Carboxymethylated and Sulfated Furcellaran from Furcellaria lumbricalis and Its Immobilization on PLA Scaffolds
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO RP/CPS/2022/005
Ministry of Education, Youth and Sports of the Czech Republic
L2-2616
Slovenian Research Agency
P2-0082
Slovenian Research Agency
PubMed
38475404
PubMed Central
PMC10934783
DOI
10.3390/polym16050720
PII: polym16050720
Knihovny.cz E-zdroje
- Klíčová slova
- PLA, carboxymethylation, furcellaran, plasma treatment, scaffolds, seaweed polysaccharide, sulfation,
- Publikační typ
- časopisecké články MeSH
This study involved the creation of highly porous PLA scaffolds through the porogen/leaching method, utilizing polyethylene glycol as a porogen with a 75% mass ratio. The outcome achieved a highly interconnected porous structure with a thickness of 25 μm. To activate the scaffold's surface and improve its hydrophilicity, radiofrequency (RF) air plasma treatment was employed. Subsequently, furcellaran subjected to sulfation or carboxymethylation was deposited onto the RF plasma treated surfaces with the intention of improving bioactivity. Surface roughness and water wettability experienced enhancement following the surface modification. The incorporation of sulfate/carboxymethyl group (DS = 0.8; 0.3, respectively) is confirmed by elemental analysis and FT-IR. Successful functionalization of PLA scaffolds was validated by SEM and XPS analysis, showing changes in topography and increases in characteristic elements (N, S, Na) for sulfated (SF) and carboxymethylated (CMF). Cytocompatibility was evaluated by using mouse embryonic fibroblast cells (NIH/3T3).
Department of Chemistry Mugla Sitki Kocman University Kotekli 48000 Mugla Turkey
Department of Surface Engineering Jozef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Capuana E., Lopresti F., Ceraulo M., La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers. 2022;14:1153. doi: 10.3390/polym14061153. PubMed DOI PMC
Guo B., Lei B., Li P., Ma P.X. Functionalized Scaffolds to Enhance Tissue Regeneration. Regen. Biomater. 2015;2:47–57. doi: 10.1093/rb/rbu016. PubMed DOI PMC
Elkasabgy N.A., Mahmoud A.A. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech. 2019;20:256. doi: 10.1208/s12249-019-1470-4. PubMed DOI
Shafiee A., Atala A. Tissue Engineering: Toward a New Era of Medicine. Annu. Rev. Med. 2017;68:29–40. doi: 10.1146/annurev-med-102715-092331. PubMed DOI
Gregor A., Filová E., Novák M., Kronek J., Chlup H., Buzgo M., Blahnová V., Lukášová V., Bartoš M., Nečas A., et al. Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer. J. Biol. Eng. 2017;11:31. doi: 10.1186/s13036-017-0074-3. PubMed DOI PMC
Bernardo M.P., da Silva B.C.R., Hamouda A.E.I., de Toledo M.A.S., Schalla C., Rütten S., Goetzke R., Mattoso L.H.C., Zenke M., Sechi A. PLA/Hydroxyapatite Scaffolds Exhibit in Vitro Immunological Inertness and Promote Robust Osteogenic Differentiation of Human Mesenchymal Stem Cells without Osteogenic Stimuli. Sci. Rep. 2022;12:2333. doi: 10.1038/s41598-022-05207-w. PubMed DOI PMC
DeStefano V., Khan S., Tabada A. Applications of PLA in Modern Medicine. Eng. Regen. 2020;1:76–87. doi: 10.1016/j.engreg.2020.08.002. PubMed DOI PMC
Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current Applications of Poly(Lactic Acid) Composites in Tissue Engineering and Drug Delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI
Darabian B., Bagheri H., Mohammadi S. Improvement in Mechanical Properties and Biodegradability of PLA Using Poly(Ethylene Glycol) and Triacetin for Antibacterial Wound Dressing Applications. Prog. Biomater. 2020;9:45. doi: 10.1007/s40204-020-00131-6. PubMed DOI PMC
