Effect of Saccharides Coating on Antibacterial Potential and Drug Loading and Releasing Capability of Plasma Treated Polylactic Acid Films
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35955952
PubMed Central
PMC9369226
DOI
10.3390/ijms23158821
PII: ijms23158821
Knihovny.cz E-resources
- Keywords
- antibacterial activity, biocompatibility, chitosan, chondroitin sulfate, contact killing, polyelectrolyte complex, surface functionalization,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Coated Materials, Biocompatible pharmacology MeSH
- Chitosan * pharmacology MeSH
- Carbodiimides pharmacology MeSH
- Polyesters pharmacology MeSH
- Staphylococcus aureus * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Coated Materials, Biocompatible MeSH
- Chitosan * MeSH
- Carbodiimides MeSH
- poly(lactide) MeSH Browser
- Polyesters MeSH
More than half of the hospital-associated infections worldwide are related to the adhesion of bacteria cells to biomedical devices and implants. To prevent these infections, it is crucial to modify biomaterial surfaces to develop the antibacterial property. In this study, chitosan (CS) and chondroitin sulfate (ChS) were chosen as antibacterial coating materials on polylactic acid (PLA) surfaces. Plasma-treated PLA surfaces were coated with CS either direct coating method or the carbodiimide coupling method. As a next step for the combined saccharide coating, CS grafted samples were immersed in ChS solution, which resulted in the polyelectrolyte complex (PEC) formation. Also in this experiment, to test the drug loading and releasing efficiency of the thin film coatings, CS grafted samples were immersed into lomefloxacin-containing ChS solution. The successful modifications were confirmed by elemental composition analysis (XPS), surface topography images (SEM), and hydrophilicity change (contact angle measurements). The carbodiimide coupling resulted in higher CS grafting on the PLA surface. The coatings with the PEC formation between CS-ChS showed improved activity against the bacteria strains than the separate coatings. Moreover, these interactions increased the lomefloxacin amount adhered to the film coatings and extended the drug release profile. Finally, the zone of inhibition test confirmed that the CS-ChS coating showed a contact killing mechanism while drug-loaded films have a dual killing mechanism, which includes contact, and release killing.
Department of Surface Engineering Jozef Stefan Institute Jamova Cesta 39 1000 Ljubljana Slovenia
Faculty of Technology Tomas Bata University in Zlín Vavreckova 275 76001 Zlin Czech Republic
See more in PubMed
Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol. 2015;33:637–652. doi: 10.1016/j.tibtech.2015.09.002. PubMed DOI
Zhu X., Jun Loh X. Layer-by-layer assemblies for antibacterial applications. Biomater. Sci. 2015;3:1505–1518. doi: 10.1039/C5BM00307E. PubMed DOI
Qin S., Xu K., Nie B., Ji F., Zhang H. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity. J. Biomed. Mater. Res. Part A. 2018;106:2531–2539. doi: 10.1002/jbm.a.36413. PubMed DOI
Wang Y., Yang Y., Shi Y., Song H., Yu C. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2019;32:1904106. doi: 10.1002/adma.201904106. PubMed DOI
Al-Bayati F.A. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol. 2008;116:403–406. doi: 10.1016/j.jep.2007.12.003. PubMed DOI
Hadzhieva Z., Boccaccini A.R. Recent developments in electrophoretic deposition (EPD) of antibacterial coatings for biomedical applications—A Review. Curr. Opin. Biomed. Eng. 2022;21:100367. doi: 10.1016/j.cobme.2021.100367. DOI
Rojas-Martínez L.E., Flores-Hernandez C.G., López-Marín L.M., Martinez-Hernandez A.L., Thorat S.B., Reyes Vasquez C.D., Del Rio-Castillo A.E., Velasco-Santos C. 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: Effect of geometry and structure. Eur. Polym. J. 2020;141:110088. doi: 10.1016/j.eurpolymj.2020.110088. DOI
Ghista N.D. Biomedical Science, Engineering and Technology. InTech; London, UK: 2012. Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications; pp. 247–250.
