Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2/0027/20
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
15-0196
Agentúra na Podporu Výskumu a Vývoja
18-11275S
Grantová Agentura České Republiky
PubMed
32424440
DOI
10.1007/s00430-020-00676-0
PII: 10.1007/s00430-020-00676-0
Knihovny.cz E-zdroje
- Klíčová slova
- CD151, CD63, CD81, CD9, Extracellular vesicles,
- MeSH
- embryonální vývoj MeSH
- lidé MeSH
- oocyty fyziologie MeSH
- rozmnožování * MeSH
- savci fyziologie MeSH
- spermie fyziologie MeSH
- tetraspaniny fyziologie MeSH
- zvířata MeSH
- zygota fyziologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- tetraspaniny MeSH
It is known that tetraspanin proteins are involved in many physiological somatic cell mechanisms. Additionally, research has indicated they also have a role in various infectious diseases and cancers. This review focuses on the molecular interactions underlying the tetraspanin web formation in gametes. Primarily, tetraspanins act in the reproductive tract as organizers of membrane complexes, which include the proteins involved in the contact and association of sperm and oocyte membranes. In addition, recent data shows that tetraspanins are likely to be involved in these processes in a complex way. In mammalian fertilization, an important role is attributed to CD molecules belonging to the tetraspanin superfamily, particularly CD9, CD81, CD151, and also CD63; mostly as part of extracellular vesicles, the significance of which and their potential in reproduction is being intensively investigated. In this article, we reviewed the existing knowledge regarding the expression of tetraspanins CD9, CD81, CD151, and CD63 in mammalian spermatozoa, oocytes, and embryos and their involvement in reproductive processes, including pathological events.
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Faculty of Science University of Hradec Králové Hradec Králové Czech Republic
Zobrazit více v PubMed
Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C (2006) The molecular players of sperm–egg fusion in mammals. Semin Cell Dev Biol 17:254–263. https://doi.org/10.1016/j.semcdb.2006.02.012 PubMed DOI
Barraud-Lange V, Boucheix C (2013) The role of tetraspanin complexes in egg-sperm fusion. In: Berditchevski F, Rubinstein E (eds) Tetraspanins proteins and cell regulation 9. Springer, Dordrecht, pp 203–231
Machtinger R, Laurent LC, Baccarelli AA (2016) Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update 22:182–193. https://doi.org/10.1093/humupd/dmv055 PubMed DOI
Hemler ME (2001) Specific tetraspanin functions. J Cell Biol 155:1103–1108. https://doi.org/10.1083/jcb.200108061 PubMed DOI PMC
Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277:36991–37000. https://doi.org/10.1074/jbc.M205265200 PubMed DOI
Charrin S, Manié S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 516:139–144. https://doi.org/10.1016/S0014-5793(02)02522-X PubMed DOI
Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME (2002) Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell 13:767–781. https://doi.org/10.1091/mbc.01-05-0275 PubMed DOI PMC
Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci CMLS 58:1189–1205. https://doi.org/10.1007/PL00000933 PubMed DOI
Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell-cell interactions from unicellular to multicellular organisms. Genomics 86:674–684. https://doi.org/10.1016/j.ygeno.2005.08.004 PubMed DOI
van Spriel AB, Figdor CG (2010) The role of tetraspanins in the pathogenesis of infectious diseases. Microbes Infect 12:106–112. https://doi.org/10.1016/j.micinf.2009.11.001 PubMed DOI
Martin F, Roth DM, Jans DA, Pouton CW, Partridge LJ, Monk PN, Moseley GW (2005) Tetraspanins in viral infections: a fundamental role in viral biology? J Virol 79:10839–10851. https://doi.org/10.1128/JVI.79.17.10839-10851.2005 PubMed DOI PMC