Jaidev L.R., Chatterjee K. Surface Functionalization of 3D Printed Polymer Scaffolds to Augment Stem Cell Response. Mater. Des. 2019;161:44–54. doi: 10.1016/j.matdes.2018.11.018. DOI
Haider A., Haider S., Rao Kummara M., Kamal T., Alghyamah A.-A.A., Jan Iftikhar F., Bano B., Khan N., Amjid Afridi M., Soo Han S., et al. Advances in the Scaffolds Fabrication Techniques Using Biocompatible Polymers and Their Biomedical Application: A Technical and Statistical Review. J. Saudi Chem. Soc. 2020;24:186–215. doi: 10.1016/j.jscs.2020.01.002. DOI
Bhaskar B., Owen R., Bahmaee H., Wally Z., Sreenivasa Rao P., Reilly G.C. Composite Porous Scaffold of PEG/PLA Support Improved Bone Matrix Deposition in Vitro Compared to PLA-Only Scaffolds. J. Biomed. Mater. Res. Part A. 2018;106:1334–1340. doi: 10.1002/jbm.a.36336. PubMed DOI
Heit Y.I., Dastouri P., Helm D.L., Pietramaggiori G., Younan G., Erba P., Münster S., Orgill D.P., Scherer S.S. Foam Pore Size Is a Critical Interface Parameter of Suction-Based Wound Healing Devices. Plast. Reconstr. Surg. 2012;129:589–597. doi: 10.1097/PRS.0b013e3182402c89. PubMed DOI
Chitrattha S., Phaechamud T. Porous Poly(Dl-Lactic Acid) Matrix Film with Antimicrobial Activities for Wound Dressing Application. Mater. Sci. Eng. C. 2016;58:1122–1130. doi: 10.1016/j.msec.2015.09.083. PubMed DOI
Negut I., Dorcioman G., Grumezescu V. Scaffolds for Wound Healing Applications. Polymers. 2020;12:2010. doi: 10.3390/polym12092010. PubMed DOI PMC
Rahman M., Ali A., Sjöholm E., Soindinsalo S., Wilén C.-E., Bansal K.K., Rosenholm J.M. Significance of Polymers with “Allyl” Functionality in Biomedicine: An Emerging Class of Functional Polymers. Pharmaceutics. 2022;14:798. doi: 10.3390/pharmaceutics14040798. PubMed DOI PMC
Jeznach O., Kołbuk D., Marzec M., Bernasik A., Sajkiewicz P. Aminolysis as a Surface Functionalization Method of Aliphatic Polyester Nonwovens: Impact on Material Properties and Biological Response. RSC Adv. 2022;12:11303–11317. doi: 10.1039/D2RA00542E. PubMed DOI PMC
Karakurt I., Ozaltin K., Pištěková H., Vesela D., Michael-Lindhard J., Humpolícek P., Mozetič M., Lehocky M. Effect of Saccharides Coating on Antibacterial Potential and Drug Loading and Releasing Capability of Plasma Treated Polylactic Acid Films. Int. J. Mol. Sci. 2022;23:8821. doi: 10.3390/ijms23158821. PubMed DOI PMC
Abdulkareem A., Kasak P., Nassr M.G., Mahmoud A.A., Al-Ruweidi M.K.A.A., Mohamoud K.J., Hussein M.K., Popelka A. Surface Modification of Poly(Lactic Acid) Film via Cold Plasma Assisted Grafting of Fumaric and Ascorbic Acid. Polymers. 2021;13:3717. doi: 10.3390/polym13213717. PubMed DOI PMC
Chakraborty R., Anoop A.G., Thakur A., Mohanta G.C., Kumar P. Strategies To Modify the Surface and Bulk Properties of 3D-Printed Solid Scaffolds for Tissue Engineering Applications. ACS Omega. 2023;8:5139–5156. doi: 10.1021/acsomega.2c05984. PubMed DOI PMC
Vesel A. Deposition of Chitosan on Plasma-Treated Polymers—A Review. Polymers. 2023;15:1109. doi: 10.3390/polym15051109. PubMed DOI PMC
Vesel A., Mozetic M., Strnad S. Improvement of Adhesion of Fucoidan on Polyethylene Terephthalate Surface Using Gas Plasma Treatments. Vacuum. 2011;85:1083–1086. doi: 10.1016/j.vacuum.2010.12.016. DOI
Tsougeni K., Petrou P.S., Awsiuk K., Marzec M.M., Ioannidis N., Petrouleas V., Tserepi A., Kakabakos S.E., Gogolides E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces. 2015;7:14670–14681. doi: 10.1021/acsami.5b01754. PubMed DOI
Yang J., Bei J., Wang S. Enhanced Cell Affinity of Poly (d,l-Lactide) by Combining Plasma Treatment with Collagen Anchorage. Biomaterials. 2002;23:2607–2614. doi: 10.1016/S0142-9612(01)00400-8. PubMed DOI