Tsou C., Yao W., Lu Y., Tsou C., Wu C., Chen J., Suen M. Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers. 2017;9:100. doi: 10.3390/polym9030100. PubMed DOI PMC
Domonkos M., Tichá P., Trejbal J., Demo P. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and Food Industry. Appl. Sci. 2021;11:4809. doi: 10.3390/app11114809. DOI
Bekmurzayeva A., Duncanson W.J., Azevedo H.S., Kanayeva D. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material. Mater. Sci. Eng. C. 2018;93:1073–1089. doi: 10.1016/j.msec.2018.08.049. PubMed DOI
Amani H., Arzaghi H., Bayandori M., Dezfuli A.S., Pazoki-Toroudi H., Shafiee A., Moradi L. Controlling cell behavior through the design of biomaterial surfaces: A focus on surface modification techniques. Adv. Mater. Interfaces. 2019;6:1900572. doi: 10.1002/admi.201900572. DOI
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P. Atmospheric pressure plasmas: A Review. Spectrochim. Acta Part B At. Spectrosc. 2006;61:2–30. doi: 10.1016/j.sab.2005.10.003. DOI
Barjasteh A., Dehghani Z., Lamichhane P., Kaushik N., Choi E.H., Kaushik N.K. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021;11:3372. doi: 10.3390/app11083372. DOI
Topuzoğullari M. Effect of polyelectrolyte complex formation on the antibacterial activity of copolymer of alkylated 4-vinylpyridine. Turk. J. Chem. 2020;44:634–646. doi: 10.3906/kim-1909-95. PubMed DOI PMC
Kulkarni A.D., Vanjari Y.H., Sancheti K.H., Patel H.M., Belgamwar V.S., Surana S.J., Pardeshi C.V. Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications. Artif. Cells Nanomed. Biotechnol. 2016;44:1615–1625. doi: 10.3109/21691401.2015.1129624. PubMed DOI
Durmaz E.N., Sahin S., Virga E., de Beer S., de Smet L.C., de Vos W.M. Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities. ACS Appl. Polym. Mater. 2021;3:4347–4374. doi: 10.1021/acsapm.1c00654. PubMed DOI PMC
Ajaya B. A review on polyelectrolytes (PES) and polyelectrolyte complexes (PECS) Int. J. Eng. Res. 2020;9:876–889. doi: 10.17577/ijertv9is080112. DOI
Thünemann A.F., Müller M., Dautzenberg H., Joanny J., Löwen H. Advances in Polymer Science. Springer; Stockholm, Sweden: 2004. Polyelectrolyte complexes; pp. 113–171.
Manna U., Bharani S., Patil S. Layer-by-layer self-assembly of modified hyaluronic acid/chitosan based on hydrogen bonding. Biomacromolecules. 2009;10:2632–2639. doi: 10.1021/bm9005535. PubMed DOI
Meka V.S., Sing M.K.G., Pichika M.R., Nali S.R., Kolapalli V.R.M., Kesharwani P. A comprehensive review on Polyelectrolyte complexes. Drug Discov. Today. 2017;22:1697–1706. doi: 10.1016/j.drudis.2017.06.008. PubMed DOI
Zilberman M., Kraitzer A., Grinberg O., Elsner J.J. Drug-Eluting Medical Implants. In: Schäfer-Korting M., editor. Drug Delivery, Handbook of Experimental Pharmacology. Volume 197 Springer; Berlin/Heidelberg, Germany: 2010. PubMed
Li Q., Chen G.Q., Liu L., Kentish S.E. Spray assisted layer-by-layer assembled one-bilayer polyelectrolyte reverse osmosis membranes. J. Membr. Sci. 2018;564:501–507. doi: 10.1016/j.memsci.2018.07.047. DOI
Safitri E., Omaira Z., Nazaruddin N., Mustafa I., Saleha S., Idroes R., Paristiowati M. Fabrication of an immobilized polyelectrolite complex (PEC) membrane from pectin-chitosan and chromoionophore ETH 5294 for PH-based fish freshness monitoring. Coatings. 2022;12:88. doi: 10.3390/coatings12010088. DOI
Su L., Feng Y., Wei K., Xu X., Liu R., Chen G. Carbohydrate-based macromolecular biomaterials. Chem. Rev. 2021;121:10950–11029. doi: 10.1021/acs.chemrev.0c01338. PubMed DOI
Afshar A., Gultekinoglu M., Edirisinghe M. Binary polymer systems for biomedical applications. Int. Mater. Rev. 2022:1–41. doi: 10.1080/09506608.2022.2069451. DOI
Li J., Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current State and Perspectives. Eur. Polym. J. 2020;138:109984. doi: 10.1016/j.eurpolymj.2020.109984. DOI