Florin L, Lang T (2018) Tetraspanin assemblies in virus infection. Front Immunol 9:1140. https://doi.org/10.3389/fimmu.2018.01140 PubMed DOI PMC
Hemler ME (2014) Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer 14:49–60. https://doi.org/10.1038/nrc3640 PubMed DOI
Detchokul S, Williams ED, Parker MW, Frauman AG (2014) Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 171:5462–5490. https://doi.org/10.1111/bph.12260 PubMed DOI PMC
Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven Press, New York, pp 189–317
Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci USA 108:4892–4896. https://doi.org/10.1073/pnas.1018202108 PubMed DOI PMC
Austin CR (1951) Observations on the penetration of the sperm into the mammalian egg. Aust J Biol Sci 4:581–596. https://doi.org/10.1071/bi9510581 DOI
Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697–698. https://doi.org/10.1038/168697b0 PubMed DOI
Chang H, Suarez SS (2011) Two distinct Ca PubMed DOI PMC
Florman HM, Fissore RA (2015) Fertilization in Mammals. In: Plant TM, Zeleznik AJ (eds) Knobil and Neill’s physiology of reproduction, 4th edn. Academic Press, San Diego, pp 149–196 DOI
Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324. https://doi.org/10.1126/science.287.5451.321 PubMed DOI
Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321. https://doi.org/10.1126/science.287.5451.319 PubMed DOI
Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A (2000) The gamete fusion process is defective in eggs of CD9-deficient mice. Nat Genet 24:279–282. https://doi.org/10.1038/73502 PubMed DOI
Kaji K, Oda S, Miyazaki S, Kudo A (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm–egg fusion. Dev Biol 247:327–334. https://doi.org/10.1006/dbio.2002.0694 PubMed DOI
Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P (2002) Residues SFQ (173–175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129:1995–2002 PubMed DOI
Chen MS, Tung KSK, Coonrod SA, Takahashi Y, Bigler D, Chang A, Yamashita Y, Kincade PW, Herr JC, Whiteet JM (1999) Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin α6β1: Implications for murine fertilization. Proc Natl Acad Sci 96:11830–11835. https://doi.org/10.1073/pnas.96.21.11830 PubMed DOI PMC
Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Mylesa DG (2007) Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol 304:317–325. https://doi.org/10.1016/j.ydbio.2006.12.041 PubMed DOI
Coskun S, Elnour A, Hellani A, Gaafar T (2003) CD9 is expressed on human oocytes. Fertil Steril 80:268. https://doi.org/10.1016/S0015-0282(03)01678-9 DOI
Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bomsel M, Wolf JP (2006) CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion. J Cell Sci 119:416–424. https://doi.org/10.1242/jcs.02730 PubMed DOI
Giacomini E, Vago R, Sanchez AM, Podini P, Zarovni N, Murdica V, Rizzo R, Bortolotti D, Candiani M, Viganò P (2017) Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-05549-w DOI
Vyas P, Balakier H, Librach CL (2019) Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med. https://doi.org/10.1080/19396368.2019.1619858 PubMed DOI
Li YH, Hou Y, Ma W, Yuan JX, Zhang D, Sun QY, Wang WH (2004) Localization of CD9 in pig oocytes and its effects on sperm–egg interaction. Reproduction 127:151–157. https://doi.org/10.1530/rep.1.00006 PubMed DOI
Airuungowa WJ, Uyhan U, Shi Z, Zamgaa O, Enkhmaart YW, Wuri L, Cui Y, Nasanochir N, Feng JS (2016) Localization of CD9 on sheep oocytes and early embryos. Int J Clin Exp Me 9:7996–8004
