Carboxymethylated and Sulfated Furcellaran from Furcellaria lumbricalis and Its Immobilization on PLA Scaffolds

. 2024 Mar 06 ; 16 (5) : . [epub] 20240306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38475404

Grantová podpora
DKRVO RP/CPS/2022/005 Ministry of Education, Youth and Sports of the Czech Republic
L2-2616 Slovenian Research Agency
P2-0082 Slovenian Research Agency

This study involved the creation of highly porous PLA scaffolds through the porogen/leaching method, utilizing polyethylene glycol as a porogen with a 75% mass ratio. The outcome achieved a highly interconnected porous structure with a thickness of 25 μm. To activate the scaffold's surface and improve its hydrophilicity, radiofrequency (RF) air plasma treatment was employed. Subsequently, furcellaran subjected to sulfation or carboxymethylation was deposited onto the RF plasma treated surfaces with the intention of improving bioactivity. Surface roughness and water wettability experienced enhancement following the surface modification. The incorporation of sulfate/carboxymethyl group (DS = 0.8; 0.3, respectively) is confirmed by elemental analysis and FT-IR. Successful functionalization of PLA scaffolds was validated by SEM and XPS analysis, showing changes in topography and increases in characteristic elements (N, S, Na) for sulfated (SF) and carboxymethylated (CMF). Cytocompatibility was evaluated by using mouse embryonic fibroblast cells (NIH/3T3).

Zobrazit více v PubMed

Capuana E., Lopresti F., Ceraulo M., La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications. Polymers. 2022;14:1153. doi: 10.3390/polym14061153. PubMed DOI PMC

Guo B., Lei B., Li P., Ma P.X. Functionalized Scaffolds to Enhance Tissue Regeneration. Regen. Biomater. 2015;2:47–57. doi: 10.1093/rb/rbu016. PubMed DOI PMC

Elkasabgy N.A., Mahmoud A.A. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech. 2019;20:256. doi: 10.1208/s12249-019-1470-4. PubMed DOI

Shafiee A., Atala A. Tissue Engineering: Toward a New Era of Medicine. Annu. Rev. Med. 2017;68:29–40. doi: 10.1146/annurev-med-102715-092331. PubMed DOI

Gregor A., Filová E., Novák M., Kronek J., Chlup H., Buzgo M., Blahnová V., Lukášová V., Bartoš M., Nečas A., et al. Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer. J. Biol. Eng. 2017;11:31. doi: 10.1186/s13036-017-0074-3. PubMed DOI PMC

Bernardo M.P., da Silva B.C.R., Hamouda A.E.I., de Toledo M.A.S., Schalla C., Rütten S., Goetzke R., Mattoso L.H.C., Zenke M., Sechi A. PLA/Hydroxyapatite Scaffolds Exhibit in Vitro Immunological Inertness and Promote Robust Osteogenic Differentiation of Human Mesenchymal Stem Cells without Osteogenic Stimuli. Sci. Rep. 2022;12:2333. doi: 10.1038/s41598-022-05207-w. PubMed DOI PMC

DeStefano V., Khan S., Tabada A. Applications of PLA in Modern Medicine. Eng. Regen. 2020;1:76–87. doi: 10.1016/j.engreg.2020.08.002. PubMed DOI PMC

Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current Applications of Poly(Lactic Acid) Composites in Tissue Engineering and Drug Delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI

Darabian B., Bagheri H., Mohammadi S. Improvement in Mechanical Properties and Biodegradability of PLA Using Poly(Ethylene Glycol) and Triacetin for Antibacterial Wound Dressing Applications. Prog. Biomater. 2020;9:45. doi: 10.1007/s40204-020-00131-6. PubMed DOI PMC

Jaidev L.R., Chatterjee K. Surface Functionalization of 3D Printed Polymer Scaffolds to Augment Stem Cell Response. Mater. Des. 2019;161:44–54. doi: 10.1016/j.matdes.2018.11.018. DOI