Nikolova M.P., Chavali M.S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019;4:271–292. doi: 10.1016/j.bioactmat.2019.10.005. PubMed DOI PMC
Sivakumar P.M., Yetisgin A.A., Sahin S.B., Demir E., Cetinel S. Bone Tissue Engineering: Anionic Polysaccharides as Promising Scaffolds. Carbohydr. Polym. 2022;283:119142. doi: 10.1016/j.carbpol.2022.119142. PubMed DOI
Laos K., Ring S.G. Note: Characterisation of Furcellaran Samples from Estonian Furcellaria lumbricalis (Rhodophyta) J. Appl. Phycol. 2005;17:461–464. doi: 10.1007/s10811-005-1635-2. DOI
Štěpánková K., Ozaltin K., Pelková J., Pištěková H., Karakurt I., Káčerová S., Lehocky M., Humpolicek P., Vesel A., Mozetic M. Furcellaran Surface Deposition and Its Potential in Biomedical Applications. Int. J. Mol. Sci. 2022;23:7439. doi: 10.3390/ijms23137439. PubMed DOI PMC
Štěpánková K., Ozaltin K., Gorejová R., Doudová H., Bergerová E.D., Maskalová I., Stupavská M., Sťahel P., Trunec D., Pelková J., et al. Sulfation of Furcellaran and Its Effect on Hemocompatibility in Vitro. Int. J. Biol. Macromol. 2024;258:128840. doi: 10.1016/j.ijbiomac.2023.128840. PubMed DOI
Liu T., Ren Q., Wang S., Gao J., Shen C., Zhang S., Wang Y., Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules. 2023;28:6073. doi: 10.3390/molecules28166073. PubMed DOI PMC
Bedini E., Laezza A., Parrilli M., Iadonisi A. A Review of Chemical Methods for the Selective Sulfation and Desulfation of Polysaccharides. Carbohydr. Polym. 2017;174:1224–1239. doi: 10.1016/j.carbpol.2017.07.017. PubMed DOI
Li J., Shang W., Si X., Bu D., Strappe P., Zhou Z., Blanchard C. Carboxymethylation of Corn Bran Polysaccharide and Its Bioactive Property. Int. J. Food Sci. Technol. 2017;52:1176–1184. doi: 10.1111/ijfs.13382. DOI
Shariatinia Z. Carboxymethyl Chitosan: Properties and Biomedical Applications. Int. J. Biol. Macromol. 2018;120:1406–1419. doi: 10.1016/j.ijbiomac.2018.09.131. PubMed DOI
Madruga L.Y., Sabino R.M., Santos E.C., Popat K.C., Balaban RD C., Kipper M.J. Carboxymethyl-Kappa-Carrageenan: A Study of Biocompatibility, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2020;152:483–491. doi: 10.1016/j.ijbiomac.2020.02.274. PubMed DOI
Ozaltin K., Vargun E., Di Martino A., Capakova Z., Lehocky M., Humpolicek P., Kazantseva N., Saha P. Cell Response to PLA Scaffolds Functionalized with Various Seaweed Polysaccharides. Int. J. Polym. Mater. Polym. Biomater. 2022;71:79–86. doi: 10.1080/00914037.2020.1798443. DOI
International Organization for Standardization; Geneva, Switzerland: 2009. Biological Evaluation of Medical Devices, Part 5: Tests for In Vitro Cytotoxicity.
Hung L.D., Nguyen H.T.T., Trang V.T.D. Kappa Carrageenan from the Red Alga Kappaphycus striatus Cultivated at Vanphong Bay, Vietnam: Physicochemical Properties and Structure. J. Appl. Phycol. 2021;33:1819–1824. doi: 10.1007/s10811-021-02415-1. DOI
Liang W., Mao X., Peng X., Tang S. Effects of Sulfate Group in Red Seaweed Polysaccharides on Anticoagulant Activity and Cytotoxicity. Carbohydr. Polym. 2014;101:776–785. doi: 10.1016/j.carbpol.2013.10.010. PubMed DOI
Abbasi-Ravasjani S., Seddiqi H., Moghaddaszadeh A., Ghiasvand M.-E., Jin J., Oliaei E., Bacabac R.G., Klein-Nulend J. Sulfated Carboxymethyl Cellulose and Carboxymethyl κ-Carrageenan Immobilization on 3D-Printed Poly-ε-Caprolactone Scaffolds Differentially Promote Pre-Osteoblast Proliferation and Osteogenic Activity. Front. Bioeng. Biotechnol. 2022;10:957263. doi: 10.3389/fbioe.2022.957263. PubMed DOI PMC