Pan Y, Wang M, Baloch AR, Zhang Q, Wang J, Ma R, Xu G, Kashif J, Wang L, Fan J, Cui Y, Set Y (2019) FGF10 enhances yak oocyte fertilization competence and subsequent blastocyst quality and regulates the levels of CD9, CD81, DNMT1, and DNMT3B. J Cell Physiol 234:17677–17689. https://doi.org/10.1002/jcp.28394 PubMed DOI
Zhou GB, Liu GS, Meng QG, Liu Y, Hou YP, Wang XX, Li N, Zhu SE (2009) Tetraspanin CD9 in bovine oocytes and its role in rertilization. J Reprod Dev 55:305–308. https://doi.org/10.1262/jrd.20099 PubMed DOI
Jankovicova J, Secova P, Manaskova-Postlerova P, Simonik O, Frolikova M, Chmelikova E, Horovska L, Michalkova K, Dvorakova-Hortova K, Antalikova J (2019) Detection of CD9 and CD81 tetraspanins in bovine and porcine oocytes and embryos. Int J Biol Macromol 123:931–938. https://doi.org/10.1016/j.ijbiomac.2018.11.161 PubMed DOI
Dusinský R, Simon M, Nouzovská D (1988) Preparation of monoclonal antibodies against cell surface antigens in cattle. Vet Med (Praha) 33:135–142 PubMed
Zuidscherwoude M, Göttfert F, Dunlock VME, Figdor CG, van den Bogaart G, van Spriel AB (2015) The tetraspanin web revisited by super-resolution microscopy. Sci Rep 5:1–18. https://doi.org/10.1038/srep12201 DOI
Dominguez R (2004) Actin-binding proteins—a unifying hypothesis. Trends Biochem Sci 29:572–578. https://doi.org/10.1016/j.tibs.2004.09.004 PubMed DOI
Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HAS, Gagné D, Sirard MA, Khandjian ÉW, Richard FJ, Hyttel P, Robert C (2016) Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol Reprod 94:16. https://doi.org/10.1095/biolreprod.114.127571 PubMed DOI
Barraud-Lange V, Naud-Barriant N, Bomsel M, Wolf JP, Ziyyat A (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J 21:3446–3449. https://doi.org/10.1096/fj.06-8035hyp PubMed DOI
Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito Ch, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci 105:12921–12926. https://doi.org/10.1073/pnas.0710608105 PubMed DOI PMC
Barraud-Lange V, Chalas Boissonnas C, Serres C, Auer J, Schmitt A, Lefèvre B, Wolf JP, Ziyyat A (2012) Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reprod Camb Engl 144:53–66. https://doi.org/10.1530/REP-12-0040 DOI
Miller BJ, Georges-Labouesse E, Primakoff P, Myles DG (2000) Normal fertilization occurs with eggs lacking the integrin α6β1 and is Cd9-dependent. J Cell Biol 149:1289–1296. https://doi.org/10.1083/jcb.149.6.1289 PubMed DOI PMC
Takahashi Y, Bigler D, Ito Y, White JM (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12:809–820. https://doi.org/10.1091/mbc.12.4.809 PubMed DOI PMC
Evans JP, Schultz RM, Kopf GS (1997) Characterization of the binding of recombinant mouse sperm fertilin α subunit to mouse eggs: evidence for function as a cell adhesion molecule in sperm–egg binding. Dev Biol 187:94–106. https://doi.org/10.1006/dbio.1997.8612 PubMed DOI
Evans JP, Kopf GS, Schultz RM (1997) Characterization of the binding of recombinant mouse sperm fertilin β subunit to mouse rggs: evidence for adhesive activity via an egg β1 integrin-mediated interaction. Dev Biol 187:79–93. https://doi.org/10.1006/dbio.1997.8611 PubMed DOI
Yamagata K, Nakanishi T, Ikawa M, Yamaguchi R, Moss SB, Okabe M et al (2002) Sperm from the calmegin-deficient mouse have normal abilities for binding and fusion to the egg plasma membrane. Dev Biol 250:348–357. https://doi.org/10.1006/dbio.2002.0803 PubMed DOI
Stein KK, Primakoff P, Myles D (2004) Sperm-egg fusion: events at the plasma membrane. J Cell Sci 117:6269–6274. https://doi.org/10.1242/jcs.01598 PubMed DOI
Jégou A, Ziyyat A, Barraud-Lange V, Perez E, Wolf JP, Pincet F, Gourier Ch (2011) CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc Natl Acad Sci 108:10946–10951. https://doi.org/10.1073/pnas.1017400108 PubMed DOI PMC
