Fredenburgh J.C., Hirsh J., Weitz J.I. Medical Device-Induced Thrombosis: What Causes It and How Can We Prevent It? J. Thromb. Haemost. 2015;13:S72–S81. doi: 10.1111/jth.12961. PubMed DOI

Ren X., Feng Y., Guo J., Wang H., Li Q., Yang J., Hao X., Lv J., Ma N., Li W. Surface Modification and Endothelialization of Biomaterials as Potential Scaffolds for Vascular Tissue Engineering Applications. Chem. Soc. Rev. 2015;44:5680–5742. doi: 10.1039/C4CS00483C. PubMed DOI

Massia S.P., Stark J., Letbetter D.S. Surface-Immobilized Dextran Limits Cell Adhesion and Spreading. Biomaterials. 2000;21:2253–2261. doi: 10.1016/S0142-9612(00)00151-4. PubMed DOI

Jacobs T., Morent R., De Geyter N., Dubruel P., Leys C. Plasma Surface Modification of Biomedical Polymers: Influence on Cell-Material Interaction. Plasma Chem. Plasma Process. 2012;32:1039–1073. doi: 10.1007/s11090-012-9394-8. DOI

Ferreira P., Alves P., Coimbra P., Gil M.H. Improving Polymeric Surfaces for Biomedical Applications: A Review. J Coat Technol. Res. 2015;12:463–475. doi: 10.1007/s11998-015-9658-3. DOI

Drobota M., Trandabat A., Pislaru M. Surface Modification of Poly(Ethylene Terephthalate) in Air Plasma. Acta Chem. Iasi. 2019;27:128–136. doi: 10.2478/achi-2019-0010. DOI

Karakurt I., Ozaltin K., Vesela D., Lehocky M., Humpolíček P., Mozetič M. Antibacterial Activity and Cytotoxicity of Immobilized Glucosamine/Chondroitin Sulfate on Polylactic Acid Films. Polymers. 2019;11:1186. doi: 10.3390/polym11071186. PubMed DOI PMC

Ozaltin K., Lehocky M., Humpolicek P., Pelkova J., Di Martino A., Karakurt I., Saha P. Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization. Polymers. 2019;11:750. doi: 10.3390/polym11050750. PubMed DOI PMC

Tkavc T., Petrinič I., Luxbacher T., Vesel A., Ristić T., Zemljič L.F. Influence of O2 and CO2 Plasma Treatment on the Deposition of Chitosan onto Polyethylene Terephthalate (PET) Surfaces. Int. J. Adhes. Adhes. 2014;48:168–176. doi: 10.1016/j.ijadhadh.2013.09.008. DOI

Popelka A., Novák I., Lehocký M., Junkar I., Mozetič M., Kleinová A., Janigová I., Šlouf M., Bílek F., Chodák I. A New Route for Chitosan Immobilization onto Polyethylene Surface. Carbohydr. Polym. 2012;90:1501–1508. doi: 10.1016/j.carbpol.2012.07.021. PubMed DOI

Popelka A., Kronek J., Novák I., Kleinová A., Mičušík M., Špírková M., Omastová M. Surface Modification of Low-Density Polyethylene with Poly(2-Ethyl-2-Oxazoline) Using a Low-Pressure Plasma Treatment. Vacuum. 2014;100:53–56. doi: 10.1016/j.vacuum.2013.07.016. DOI

Bílek F., Křížová T., Lehocký M. Preparation of Active Antibacterial LDPE Surface through Multistep Physicochemical Approach: I. Allylamine Grafting, Attachment of Antibacterial Agent and Antibacterial Activity Assessment. Colloids Surf. B Biointerfaces. 2011;88:440–447. doi: 10.1016/j.colsurfb.2011.07.027. PubMed DOI

Ozaltin K., Lehocký M., Humpolíček P., Pelková J., Sáha P. A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity. Int. J. Mol. Sci. 2016;17:908. doi: 10.3390/ijms17060908. PubMed DOI PMC