Haider A., Haider S., Rao Kummara M., Kamal T., Alghyamah A.-A.A., Jan Iftikhar F., Bano B., Khan N., Amjid Afridi M., Soo Han S., et al. Advances in the Scaffolds Fabrication Techniques Using Biocompatible Polymers and Their Biomedical Application: A Technical and Statistical Review. J. Saudi Chem. Soc. 2020;24:186–215. doi: 10.1016/j.jscs.2020.01.002. DOI

Bhaskar B., Owen R., Bahmaee H., Wally Z., Sreenivasa Rao P., Reilly G.C. Composite Porous Scaffold of PEG/PLA Support Improved Bone Matrix Deposition in Vitro Compared to PLA-Only Scaffolds. J. Biomed. Mater. Res. Part A. 2018;106:1334–1340. doi: 10.1002/jbm.a.36336. PubMed DOI

Heit Y.I., Dastouri P., Helm D.L., Pietramaggiori G., Younan G., Erba P., Münster S., Orgill D.P., Scherer S.S. Foam Pore Size Is a Critical Interface Parameter of Suction-Based Wound Healing Devices. Plast. Reconstr. Surg. 2012;129:589–597. doi: 10.1097/PRS.0b013e3182402c89. PubMed DOI

Chitrattha S., Phaechamud T. Porous Poly(Dl-Lactic Acid) Matrix Film with Antimicrobial Activities for Wound Dressing Application. Mater. Sci. Eng. C. 2016;58:1122–1130. doi: 10.1016/j.msec.2015.09.083. PubMed DOI

Negut I., Dorcioman G., Grumezescu V. Scaffolds for Wound Healing Applications. Polymers. 2020;12:2010. doi: 10.3390/polym12092010. PubMed DOI PMC

Rahman M., Ali A., Sjöholm E., Soindinsalo S., Wilén C.-E., Bansal K.K., Rosenholm J.M. Significance of Polymers with “Allyl” Functionality in Biomedicine: An Emerging Class of Functional Polymers. Pharmaceutics. 2022;14:798. doi: 10.3390/pharmaceutics14040798. PubMed DOI PMC

Jeznach O., Kołbuk D., Marzec M., Bernasik A., Sajkiewicz P. Aminolysis as a Surface Functionalization Method of Aliphatic Polyester Nonwovens: Impact on Material Properties and Biological Response. RSC Adv. 2022;12:11303–11317. doi: 10.1039/D2RA00542E. PubMed DOI PMC

Karakurt I., Ozaltin K., Pištěková H., Vesela D., Michael-Lindhard J., Humpolícek P., Mozetič M., Lehocky M. Effect of Saccharides Coating on Antibacterial Potential and Drug Loading and Releasing Capability of Plasma Treated Polylactic Acid Films. Int. J. Mol. Sci. 2022;23:8821. doi: 10.3390/ijms23158821. PubMed DOI PMC

Abdulkareem A., Kasak P., Nassr M.G., Mahmoud A.A., Al-Ruweidi M.K.A.A., Mohamoud K.J., Hussein M.K., Popelka A. Surface Modification of Poly(Lactic Acid) Film via Cold Plasma Assisted Grafting of Fumaric and Ascorbic Acid. Polymers. 2021;13:3717. doi: 10.3390/polym13213717. PubMed DOI PMC

Chakraborty R., Anoop A.G., Thakur A., Mohanta G.C., Kumar P. Strategies To Modify the Surface and Bulk Properties of 3D-Printed Solid Scaffolds for Tissue Engineering Applications. ACS Omega. 2023;8:5139–5156. doi: 10.1021/acsomega.2c05984. PubMed DOI PMC

Vesel A. Deposition of Chitosan on Plasma-Treated Polymers—A Review. Polymers. 2023;15:1109. doi: 10.3390/polym15051109. PubMed DOI PMC