Chalbi M, Barraud-Lange V, Ravaux B, Howan K, Rodriguez N, Soule P, Ndzoudi A, Boucheix C, Rubinstein E, Wolf JP, Ziyyat A, Perez E, Pincet F, Gourier Ch (2014) Binding of sperm protein Izumo1 and its egg receptor Juno drives CD9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 141:3732–3739. https://doi.org/10.1242/dev.111534 PubMed DOI
Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238. https://doi.org/10.1038/nature03362 PubMed DOI
Ravaux B, Favier S, Perez E, Gourier C (2018) Egg CD9 protein tides correlated with sperm oscillations tune the gamete fusion ability in mammal. J Mol Cell Biol 10:494–502. https://doi.org/10.1093/jmcb/mjy005 PubMed DOI
Glazar AI, Evans JP (2009) Immunoglobulin superfamily member IgSF8 (EWI-2) and CD9 in fertilisation: Evidence of distinct functions for CD9 and a CD9-associated protein in mammalian sperm-egg interaction. Reprod Fertil Dev 21:293–303. https://doi.org/10.1071/rd08158 PubMed DOI PMC
Sala-Valdés M, Ailane N, Greco C, Rubinstein E, Boucheix C (2012) Targeting tetraspanins in cancer. Expert Opin Ther Targets 16:985–997. https://doi.org/10.1517/14728222.2012.712688 PubMed DOI
Umeda R, Satouh Y, Takemoto M, Nakadu-Nakura Y, Liu K, Yokoyama T, Shirouzu M, Iwata S, Nomura N, Sato K, Ikawa M, Nishizawa T, Nureki O (2020) Structural insights into tetraspanin CD9 function. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-15459-7 DOI
Mellisho EA, Velásquez AE, Nuñez MJ, Cabezas JG, Cueto JA, Fader C, Castro FO, Rodríguez-Álvarezet L (2017) Identification and characteristics of extracellular vesicles from bovine blastocysts produced in vitro. PLoS ONE 12:e0178306. https://doi.org/10.1371/journal.pone.0178306 PubMed DOI PMC
Marin D, Scott RT (2018) Extracellular vesicles: a promising tool for assessment of embryonic competence. Curr Opin Obstet Gynecol 30:171–178. https://doi.org/10.1097/GCO.0000000000000458 PubMed DOI
Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 70:70–75. https://doi.org/10.1095/biolreprod.103.020867 PubMed DOI
Kierszenbaum AL, Rosselot C, Rivkin E, Tres LL (2006) Role of integrins, tetraspanins, and ADAM proteins during the development of apoptotic bodies by spermatogenic cells. Mol Reprod Dev 73:906–917. https://doi.org/10.1002/mrd.20470 PubMed DOI
Ito C, Yamatoya K, Yoshida K, Maekawa M, Miyado K, Toshimori K (2010) Tetraspanin family protein CD9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res 340:583–594. https://doi.org/10.1007/s00441-010-0967-7 PubMed DOI
Frolikova M, Manaskova-Postlerova P, Cerny J, Jankovicova J, Simonik O, Pohlova A, Secova P, Antalikova J, Dvorakova-Hortova K (2018) CD9 and CD81 interactions and their structural modelling in sperm prior to fertilization. Int J Mol Sci 19:1236. https://doi.org/10.3390/ijms19041236 PubMed DOI PMC
Antalíková J, Jankovičová J, Simon M, Cupperová P, Michalková K, Horovská Ľ (2015) Localization of CD9 molecule on bull spermatozoa: its involvement in the sperm–egg interaction. Reprod Domest Anim 50:423–430. https://doi.org/10.1111/rda.12508 PubMed DOI
Charrin S, Naour FL, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E (2001) The major CD9 and CD81 molecular partner identification and characterization of complexes. J Biol Chem 276:14329–14337. https://doi.org/10.1074/jbc.M011297200 PubMed DOI
Sala-Valdés M, Ursa Á, Charrin S, Rubinstein E, Hemler ME, Sánchez-Madrid F, Yáñez-Mó M (2006) EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with Ezrin-Radixin-Moesin proteins. J Biol Chem 281:19665–19675. https://doi.org/10.1074/jbc.M602116200 PubMed DOI
Wang L, Chen W, Zhao C, Huo R, Guo XJ, Lin M, Huang XY, Mao YD, Zuo-Min Zhou ZM, Sha JH (2010) The role of ezrin-associated protein network in human sperm capacitation. Asian J Androl 12:667–676. https://doi.org/10.1038/aja.2010.79 PubMed DOI PMC