Wang M., Chan E.W., Yang C., Chen K., So P.-K., Chen S. N-acetyl-D-glucosamine acts as adjuvant that re-sensitizes starvation-induced antibiotic-tolerant population of E. coli to β-lactam. IScience. 2020;23:101740. doi: 10.1016/j.isci.2020.101740. PubMed DOI PMC
Saxena S., Ray A.R., Gupta B. Chitosan immobilization on polyacrylic acid grafted polypropylene monofilament. Carbohydr. Polym. 2010;82:1315–1322. doi: 10.1016/j.carbpol.2010.07.014. DOI
Pal D., Saha S. Chondroitin: A natural biomarker with immense biomedical applications. RSC Adv. 2019;9:28061–28077. doi: 10.1039/C9RA05546K. PubMed DOI PMC
Sharma S., Swetha K.L., Roy A. Chitosan-chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds. Int. J. Biol. Macromol. 2019;132:97–108. doi: 10.1016/j.ijbiomac.2019.03.186. PubMed DOI
Sharma R., Kuche K., Thakor P., Bhavana V., Srivastava S., Mehra N.K., Jain S. Chondroitin sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr. Polym. 2022;286:119305. doi: 10.1016/j.carbpol.2022.119305. PubMed DOI
Sivakumar P.M., Yetisgin A.A., Sahin S.B., Demir E., Cetinel S. Bone Tissue Engineering: Anionic polysaccharides as promising scaffolds. Carbohydr. Polym. 2022;283:119142. doi: 10.1016/j.carbpol.2022.119142. PubMed DOI
Karakurt I., Ozaltin K., Vesela D., Lehocky M., Humpolíček P., Mozetič M. Antibacterial activity and cytotoxicity of immobilized glucosamine/chondroitin sulfate on polylactic acid films. Polymers. 2019;11:1186. doi: 10.3390/polym11071186. PubMed DOI PMC
Elwenspoek M., Jansen H.V. Silicon Micromachining. Cambridge University Press; Cambridge, UK: 2004. What is plasma etching? pp. 206–268.
Choi H.-S., Kim Y.-S., Zhang Y., Tang S., Myung S.-W., Shin B.-C. Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface. Surf. Coat. Technol. 2004;182:55–64. doi: 10.1016/S0257-8972(03)00880-6. DOI
Liu P. Modification of polymeric materials via surface-initiated controlled/“living” radical polymerization. e-Polymers. 2007;7:725–755. doi: 10.1515/epoly.2007.7.1.725. DOI
Friedrich J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Processes Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI
Pâslaru E., Fras Zemljic L., Bračič M., Vesel A., Petrinić I., Vasile C. Stability of a chitosan layer deposited onto a polyethylene surface. J. Appl. Polym. Sci. 2013;130:2444–2457. doi: 10.1002/app.39329. DOI
Gohil S.V., Padmanabhan A., Deschamps J., Nair L.S. Chitosan Based Biomaterials Volume 2. Woodhead Publishing; Sawston, UK: 2017. Chitosan-based scaffolds for growth factor delivery; pp. 175–207. DOI
Sarrigiannidis S.O., Rey J.M., Dobre O., González-García C., Dalby M.J., Salmeron-Sanchez M. A tough act to follow: Collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio. 2021;10:100098. doi: 10.1016/j.mtbio.2021.100098. PubMed DOI PMC
Elzahhar P., Belal A.S., Elamrawy F., Helal N.A., Nounou M.I. Bioconjugation in drug delivery: Practical perspectives and future perceptions. Pharm. Nanotechnol. 2019;2000:125–182. doi: 10.1007/978-1-4939-9516-5_11. PubMed DOI
Abusrafa E.A., Habib S., Krupa I., Ouederni M., Popelka A. Modification of polyethylene by RF plasma in different/mixture gases. Coatings. 2019;9:145. doi: 10.3390/coatings9020145. DOI
Bahrami N., Nouri Khorasani S., Mahdavi H., Ghiaci M., Mokhtari R. Low-pressure plasma surface modification of polyurethane films with chitosan and collagen biomolecules. J. Appl. Polym. Sci. 2019;136:47567. doi: 10.1002/app.47567. DOI
Cui M., Ng W.S., Wang X., Darmawan P., Lee P.S. Enhanced electrochromism with rapid growth layer-by-layer assembly of Polyelectrolyte complexes. Adv. Funct. Mater. 2014;25:401–408. doi: 10.1002/adfm.201402100. DOI
Boddohi S., Moore N., Johnson P.A., Kipper M.J. Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules. 2009;10:1402–1409. doi: 10.1021/bm801513e. PubMed DOI