Martocq L., Douglas T.E.L. Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization. Coatings. 2021;11:983. doi: 10.3390/coatings11080983. DOI

Bílek F., Sulovská K., Lehocký M., Sáha P., Humpolíček P., Mozetič M., Junkar I. Preparation of Active Antibacterial LDPE Surface through Multistep Physicochemical Approach II: Graft Type Effect on Antibacterial Properties. Colloids Surf. B Biointerfaces. 2013;102:842–848. doi: 10.1016/j.colsurfb.2012.08.026. PubMed DOI

Ozaltin K., Lehocky M., Humpolicek P., Vesela D., Mozetic M., Novak I., Saha P. Preparation of Active Antibacterial Biomaterials Based on Sparfloxacin, Enrofloxacin, and Lomefloxacin Deposited on Polyethylene. J. Appl. Polym. Sci. 2018;135:46174. doi: 10.1002/app.46174. DOI

Yang Z., Wang J., Luo R., Maitz M.F., Jing F., Sun H., Huang N. The Covalent Immobilization of Heparin to Pulsed-Plasma Polymeric Allylamine Films on 316L Stainless Steel and the Resulting Effects on Hemocompatibility. Biomaterials. 2010;31:2072–2083. doi: 10.1016/j.biomaterials.2009.11.091. PubMed DOI

Charbonneau C., Ruiz J.-C., Lequoy P., Hébert M.-J., De Crescenzo G., Wertheimer M.R., Lerouge S. Chondroitin Sulfate and Epidermal Growth Factor Immobilization after Plasma Polymerization: A Versatile Anti-Apoptotic Coating to Promote Healing Around Stent Grafts. Macromol. Biosci. 2012;12:812–821. doi: 10.1002/mabi.201100447. PubMed DOI

Subramaniam A., Sethuraman S. Natural and Synthetic Biomedical Polymers. Elsevier; Amsterdam, The Netherlands: 2014. Biomedical Applications of Nondegradable Polymers; pp. 301–308.

Dhahri M., Abed A., Lajimi R.H., Mansour M.B., Gueguen V., Abdesselem S.B., Chaubet F., Letourneur D., Meddahi-Pellé A., Maaroufi R.M. Grafting of Dermatan Sulfate on Polyethylene Terephtalate to Enhance Biointegration. J. Biomed. Mater. Res. Part A. 2011;98:114–121. doi: 10.1002/jbm.a.33077. PubMed DOI

Pandiyaraj K.N., Selvarajan V., Rhee Y.H., Kim H.W., Shah S.I. Glow Discharge Plasma-Induced Immobilization of Heparin and Insulin on Polyethylene Terephthalate Film Surfaces Enhances Anti-Thrombogenic Properties. Mater. Sci. Eng. C. 2009;29:796–805. doi: 10.1016/j.msec.2008.07.013. DOI

Gotoh K., Yasukawa A., Kobayashi Y. Wettability Characteristics of Poly(Ethylene Terephthalate) Films Treated by Atmospheric Pressure Plasma and Ultraviolet Excimer Light. Polym. J. 2011;43:545–551. doi: 10.1038/pj.2011.20. DOI

van Oss C.J., Wu W., Docoslis A., Giese R.F. The Interfacial Tensions with Water and the Lewis Acid–Base Surface Tension Parameters of Polar Organic Liquids Derived from Their Aqueous Solubilities. Colloids Surf. B Biointerfaces. 2001;20:87–91. doi: 10.1016/S0927-7765(00)00169-7. PubMed DOI

Ozaltin K., Lehocký M., Kuceková Z., Humpolíček P., Sáha P. A Novel Multistep Method for Chondroitin Sulphate Immobilization and Its Interaction with Fibroblast Cells. Mater. Sci. Eng. C. 2017;70:94–100. doi: 10.1016/j.msec.2016.08.065. PubMed DOI