Salvolini E, Buldreghini E, Lucarini G, Vignini A, Lenzi A, Di Primo R, Balercia G (2013) Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertil Steril 99:697–704. https://doi.org/10.1016/j.fertnstert.2012.10.042 PubMed DOI
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049 DOI
Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JF, Levy S, Le Naour F, Boucheix C (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290:351–358. https://doi.org/10.1016/j.ydbio.2005.11.031 PubMed DOI
Ohnami N, Nakamura A, Miyado M, Sato M, Kawano N, Yoshida K, Harada Y, Takezawa Y, Kanai S, Ono Ch, Takahashi Y, Kimura K, Shida T, Miyado K, Umezawa A (2012) CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte. Biol Open 1:640–647. https://doi.org/10.1242/bio.20121420 PubMed DOI PMC
Jankovicova J, Frolikova M, Sebkova N, Simon M, Cupperova P, Lipcseyova D, Michalkova K, Horovska L, Sedlacek R, Stopka P, Dvorakova-Hortova AJK (2016) Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction 152:785–793. https://doi.org/10.1530/REP-16-0304 PubMed DOI
Zimmerman B, Kelly B, McMillan BJ, Seegar TCM, Dror RO, Kruse AC, Blacklow SC (2016) Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167:1041–1051.e11. https://doi.org/10.1016/j.cell.2016.09.056 PubMed DOI PMC
Gupta S, Primakoff P, Myles DG (2009) Can the presence of wild-type oocytes during insemination rescue the fusion defect of CD9 null oocytes? Mol Reprod Dev 76:602. https://doi.org/10.1002/mrd.21040 PubMed DOI
Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KCh, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK (2004) Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol 24:5978–5988. https://doi.org/10.1128/MCB.24.13.5978-5988.2004 PubMed DOI PMC
Talbot P, Dandekar P (2003) Perivitelline space: does it play a role in blocking polyspermy in mammals? Microsc Res Tech 61:349–357. https://doi.org/10.1002/jemt.10348 PubMed DOI
Campbell S, Swann HR, Aplin JD, Seif MW, Kimber SJ, Elstein M (1995) CD44 is expressed throughout pre-implantation human embryo development. Hum Reprod Oxf Engl 10:425–430. https://doi.org/10.1093/oxfordjournals.humrep.a135955 DOI
Jones PH, Bishop LA, Watt FM (1996) Functional significance of CD9 association with beta 1 integrins in human epidermal keratinocytes. Cell Adhes Commun 4:297–305. https://doi.org/10.3109/15419069609010773 PubMed DOI
Berditchevski F, Gilbert E, Griffiths MR, Fitter S, Ashman L, Jenner SJ (2001) Analysis of the CD151 α3β1 integrin and CD151 tetraspanin interactions by mutagenesis. J Biol Chem 276:41165–41174. https://doi.org/10.1074/jbc.M104041200 PubMed DOI
Yauch RL, Berditchevski F, Harler MB, Reichner J, Hemler ME (1998) Highly stoichiometric, stable, and specific association of integrin α3β1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell 9:2751–2765 PubMed DOI PMC
Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME (2000) Direct extracellular contact between integrin α3β1 and TM4SF protein CD151. J Biol Chem 275:9230–9238. https://doi.org/10.1074/jbc.275.13.9230 PubMed DOI
Serru V, Le Naour F, Billard M, Azorsa DO, Lanza F, Boucheix C, Rubinstein E (1999) Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem J 340:103–111 PubMed DOI PMC
Stipp CS, Kolesnikova TV, Hemler ME (2003) EWI-2 regulates α3β1 integrin–dependent cell functions on laminin-5. J Cell Biol 163:1167–1177. https://doi.org/10.1083/jcb.200309113 PubMed DOI PMC
Charrin S, Manié S, Billard M, Ashman L, Gerlier D, Boucheix C, Rubinstein E (2003) Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun 304:107–112. https://doi.org/10.1016/S0006-291X(03)00545-X PubMed DOI
Sabetian S, Shamsir MS, Naser MA (2014) Functional features and protein network of human sperm-egg interaction. Syst Biol Reprod Med 60:329–337. https://doi.org/10.3109/19396368.2014.955896 PubMed DOI