Gunasekaran S., Govindan S., Ramani P. Sulfated Modification, Characterization and Bioactivities of an Acidic Polysaccharide Fraction from an Edible Mushroom Pleurotus eous Berk. Sacc. Heliyon. 2021;7:e05964. doi: 10.1016/j.heliyon.2021.e05964. PubMed DOI PMC
Dhahri M., Sioud S., Dridi R., Hassine M., Boughattas N.A., Almulhim F., Al Talla Z., Jaremko M., Emwas A.-H.M. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS Omega. 2020;5:14786–14795. doi: 10.1021/acsomega.0c01724. PubMed DOI PMC
Gabriel L., Günther W., Pielenz F., Heinze T. Determination of the Binding Situation of Pyridine in Xylan Sulfates by Means of Detailed NMR Studies. Macromol. Chem. Phys. 2020;221:1900327. doi: 10.1002/macp.201900327. DOI
Mousavi S.S., Keshvari H., Daemi H. Partial Sulfation of Gellan Gum Produces Cytocompatible, Body Temperature-Responsive Hydrogels. Int. J. Biol. Macromol. 2023;235:123525. doi: 10.1016/j.ijbiomac.2023.123525. PubMed DOI
Cardozo F.T.G.S., Camelini C.M., Cordeiro M.N.S., Mascarello A., Malagoli B.G., Larsen I.V., Rossi M.J., Nunes R.J., Braga F.C., Brandt C.R., et al. Characterization and Cytotoxic Activity of Sulfated Derivatives of Polysaccharides from Agaricus Brasiliensis. Int. J. Biol. Macromol. 2013;57:265–272. doi: 10.1016/j.ijbiomac.2013.03.026. PubMed DOI PMC
Tranquilan-Aranilla C., Nagasawa N., Bayquen A., Dela Rosa A. Synthesis and Characterization of Carboxymethyl Derivatives of Kappa-Carrageenan. Carbohydr. Polym. 2012;87:1810–1816. doi: 10.1016/j.carbpol.2011.10.009. DOI
Nowak N., Tkaczewska J., Grzebieniarz W., Juszczak L., Mazur T., Szuwarzyński M., Guzik P., Jamróz E. Active and Intelligent Four-Layer Films Based on Chitosan, Gelatin, Furcellaran and Active Ingredients—Preparation, Characterisation and Application on Salmon. Food Bioprocess Technol. 2023:1–14. doi: 10.1007/s11947-023-03238-3. DOI
Ghlissi Z., Krichen F., Kallel R., Amor I.B., Boudawara T., Gargouri J., Zeghal K., Hakim A., Bougatef A., Sahnoun Z. Sulfated Polysaccharide Isolated from Globularia Alypum L.: Structural Characterization, in Vivo and in Vitro Anticoagulant Activity, and Toxicological Profile. Int. J. Biol. Macromol. 2019;123:335–342. doi: 10.1016/j.ijbiomac.2018.11.044. PubMed DOI
He W., Yang T., Wang Y., Song X. Carboxymethylation of Corncob Holocellulose and Its Influences on Paper Properties. J. Wood Chem. Technol. 2015;35:137–145. doi: 10.1080/02773813.2014.902963. DOI
Mwesiga J.J., Rwiza M.J., Kalmykova E.N. Regeneration and Carboxymethylation of Cellulose and Its Derivatives: Application Assessment for Brewery Wastewater Treatment. Int. J. Environ. Sci. Technol. 2022;19:581–590. doi: 10.1007/s13762-021-03190-9. DOI
Song X., Hubbe M.A. Enhancement of Paper Dry Strength by Carboxymethylated β-d-Glucan from Oat as Additive. Holzforschung. 2014;68:257–263. doi: 10.1515/hf-2013-0108. DOI
Popelka A., Abdulkareem A., Mahmoud A.A., Nassr M.G., Al-Ruweidi M.K.A.A., Mohamoud K.J., Hussein M.K., Lehocky M., Vesela D., Humpolíček P., et al. Antimicrobial Modification of PLA Scaffolds with Ascorbic and Fumaric Acids via Plasma Treatment. Surf. Coat. Technol. 2020;400:126216. doi: 10.1016/j.surfcoat.2020.126216. DOI
Chytrosz-Wrobel P., Golda-Cepa M., Stodolak-Zych E., Rysz J., Kotarba A. Effect of Oxygen Plasma-Treatment on Surface Functional Groups, Wettability, and Nanotopography Features of Medically Relevant Polymers with Various Crystallinities. Appl. Surf. Sci. Adv. 2023;18:100497. doi: 10.1016/j.apsadv.2023.100497. DOI
Cunha L., Grenha A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs. 2016;14:42. doi: 10.3390/md14030042. PubMed DOI PMC