Vesel A., Mozetic M., Strnad S. Improvement of Adhesion of Fucoidan on Polyethylene Terephthalate Surface Using Gas Plasma Treatments. Vacuum. 2011;85:1083–1086. doi: 10.1016/j.vacuum.2010.12.016. DOI

Tsougeni K., Petrou P.S., Awsiuk K., Marzec M.M., Ioannidis N., Petrouleas V., Tserepi A., Kakabakos S.E., Gogolides E. Direct Covalent Biomolecule Immobilization on Plasma-Nanotextured Chemically Stable Substrates. ACS Appl. Mater. Interfaces. 2015;7:14670–14681. doi: 10.1021/acsami.5b01754. PubMed DOI

Yang J., Bei J., Wang S. Enhanced Cell Affinity of Poly (d,l-Lactide) by Combining Plasma Treatment with Collagen Anchorage. Biomaterials. 2002;23:2607–2614. doi: 10.1016/S0142-9612(01)00400-8. PubMed DOI

Nikolova M.P., Chavali M.S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019;4:271–292. doi: 10.1016/j.bioactmat.2019.10.005. PubMed DOI PMC

Sivakumar P.M., Yetisgin A.A., Sahin S.B., Demir E., Cetinel S. Bone Tissue Engineering: Anionic Polysaccharides as Promising Scaffolds. Carbohydr. Polym. 2022;283:119142. doi: 10.1016/j.carbpol.2022.119142. PubMed DOI

Laos K., Ring S.G. Note: Characterisation of Furcellaran Samples from Estonian Furcellaria lumbricalis (Rhodophyta) J. Appl. Phycol. 2005;17:461–464. doi: 10.1007/s10811-005-1635-2. DOI

Štěpánková K., Ozaltin K., Pelková J., Pištěková H., Karakurt I., Káčerová S., Lehocky M., Humpolicek P., Vesel A., Mozetic M. Furcellaran Surface Deposition and Its Potential in Biomedical Applications. Int. J. Mol. Sci. 2022;23:7439. doi: 10.3390/ijms23137439. PubMed DOI PMC

Štěpánková K., Ozaltin K., Gorejová R., Doudová H., Bergerová E.D., Maskalová I., Stupavská M., Sťahel P., Trunec D., Pelková J., et al. Sulfation of Furcellaran and Its Effect on Hemocompatibility in Vitro. Int. J. Biol. Macromol. 2024;258:128840. doi: 10.1016/j.ijbiomac.2023.128840. PubMed DOI

Liu T., Ren Q., Wang S., Gao J., Shen C., Zhang S., Wang Y., Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules. 2023;28:6073. doi: 10.3390/molecules28166073. PubMed DOI PMC

Bedini E., Laezza A., Parrilli M., Iadonisi A. A Review of Chemical Methods for the Selective Sulfation and Desulfation of Polysaccharides. Carbohydr. Polym. 2017;174:1224–1239. doi: 10.1016/j.carbpol.2017.07.017. PubMed DOI

Li J., Shang W., Si X., Bu D., Strappe P., Zhou Z., Blanchard C. Carboxymethylation of Corn Bran Polysaccharide and Its Bioactive Property. Int. J. Food Sci. Technol. 2017;52:1176–1184. doi: 10.1111/ijfs.13382. DOI

Shariatinia Z. Carboxymethyl Chitosan: Properties and Biomedical Applications. Int. J. Biol. Macromol. 2018;120:1406–1419. doi: 10.1016/j.ijbiomac.2018.09.131. PubMed DOI

Madruga L.Y., Sabino R.M., Santos E.C., Popat K.C., Balaban RD C., Kipper M.J. Carboxymethyl-Kappa-Carrageenan: A Study of Biocompatibility, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2020;152:483–491. doi: 10.1016/j.ijbiomac.2020.02.274. PubMed DOI

Ozaltin K., Vargun E., Di Martino A., Capakova Z., Lehocky M., Humpolicek P., Kazantseva N., Saha P. Cell Response to PLA Scaffolds Functionalized with Various Seaweed Polysaccharides. Int. J. Polym. Mater. Polym. Biomater. 2022;71:79–86. doi: 10.1080/00914037.2020.1798443. DOI

International Organization for Standardization; Geneva, Switzerland: 2009. Biological Evaluation of Medical Devices, Part 5: Tests for In Vitro Cytotoxicity.