Qu Z., Chen K., Gu H., Xu H. Covalent immobilization of proteins on 3D poly(acrylic acid) brushes: Mechanism study and a more effective and controllable process. Bioconjug. Chem. 2014;25:370–378. doi: 10.1021/bc400530s. PubMed DOI
Rocca-Smith J.R., Karbowiak T., Marcuzzo E., Sensidoni A., Piasente F., Champion D., Heinz O., Vitry P., Bourillot E., Lesniewska E., et al. Impact of Corona treatment on PLA Film Properties. Polym. Degrad. Stab. 2016;132:109–116. doi: 10.1016/j.polymdegradstab.2016.03.020. DOI
De Geyter N., Morent R., Desmet T., Trentesaux M., Gengembre L., Dubruel P., Leys C., Payen E. Plasma modification of polylactic acid in a medium pressure DBD. Surf. Coat. Technol. 2010;204:3272–3279. doi: 10.1016/j.surfcoat.2010.03.037. DOI
Zimina A., Senatov F., Choudhary R., Kolesnikov E., Anisimova N., Kiselevskiy M., Orlova P., Strukova N., Generalova M., Manskikh V., et al. Biocompatibility and physico-chemical properties of highly porous PLA/ha scaffolds for bone reconstruction. Polymers. 2020;12:2938. doi: 10.3390/polym12122938. PubMed DOI PMC
Almodóvar J., Place L.W., Gogolski J., Erickson K., Kipper M.J. Layer-by-layer assembly of polysaccharide-based Polyelectrolyte multilayers: A spectroscopic study of hydrophilicity, composition, and ion pairing. Biomacromolecules. 2011;12:2755–2765. doi: 10.1021/bm200519y. PubMed DOI
Demina T.S., Piskarev M.S., Romanova O.A., Gatin A.K., Senatulin B.R., Skryleva E.A., Zharikova T.M., Gilman A.B., Kuznetsov A.A., Akopova T.A., et al. Plasma treatment of poly(ethylene terephthalate) films and chitosan deposition: DC- vs. AC-Discharge. Materials. 2020;13:508. doi: 10.3390/ma13030508. PubMed DOI PMC
Ding Z., Chen J., Gao S., Chang J., Zhang J., Kang E.T. Immobilization of chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells. Biomaterials. 2004;25:1059–1067. doi: 10.1016/S0142-9612(03)00615-X. PubMed DOI
Hwang Y.J., Qiu Y., Zhang C., Jarrard B., Stedeford R., Tsai J., Park Y.C., McCord M. Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers. J. Adhes. Sci. Technol. 2003;17:847–860. doi: 10.1163/156856103321645194. DOI
Chauvin J., Judée F., Yousfi M., Vicendo P., Merbahi N. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci. Rep. 2017;7:4562. doi: 10.1038/s41598-017-04650-4. PubMed DOI PMC
Donegan M., Milosavljević V., Dowling D.P. Activation of pet using an RF atmospheric plasma system. Plasma Chem. Plasma Process. 2013;33:941–957. doi: 10.1007/s11090-013-9474-4. DOI
Recek N., Jaganjac M., Kolar M., Milkovic L., Mozetič M., Stana-Kleinschek K., Vesel A. Protein adsorption on various plasma-treated polyethylene terephthalate substrates. Molecules. 2013;18:12441–12463. doi: 10.3390/molecules181012441. PubMed DOI PMC
Liu S., Qin S., He M., Zhou D., Qin Q., Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos. Part B Eng. 2020;199:108238. doi: 10.1016/j.compositesb.2020.108238. DOI
Khorasani M.T., MoemenBellah S., Mirzadeh H., Sadatnia B. Effect of surface charge and hydrophobicity of polyurethanes and silicone rubbers on L929 cells response. Colloids Surf. B Biointerfaces. 2006;51:112–119. doi: 10.1016/j.colsurfb.2006.06.002. PubMed DOI
Chang E. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras Signaling. Exp. Cell Res. 2004;303:197–206. doi: 10.1016/j.yexcr.2004.09.024. PubMed DOI
Pearce A., O’Reilly R. Polymers for biomedical applications: The importance of hydrophobicity in directing biological interactions and application efficacy. Biomacromolecules. 2021;22:4459–4469. doi: 10.1021/acs.biomac.1c00434. PubMed DOI
Roach P., Farrar D., Perry C.C. Interpretation of protein adsorption: Surface-induced conformational changes. J. Am. Chem. Soc. 2005;127:8168–8173. doi: 10.1021/ja042898o. PubMed DOI
Visalakshan R.M., MacGregor M.N., Sasidharan S., Ghazaryan A., Mierczynska-Vasilev A.M., Morsbach S., Mailänder V., Landfester K., Hayball J.D., Vasilev K. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses. ACS Appl. Mater. Interfaces. 2019;11:27615–27623. doi: 10.1021/acsami.9b09900. PubMed DOI