Klunklin W., Jantanasakulwong K., Phimolsiripol Y., Leksawasdi N., Seesuriyachan P., Chaiyaso T., Insomphun C., Phongthai S., Jantrawut P., Sommano S.R., et al. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers. 2020;13:81. doi: 10.3390/polym13010081. PubMed DOI PMC
Ozaltin K., Lehocký M., Humpolíček P., Pelková J., Sáha P. A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity. Int. J. Mol. Sci. 2016;17:908. doi: 10.3390/ijms17060908. PubMed DOI PMC
Luque-Agudo V., Hierro-Oliva M., Gallardo-Moreno A.M., González-Martín M.L. Effect of Plasma Treatment on the Surface Properties of Polylactic Acid Films. Polym. Test. 2021;96:107097. doi: 10.1016/j.polymertesting.2021.107097. DOI
Duval K., Grover H., Han L.-H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–277. doi: 10.1152/physiol.00036.2016. PubMed DOI PMC
Biagini G., Senegaglia A.C., Pereira T., Berti L.F., Marcon B.H., Stimamiglio M.A. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Front. Bioeng. Biotechnol. 2021;9:700862. doi: 10.3389/fbioe.2021.700862. PubMed DOI PMC
Korpela J., Kokkari A., Korhonen H., Malin M., Närhi T., Seppälä J. Biodegradable and Bioactive Porous Scaffold Structures Prepared Using Fused Deposition Modeling. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101B:610–619. doi: 10.1002/jbm.b.32863. PubMed DOI
Xing F., Li L., Zhou C., Long C., Wu L., Lei H., Kong Q., Fan Y., Xiang Z., Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int. 2019;2019:e2180925. doi: 10.1155/2019/2180925. PubMed DOI PMC
Seddiqi H., Saatchi A., Amoabediny G., Helder M.N., Abbasi Ravasjani S., Safari Hajat Aghaei M., Jin J., Zandieh-Doulabi B., Klein-Nulend J. Inlet Flow Rate of Perfusion Bioreactors Affects Fluid Flow Dynamics, but Not Oxygen Concentration in 3D-Printed Scaffolds for Bone Tissue Engineering: Computational Analysis and Experimental Validation. Comput. Biol. Med. 2020;124:103826. doi: 10.1016/j.compbiomed.2020.103826. PubMed DOI
Tudureanu R., Handrea-Dragan I.M., Boca S., Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int. J. Mol. Sci. 2022;23:7731. doi: 10.3390/ijms23147731. PubMed DOI PMC
Yang C.-Y., Huang W.-Y., Chen L.-H., Liang N.-W., Wang H.-C., Lu J., Wang X., Wang T.-W. Neural Tissue Engineering: The Influence of Scaffold Surface Topography and Extracellular Matrix Microenvironment. J. Mater. Chem. B. 2021;9:567–584. doi: 10.1039/D0TB01605E. PubMed DOI
Booth J.-P., Mozetič M., Nikiforov A., Oehr C. Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications. Plasma Sources Sci. Technol. 2022;31:103001. doi: 10.1088/1361-6595/ac70f9. DOI
Chen T., Liu H., Liu J., Li J., An Y., Zhu M., Chen B., Liu F., Liu R., Si C., et al. Carboxymethylation of Polysaccharide Isolated from Alkaline Peroxide Mechanical Pulping (APMP) Waste Liquor and Its Bioactivity. Int. J. Biol. Macromol. 2021;181:211–220. doi: 10.1016/j.ijbiomac.2021.03.125. PubMed DOI
Fras Zemljič L., Dimitrušev N., Zaplotnik R., Strnad S. Insights into Adsorption Characterization of Sulfated Xylans onto Poly(Ethylene Terephthalate) Polymers. 2020;12:825. doi: 10.3390/polym12040825. PubMed DOI PMC
Ozaltin K., Lehocký M., Kuceková Z., Humpolíček P., Sáha P. A Novel Multistep Method for Chondroitin Sulphate Immobilization and Its Interaction with Fibroblast Cells. Mater. Sci. Eng. C. 2017;70:94–100. doi: 10.1016/j.msec.2016.08.065. PubMed DOI
Martocq L., Douglas T.E.L. Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization. Coatings. 2021;11:983. doi: 10.3390/coatings11080983. DOI
Pérez-Calixto M., González-Pérez G., Dionisio N., Bucio E., Burillo G., García-Uriostegui L. Surface Functionalization of Polypropylene and Polyethylene Films with Allylamine by γ Radiation. MRS Commun. 2019;9:264–269. doi: 10.1557/mrc.2018.213. DOI