Hung L.D., Nguyen H.T.T., Trang V.T.D. Kappa Carrageenan from the Red Alga Kappaphycus striatus Cultivated at Vanphong Bay, Vietnam: Physicochemical Properties and Structure. J. Appl. Phycol. 2021;33:1819–1824. doi: 10.1007/s10811-021-02415-1. DOI

Liang W., Mao X., Peng X., Tang S. Effects of Sulfate Group in Red Seaweed Polysaccharides on Anticoagulant Activity and Cytotoxicity. Carbohydr. Polym. 2014;101:776–785. doi: 10.1016/j.carbpol.2013.10.010. PubMed DOI

Abbasi-Ravasjani S., Seddiqi H., Moghaddaszadeh A., Ghiasvand M.-E., Jin J., Oliaei E., Bacabac R.G., Klein-Nulend J. Sulfated Carboxymethyl Cellulose and Carboxymethyl κ-Carrageenan Immobilization on 3D-Printed Poly-ε-Caprolactone Scaffolds Differentially Promote Pre-Osteoblast Proliferation and Osteogenic Activity. Front. Bioeng. Biotechnol. 2022;10:957263. doi: 10.3389/fbioe.2022.957263. PubMed DOI PMC

Gunasekaran S., Govindan S., Ramani P. Sulfated Modification, Characterization and Bioactivities of an Acidic Polysaccharide Fraction from an Edible Mushroom Pleurotus eous Berk. Sacc. Heliyon. 2021;7:e05964. doi: 10.1016/j.heliyon.2021.e05964. PubMed DOI PMC

Dhahri M., Sioud S., Dridi R., Hassine M., Boughattas N.A., Almulhim F., Al Talla Z., Jaremko M., Emwas A.-H.M. Extraction, Characterization, and Anticoagulant Activity of a Sulfated Polysaccharide from Bursatella leachii Viscera. ACS Omega. 2020;5:14786–14795. doi: 10.1021/acsomega.0c01724. PubMed DOI PMC

Gabriel L., Günther W., Pielenz F., Heinze T. Determination of the Binding Situation of Pyridine in Xylan Sulfates by Means of Detailed NMR Studies. Macromol. Chem. Phys. 2020;221:1900327. doi: 10.1002/macp.201900327. DOI

Mousavi S.S., Keshvari H., Daemi H. Partial Sulfation of Gellan Gum Produces Cytocompatible, Body Temperature-Responsive Hydrogels. Int. J. Biol. Macromol. 2023;235:123525. doi: 10.1016/j.ijbiomac.2023.123525. PubMed DOI

Cardozo F.T.G.S., Camelini C.M., Cordeiro M.N.S., Mascarello A., Malagoli B.G., Larsen I.V., Rossi M.J., Nunes R.J., Braga F.C., Brandt C.R., et al. Characterization and Cytotoxic Activity of Sulfated Derivatives of Polysaccharides from Agaricus Brasiliensis. Int. J. Biol. Macromol. 2013;57:265–272. doi: 10.1016/j.ijbiomac.2013.03.026. PubMed DOI PMC

Tranquilan-Aranilla C., Nagasawa N., Bayquen A., Dela Rosa A. Synthesis and Characterization of Carboxymethyl Derivatives of Kappa-Carrageenan. Carbohydr. Polym. 2012;87:1810–1816. doi: 10.1016/j.carbpol.2011.10.009. DOI

Nowak N., Tkaczewska J., Grzebieniarz W., Juszczak L., Mazur T., Szuwarzyński M., Guzik P., Jamróz E. Active and Intelligent Four-Layer Films Based on Chitosan, Gelatin, Furcellaran and Active Ingredients—Preparation, Characterisation and Application on Salmon. Food Bioprocess Technol. 2023:1–14. doi: 10.1007/s11947-023-03238-3. DOI