Mitra S.P. Protein Adsorption on Biomaterial Surfaces: Subsequent Conformational and Biological Consequences. Inform. J. 2020;36:7–38. doi: 10.18311/jsst/2020/23282. DOI
Barberi J., Spriano S. Titanium and protein adsorption: An overview of mechanisms and effects of surface features. Materials. 2021;14:1590. doi: 10.3390/ma14071590. PubMed DOI PMC
Kubiak-Ossowska K., Jachimska B., Al Qaraghuli M., Mulheran P.A. Protein interactions with negatively charged inorganic surfaces. Curr. Opin. Colloid Interface Sci. 2019;41:104–117. doi: 10.1016/j.cocis.2019.02.001. DOI
Li C., Guo C., Fitzpatrick V., Ibrahim A., Zwierstra M.J., Hanna P., Lechtig A., Nazarian A., Lin S.J., Kaplan D.L. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 2019;5:61–81. doi: 10.1038/s41578-019-0150-z. DOI
Gaharwar A.K., Singh I., Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nat. Rev. Mater. 2020;5:686–705. doi: 10.1038/s41578-020-0209-x. DOI
Skopinska-Wisniewska J., Tuszynska M., Olewnik-Kruszkowska E. Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials. 2021;14:396. doi: 10.3390/ma14020396. PubMed DOI PMC
Kazemi M.S., Mohammadi Z., Amini M., Yousefi M., Tarighi P., Eftekhari S., Rafiee Tehrani M. Thiolated Chitosan-Lauric acid as a new chitosan derivative: Synthesis, characterization and cytotoxicity. Int. J. Biol. Macromol. 2019;136:823–830. doi: 10.1016/j.ijbiomac.2019.06.132. PubMed DOI
Rahmani S., Mohammadi Z., Amini M., Isaei E., Taheritarigh S., Rafiee Tehrani N., Rafiee Tehrani M. Methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan as a new chitosan derivative: Synthesis, characterization, cytotoxicity and antibacterial activity. Carbohydr. Polym. 2016;149:131–139. doi: 10.1016/j.carbpol.2016.04.116. PubMed DOI
Keleştemur S., Altunbek M., Culha M. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of zno nanoparticles modified with proteins. Appl. Surf. Sci. 2017;403:455–463. doi: 10.1016/j.apsusc.2017.01.235. DOI
Mäkilä E., Bimbo L.M., Kaasalainen M., Herranz B., Airaksinen A.J., Heinonen M., Kukk E., Hirvonen J., Santos H.A., Salonen J. Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir. 2012;28:14045–14054. doi: 10.1021/la303091k. PubMed DOI
Lee J.H., Lim Y.-B., Choi J.S., Lee Y., Kim T.-I., Kim H.J., Yoon J.K., Kim K., Park J.-S. Polyplexes assembled with internally quaternized pamam-oh Dendrimer and plasmid DNA have a neutral surface and gene delivery potency. Bioconjug. Chem. 2003;14:1214–1221. doi: 10.1021/bc034095g. PubMed DOI
Castel-Molieres M., Conzatti G., Torrisani J., Rouilly A., Cavalie S., Carrere N., Tourrette A. Influence of homogenization technique and blend ratio on chitosan/alginate polyelectrolyte complex properties. J. Med. Biol. Eng. 2017;38:10–21. doi: 10.1007/s40846-017-0304-7. DOI
Hampitak P., Melendrez D., Iliut M., Fresquet M., Parsons N., Spencer B., Jowitt T.A., Vijayaraghavan A. Protein interactions and conformations on graphene-based materials mapped using a quartz-crystal microbalance with dissipation monitoring (QCM-D) Carbon. 2020;165:317–327. doi: 10.1016/j.carbon.2020.04.093. DOI
Tzankova V., Aluani D., Yordanov Y., Valoti M., Frosini M., Spassova I., Kovacheva D., Tzankov B. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous silica nanoparticles. Drug Chem. Toxicol. 2019;44:238–249. doi: 10.1080/01480545.2019.1571503. PubMed DOI
Pessina A., Gribaldo L., Mineo E., Neri M.G. In vitro short-term and long-term cytotoxicity of fluoroquinolones on murine cell lines. Indian J. Exp. Biol. 1994;32:113–118. PubMed
Harry J. Introduction to Plasma Technology Science, Engineering and Applications. Wiley-VCH; Weinheim, Germany: 2010. Plasma an Overview/Elastic and Inelastic Collision Processes in Weakly Ionized Gases; pp. 1–29.