Frolikova M, Valaskova E, Cerny J, Lumeau A, Sebkova N, Palenikova V, Sanchez-Hernandez N, Pohlova A, Manaskova-Postlerova P, Dvorakova-Hortova K (2019) Addressing the compartmentalization of specific integrin heterodimers in mouse sperm. Int J Mol Sci 20:1004. https://doi.org/10.3390/ijms20051004 PubMed DOI PMC
Jankovicova J, Frolikova M, Palenikova V, Valaskova E, Cerny J, Secova P, Bartokova M, Horovska L, Manaskova-Postlerova P, Antalikovaet J, Komrskova K (2020) Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-61334-2 DOI
Kierszenbaum AL, Rivkin E, Tres LL (2007) Molecular biology of sperm head shaping. Soc Reprod Fertil Suppl 65:33–43 PubMed
Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315:1584–1592. https://doi.org/10.1016/j.yexcr.2008.09.020 PubMed DOI
Latysheva N, Muratov G, Rajesh S, Padgett M, Hotchin NA, Overduin M, Berditchevski F (2006) Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol Cell Biol 26:7707–7718. https://doi.org/10.1128/MCB.00849-06 PubMed DOI PMC
Pan Y, Brown C, Wang X, Geisert EE (2007) The developmental regulation of CD81 in the rat retina. Mol Vis 13:181–189 PubMed PMC
Lee H-J, Zheng JJ (2010) PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal 8:8. https://doi.org/10.1186/1478-811X-8-8 PubMed DOI PMC
Schröder J, Lüllmann-Rauch R, Himmerkus N, Pleines I, Nieswandt B, Orinska Z, Koch-Nolte F, Schröder B, Bleich M, Saftig P (2009) Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol Cell Biol 29:1083–1094. https://doi.org/10.1128/MCB.01163-08 PubMed DOI
Yoshida K, Kawano N, Harada Y, Miyado K (2014) Role of CD9 in sperm–egg fusion and virus-induced cell fusion in mammals. In: Sawada H, Inoue N, Iwano M (eds) Sexual reproduction in animals and plants. Springer, Tokyo, pp 383–391 DOI
Rana S, Yue S, Stadel D, Zöller M (2012) Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 44:1574–1584. https://doi.org/10.1016/j.biocel.2012.06.018 PubMed DOI
Sullivan R, Saez F (2013) Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction 146:R21–R35. https://doi.org/10.1530/REP-13-0058 PubMed DOI
Du J, Shen J, Wang Y, Pan C, Pang W, Diao H, Dong W (2016) Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane. Oncotarget 7:58832–58847. https://doi.org/10.18632/oncotarget.11315 PubMed DOI PMC
Alvarez-Rodriguez M, Ljunggren SA, Karlsson H, Rodriguez-Martinez H (2019) Exosomes in specific fractions of the boar ejaculate contain CD44: a marker for epididymosomes? Theriogenology 140:143–152. https://doi.org/10.1016/j.theriogenology.2019.08.023 PubMed DOI
Barranco I, Padilla L, Parrilla I, Álvarez-Barrientos A, Pérez-Patiño C, Peña FJ, Martínez EA, Rodriguez-Martínez H, Jordi Rocaet J (2019) Extracellular vesicles isolated from porcine seminal plasma exhibit different tetraspanin expression profiles. Sci Rep. https://doi.org/10.1038/s41598-019-48095-3 PubMed DOI PMC
Pagano N, Kosior MA, Gasparrini B, Longobardi V, De Canditiis C, Albero G, Deregibus MC, Bosi G, Idda A, Consiglioet AL (2020) 148 Bull spermatozoa uptake of extracellular vesicles from bovine seminal plasma. Reprod Fertil Dev 32:200–200. https://doi.org/10.1071/RDv32n2Ab148 DOI
da Silveira JC, Veeramachaneni DNR, Winger QA, Carnevale EM, Bouma GJ (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod 86:71. https://doi.org/10.1095/biolreprod.111.093252 PubMed DOI
Sohel MH, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft Ch, Rings F, Uddin MJ, Spencere TE, Schellander K, Tesfaye D (2013) Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS ONE 8:e78505. https://doi.org/10.1371/journal.pone.0078505 PubMed DOI PMC
Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, Barbagallo D, Borzi P, Rizzari S, Maugeri M, Scollo P, Tatone C, Valadi H, Purrello M, Di Pietro C (2014) Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril 102:1751–1761.e1. https://doi.org/10.1016/j.fertnstert.2014.08.005 PubMed DOI
Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, Salamonsen LA (2013) Endometrial exosomes/microvesicles in the uterine microenvironment: a new paradigm for embryo-endometrial cross talk at implantation. PLoS ONE 8:e58502. https://doi.org/10.1371/journal.pone.0058502 PubMed DOI PMC
Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE (2014) Extracellular vesicles in luminal fluid of the ovine uterus. PLoS ONE 9:e90913. https://doi.org/10.1371/journal.pone.0090913 PubMed DOI PMC
Battaglia R, Palini S, Vento ME, La Ferlita A, Lo Faro MJ, Caroppo E, Borzì P, Falzone L, Barbagallo D, Ragusa M, Scalia M, D’Amato G, Scollo P, Musumeci P, Purrello M, Gravotta E, Di Pietro C (2019) Identification of extracellular vesicles and characterization of miRNA expression profiles in human blastocoel fluid. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-018-36452-7 DOI
Tarique I, Haseeb A, Bai X, Li W, Yang P, Huang Y, Yang S, Xu M, Zhang Y, Vistro WA, Fazlani SA, Chen Q (2019) Cellular evidence of CD63-enriched exosomes and multivesicular bodies within the seminiferous tubule during the spermatogenesis of turtles. Microsc Microanal 26:148–156. https://doi.org/10.1017/S1431927619015149 DOI
Tarique I, Liu Y, Bai X, Haseeb A, Yang P, Huang Y, Qu W, Wu R, Vistro WA, Chen Q (2019) Characterization of extracellular vesicles from cilia and epithelial cells of ductuli efferentes in a turtle (Pelodiscus sinensis). Animals 9:888. https://doi.org/10.3390/ani9110888 PubMed DOI PMC
Huang A, Isobe N, Yoshimura Y (2017) Changes in localization and density of CD63-positive exosome-like substances in the hen oviduct with artificial insemination and their effect on sperm viability. Theriogenology 101:135–143. https://doi.org/10.1016/j.theriogenology.2017.06.028 PubMed DOI
Robertson SA, Sharkey DJ (2016) Seminal fluid and fertility in women. Fertil Steril 106:511–519. https://doi.org/10.1016/j.fertnstert.2016.07.1101 PubMed DOI
Caballero JN, Frenette G, Belleannée C, Sullivan R (2013) CD9-positive microvesicles mediate the transfer of molecules to bovine spermatozoa during epididymal maturation. PLoS ONE 8:e65364. https://doi.org/10.1371/journal.pone.0065364 PubMed DOI PMC
Jankovičová J, Bartóková M, Horovská Ľ et al (2019) Poster: detection of cluster of differentiation molecule 63 in bull sperm. Reprod Dom Anim 54:110–111
Liu WM, Cao YJ, Yang YJ, Hu Z, Duan EK (2006) Tetraspanin CD9 regulates invasion during mouse embryo implantation. J Mol Endocrinol 36:121–130. https://doi.org/10.1677/jme.1.01910 PubMed DOI
Yubero N, Jiménez-Marín Á, Lucena C, Barbancho M, Garrido JJ (2010) Immunohistochemical distribution of the tetraspanin CD9 in normal porcine tissues. Mol Biol Rep 38:1021–1028. https://doi.org/10.1007/s11033-010-0198-8 PubMed DOI
Saadeldin IM, Kim SJ, Choi YB, Lee BC (2014) Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell Reprogr 16:223–234. https://doi.org/10.1089/cell.2014.0003 DOI
Zhou GB, Zeng Y, Meng QG, Liu Y, Dai YP, Zhu SE, Bunch TD, Hou YP (2013) Decreased expression of CD9 in bovine oocytes after cryopreservation and the relationship to fertilization capacity. Mol Reprod Dev 80:451–459. https://doi.org/10.1002/mrd.22181 PubMed DOI
Qu P, Qing S, Liu R, Qin H, Wang W, Qiao F, Ge H, Liu J, Zhang Y, Cui W, Wang Y (2017) Effects of embryo-derived exosomes on the development of bovine cloned embryos. PLoS ONE 12:e0174535. https://doi.org/10.1371/journal.pone.0174535 PubMed DOI PMC
Tanigawa M, Miyamoto K, Kobayashi S, Sato M, Akutsu H, Okabe M, Mekada E, Sakakibara K, Miyado M, Umezawa A, Miyado K (2008) Possible involvement of CD81 in acrosome reaction of sperm in mice. Mol Reprod Dev 75:150–155. https://doi.org/10.1002/mrd.20709 PubMed DOI