Ghlissi Z., Krichen F., Kallel R., Amor I.B., Boudawara T., Gargouri J., Zeghal K., Hakim A., Bougatef A., Sahnoun Z. Sulfated Polysaccharide Isolated from Globularia Alypum L.: Structural Characterization, in Vivo and in Vitro Anticoagulant Activity, and Toxicological Profile. Int. J. Biol. Macromol. 2019;123:335–342. doi: 10.1016/j.ijbiomac.2018.11.044. PubMed DOI

He W., Yang T., Wang Y., Song X. Carboxymethylation of Corncob Holocellulose and Its Influences on Paper Properties. J. Wood Chem. Technol. 2015;35:137–145. doi: 10.1080/02773813.2014.902963. DOI

Mwesiga J.J., Rwiza M.J., Kalmykova E.N. Regeneration and Carboxymethylation of Cellulose and Its Derivatives: Application Assessment for Brewery Wastewater Treatment. Int. J. Environ. Sci. Technol. 2022;19:581–590. doi: 10.1007/s13762-021-03190-9. DOI

Song X., Hubbe M.A. Enhancement of Paper Dry Strength by Carboxymethylated β-d-Glucan from Oat as Additive. Holzforschung. 2014;68:257–263. doi: 10.1515/hf-2013-0108. DOI

Popelka A., Abdulkareem A., Mahmoud A.A., Nassr M.G., Al-Ruweidi M.K.A.A., Mohamoud K.J., Hussein M.K., Lehocky M., Vesela D., Humpolíček P., et al. Antimicrobial Modification of PLA Scaffolds with Ascorbic and Fumaric Acids via Plasma Treatment. Surf. Coat. Technol. 2020;400:126216. doi: 10.1016/j.surfcoat.2020.126216. DOI

Chytrosz-Wrobel P., Golda-Cepa M., Stodolak-Zych E., Rysz J., Kotarba A. Effect of Oxygen Plasma-Treatment on Surface Functional Groups, Wettability, and Nanotopography Features of Medically Relevant Polymers with Various Crystallinities. Appl. Surf. Sci. Adv. 2023;18:100497. doi: 10.1016/j.apsadv.2023.100497. DOI

Cunha L., Grenha A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs. 2016;14:42. doi: 10.3390/md14030042. PubMed DOI PMC

Klunklin W., Jantanasakulwong K., Phimolsiripol Y., Leksawasdi N., Seesuriyachan P., Chaiyaso T., Insomphun C., Phongthai S., Jantrawut P., Sommano S.R., et al. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers. 2020;13:81. doi: 10.3390/polym13010081. PubMed DOI PMC

Ozaltin K., Lehocký M., Humpolíček P., Pelková J., Sáha P. A New Route of Fucoidan Immobilization on Low Density Polyethylene and Its Blood Compatibility and Anticoagulation Activity. Int. J. Mol. Sci. 2016;17:908. doi: 10.3390/ijms17060908. PubMed DOI PMC

Luque-Agudo V., Hierro-Oliva M., Gallardo-Moreno A.M., González-Martín M.L. Effect of Plasma Treatment on the Surface Properties of Polylactic Acid Films. Polym. Test. 2021;96:107097. doi: 10.1016/j.polymertesting.2021.107097. DOI

Duval K., Grover H., Han L.-H., Mou Y., Pegoraro A.F., Fredberg J., Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology. 2017;32:266–277. doi: 10.1152/physiol.00036.2016. PubMed DOI PMC

Biagini G., Senegaglia A.C., Pereira T., Berti L.F., Marcon B.H., Stimamiglio M.A. 3D Poly(Lactic Acid) Scaffolds Promote Different Behaviors on Endothelial Progenitors and Adipose-Derived Stromal Cells in Comparison With Standard 2D Cultures. Front. Bioeng. Biotechnol. 2021;9:700862. doi: 10.3389/fbioe.2021.700862. PubMed DOI PMC