Im A.-R., Kim J.Y., Kim H.-S., Cho S., Park Y., Kim Y.S. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology. 2013;24:395102. doi: 10.1088/0957-4484/24/39/395102. PubMed DOI
Benhabiles M., Salah R., Lounici H., Drouiche N., Goosen M., Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012;29:48–56. doi: 10.1016/j.foodhyd.2012.02.013. DOI
Palanisamy S., Vinosha M., Rajasekar P., Anjali R., Sathiyaraj G., Marudhupandi T., Selvam S., Prabhu N.M., You S.G. Antibacterial efficacy of a fucoidan fraction (FU-F2) extracted from Sargassum polycystum. Int. J. Biol. Macromol. 2019;125:485–495. doi: 10.1016/j.ijbiomac.2018.12.070. PubMed DOI
Krichen F., Karoud W., Sila A., Abdelmalek B.E., Ghorbel R., Ellouz-Chaabouni S., Bougatef A. Extraction, characterization and antimicrobial activity of sulfated polysaccharides from Fish Skins. Int. J. Biol. Macromol. 2015;75:283–289. doi: 10.1016/j.ijbiomac.2015.01.044. PubMed DOI
Abdelhedi O., Nasri R., Souissi N., Nasri M., Jridi M. Sulfated polysaccharides from common Smooth hound: Extraction and assessment of anti-ACE, antioxidant and antibacterial activities. Carbohydr. Polym. 2016;152:605–614. doi: 10.1016/j.carbpol.2016.07.048. PubMed DOI
No H. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 2002;74:65–72. doi: 10.1016/S0168-1605(01)00717-6. PubMed DOI
Zheng L.-Y., Zhu J.-F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym. 2003;54:527–530. doi: 10.1016/j.carbpol.2003.07.009. DOI
Bretado-Aragón L.A., Jiménez-Mejía R., López-Meza J.E., Loeza-Lara P.D. Composites of silver-chitosan nanoparticles a potential source for new antimicrobial therapies. Rev. Mex. Cienc. Farm. 2018;47:7–25.
Liu M., Liu Y., Cao M.-J., Liu G.-M., Chen Q., Sun L., Chen H. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr. Polym. 2017;172:294–305. doi: 10.1016/j.carbpol.2017.05.060. PubMed DOI
Muanprasat C., Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 2017;170:80–97. doi: 10.1016/j.pharmthera.2016.10.013. PubMed DOI
Dalirfardouei R., Karimi G., Jamialahmadi K. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci. 2016;152:21–29. doi: 10.1016/j.lfs.2016.03.028. PubMed DOI
Gómez M.A., Bonilla J.M., Coronel M.A., Martínez J., Morán-Trujillo L., Orellana S.L., Vidal A., Giacaman A., Morales C., Torres-Gallegos C., et al. Antibacterial activity against Staphylococcus aureus of chitosan/chondroitin sulfate nanocomplex aerogels alone and enriched with erythromycin and elephant garlic (Allium ampeloprasum L. var. Ampeloprasum) extract. Pure Appl. Chem. 2018;90:885–900. doi: 10.1515/pac-2016-1112. DOI
Shelke N.B., James R., Laurencin C.T., Kumbar S.G. Polysaccharide biomaterials for drug delivery and Regenerative Engineering. Polym. Adv. Technol. 2014;25:448–460. doi: 10.1002/pat.3266. DOI
Abdullah T.A., Ibrahim N.J., Warsi M.H. Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: Improved permeation, retention, and penetration. Int. J. Pharm. Investig. 2016;6:96. doi: 10.4103/2230-973X.177823. PubMed DOI PMC