Zhu M., Ge L., Lyu Y., Zi Y., Li X., Li D., Mu C. Preparation, Characterization and Antibacterial Activity of Oxidized κ-Carrageenan. Carbohydr. Polym. 2017;174:1051–1058. doi: 10.1016/j.carbpol.2017.07.029. PubMed DOI

Bajpai S.K., Daheriya P. Kappa-Carrageenan/PVA Filmswith Antibacterial Properties: Part 1. Optimization of Preparation Conditions and Preliminary Drug Release Studies. J. Macromol. Sci. Part A. 2014;51:286–295. doi: 10.1080/10601325.2014.882687. DOI

Abdelhamid H.N., Mathew A.P. Cellulose-Based Materials for Water Remediation: Adsorption, Catalysis, and Antifouling. Front. Chem. Eng. 2021;3 doi: 10.3389/fceng.2021.790314. DOI

Abdelhamid H.N., Mathew A.P. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int. J. Mol. Sci. 2022;23:5405. doi: 10.3390/ijms23105405. PubMed DOI PMC

Liu X.F., Guan Y.L., Yang D.Z., Li Z., De Yao K. Antibacterial Action of Chitosan and Carboxymethylated Chitosan. J. Appl. Polym. Sci. 2001;79:1324–1335.

Ayrapetyan O.N., Obluchinskaya E.D., Zhurishkina E.V., Skorik Y.A., Lebedev D.V., Kulminskaya A.A., Lapina I.M. Antibacterial properties of fucoidans from the brown algae Fucus vesiculosus L. of the barents sea. Biology. 2021;10:67. doi: 10.3390/biology10010067. PubMed DOI PMC

Kuchinka J., Willems C., Telyshev D.V., Groth T. Control of Blood Coagulation by Hemocompatible Material Surfaces—A Review. Bioengineering. 2021;8:215. doi: 10.3390/bioengineering8120215. PubMed DOI PMC

Olson S. Identification of Critical Molecular Interactions Mediating Heparin Activation of Antithrombin Implications for the Design of Improved Heparin Anticoagulants. Trends Cardiovasc. Med. 2002;12:198–205. doi: 10.1016/S1050-1738(02)00160-3. PubMed DOI

Wei J., Yoshinari M., Takemoto S., Hattori M., Kawada E., Liu B., Oda Y. Adhesion of Mouse Fibroblasts on Hexamethyldisiloxane Surfaces with Wide Range of Wettability. J. Biomed. Mater. Res. B Appl. Biomater. 2007;81:66–75. doi: 10.1002/jbm.b.30638. PubMed DOI

Ko J.-Y., Lee J.-H., Kim H.-S., Kim H.-H., Jeon Y.-J. Cell proliferation effect of brown marine algae extracts on Mouse Fibroblast. J. Mar. Biosci. Biotechnol. 2015;7:28–34. doi: 10.15433/ksmb.2015.7.1.028. DOI

Popa E., Carvalho P., Dias A., Santos T., Santo V., Marques A., Viegas C., Gomes M., Reis R.L. Evaluation of the in Vitro and in Vivo Biocompatibility of Carrageenan-Based Hydrogels. J. Biomed. Mater. Res. Part A. 2014;102:4087–4097. doi: 10.1002/jbm.a.35081. PubMed DOI

Alves A., Sousa R.A., Reis R.L. In Vitro Cytotoxicity Assessment of Ulvan, a Polysaccharide Extracted from Green Algae. Phytother. Res. 2013;27:1143–1148. doi: 10.1002/ptr.4843. PubMed DOI

Perestrelo A.R., Grenha A., Rosa da Costa A.M., Belo J.A. Locust Bean Gum as an Alternative Polymeric Coating for Embryonic Stem Cell Culture. Mater. Sci. Eng. C Mater. Biol. Appl. 2014;40:336–344. doi: 10.1016/j.msec.2014.04.022. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carboxymethylated and Sulfated Furcellaran from Furcellaria lumbricalis and Its Immobilization on PLA Scaffolds

. 2024 Mar 06 ; 16 (5) : . [epub] 20240306

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...