Korpela J., Kokkari A., Korhonen H., Malin M., Närhi T., Seppälä J. Biodegradable and Bioactive Porous Scaffold Structures Prepared Using Fused Deposition Modeling. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013;101B:610–619. doi: 10.1002/jbm.b.32863. PubMed DOI

Xing F., Li L., Zhou C., Long C., Wu L., Lei H., Kong Q., Fan Y., Xiang Z., Zhang X. Regulation and Directing Stem Cell Fate by Tissue Engineering Functional Microenvironments: Scaffold Physical and Chemical Cues. Stem Cells Int. 2019;2019:e2180925. doi: 10.1155/2019/2180925. PubMed DOI PMC

Seddiqi H., Saatchi A., Amoabediny G., Helder M.N., Abbasi Ravasjani S., Safari Hajat Aghaei M., Jin J., Zandieh-Doulabi B., Klein-Nulend J. Inlet Flow Rate of Perfusion Bioreactors Affects Fluid Flow Dynamics, but Not Oxygen Concentration in 3D-Printed Scaffolds for Bone Tissue Engineering: Computational Analysis and Experimental Validation. Comput. Biol. Med. 2020;124:103826. doi: 10.1016/j.compbiomed.2020.103826. PubMed DOI

Tudureanu R., Handrea-Dragan I.M., Boca S., Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int. J. Mol. Sci. 2022;23:7731. doi: 10.3390/ijms23147731. PubMed DOI PMC

Yang C.-Y., Huang W.-Y., Chen L.-H., Liang N.-W., Wang H.-C., Lu J., Wang X., Wang T.-W. Neural Tissue Engineering: The Influence of Scaffold Surface Topography and Extracellular Matrix Microenvironment. J. Mater. Chem. B. 2021;9:567–584. doi: 10.1039/D0TB01605E. PubMed DOI

Booth J.-P., Mozetič M., Nikiforov A., Oehr C. Foundations of Plasma Surface Functionalization of Polymers for Industrial and Biological Applications. Plasma Sources Sci. Technol. 2022;31:103001. doi: 10.1088/1361-6595/ac70f9. DOI

Chen T., Liu H., Liu J., Li J., An Y., Zhu M., Chen B., Liu F., Liu R., Si C., et al. Carboxymethylation of Polysaccharide Isolated from Alkaline Peroxide Mechanical Pulping (APMP) Waste Liquor and Its Bioactivity. Int. J. Biol. Macromol. 2021;181:211–220. doi: 10.1016/j.ijbiomac.2021.03.125. PubMed DOI

Fras Zemljič L., Dimitrušev N., Zaplotnik R., Strnad S. Insights into Adsorption Characterization of Sulfated Xylans onto Poly(Ethylene Terephthalate) Polymers. 2020;12:825. doi: 10.3390/polym12040825. PubMed DOI PMC

Ozaltin K., Lehocký M., Kuceková Z., Humpolíček P., Sáha P. A Novel Multistep Method for Chondroitin Sulphate Immobilization and Its Interaction with Fibroblast Cells. Mater. Sci. Eng. C. 2017;70:94–100. doi: 10.1016/j.msec.2016.08.065. PubMed DOI

Martocq L., Douglas T.E.L. Amine-Rich Coatings to Potentially Promote Cell Adhesion, Proliferation and Differentiation, and Reduce Microbial Colonization: Strategies for Generation and Characterization. Coatings. 2021;11:983. doi: 10.3390/coatings11080983. DOI

Pérez-Calixto M., González-Pérez G., Dionisio N., Bucio E., Burillo G., García-Uriostegui L. Surface Functionalization of Polypropylene and Polyethylene Films with Allylamine by γ Radiation. MRS Commun. 2019;9:264–269. doi: 10.1557/mrc.2018.213. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...