Tres LL, Kierszenbaum AL (2005) The ADAM-integrin-tetraspanin complex in fetal and postnatal testicular cords. Birth Defects Res Part C Embryo Today Rev 75:130–141. https://doi.org/10.1002/bdrc.20041 DOI
Kaewmala K, Uddin MJ, Cinar MU, Große-Brinkhaus Ch, Jonas E, Tesfaye D, Phatsara Ch, Tholen E, Looft Ch, Schellander K (2011) Association study and expression analysis of CD9 as candidate gene for boar sperm quality and fertility traits. Anim Reprod Sci 125:170–179. https://doi.org/10.1016/j.anireprosci.2011.02.017 PubMed DOI
Custer MC, Risinger JI, Hoover S, Simpson RM, Patterson T, Barrett JC (2006) Characterization of an antibody that can detect the Kai1/CD82 murine metastasis suppressor. Prostate 66:567–577. https://doi.org/10.1002/pros.20386 PubMed DOI
Risinger JI, Custer M, Feigenbaum L, Simpson RM, Hoover SB, Webster JD, Chandramouli GVR, Tessarollo L, Barrett JC (2014) Normal viability of Kai1/Cd82 deficient mice. Mol Carcinog 53:610–624. https://doi.org/10.1002/mc.22009 PubMed DOI
García-Herrero S, Meseguer M, Martínez-Conejero JA, José Remohí J, Pellicer A, Garrido N (2010) The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not. Fertil Steril 94:1360–1373. https://doi.org/10.1016/j.fertnstert.2009.07.1671 PubMed DOI
Todd SC, Doctor VS, Levy S (1998) Sequences and expression of six new members of the tetraspanin/TM4SF family. Biochim Biophys Acta 1399:101–104. https://doi.org/10.1016/s0167-4781(98)00087-6 PubMed DOI
Bansal SK, Gupta N, Sankhwar SN, Rajender S (2015) Differential genes expression between fertile and infertile spermatozoa revealed by transcriptome analysis. PLoS ONE 10:e0127007. https://doi.org/10.1371/journal.pone.0127007 PubMed DOI PMC
Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, Reyftmann L, Dechaud H, De Vos J, Hamamah S (2006) The human cumulus–oocyte complex gene-expression profile. Hum Reprod 21:1705–1719. https://doi.org/10.1093/humrep/del065 PubMed DOI
Liao Y, Chang HC, Liang FX, Chung PJ, Wei Y, Nguyen TP, Zhou G, Talebian S, Lewis C, Krey LC, Fang-Ming Deng FM, Wong TW, Chicote JU, Grifo JA, Keefe DL, Shapiro E, Lepor H, Wu XR, DeSalle R, Garcia-España A, Kim SY, Sun TT (2018) Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol Biol Cell 29:3128–3143. https://doi.org/10.1091/mbc.E18-08-0496 PubMed DOI PMC
Garcia-España A, Chung P-J, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, DeSalle R (2006) Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol 41:355–367. https://doi.org/10.1016/j.ympev.2006.04.023 PubMed DOI
Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W (2016) SpermBase: a database for sperm-borne RNA contents. Biol Reprod 95:1–12. https://doi.org/10.1095/biolreprod.116.142190 DOI
Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma Ch, Kazarov AR, Andzelm SJL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating α6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213. https://doi.org/10.1158/0008-5472.CAN-07-2949 PubMed DOI PMC
Sadej R, Romanska H, Baldwin G, Gkirtzimanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley ChD, Kordek R, Potemski P, Eliopoulos AG, Lalani EN, Berditchevski F (2009) CD151 regulates tumorigenesis by modulating the communication between tumor cells and endothelium. Mol Cancer Res 7:787–798. https://doi.org/10.1158/1541-7786.MCR-08-0574 PubMed DOI
Scheffer KD, Berditchevski F, Florin L (2014) The tetraspanin CD151 in papillomavirus infection. Viruses 6:893–908. https://doi.org/10.3390/v6020893 PubMed DOI PMC
Ang J, Lijovic M, Ashman LK, Ang J, Lijovic M, Ashman LK, Kan K, Frauman AG (2004) CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator? Cancer Epidemiol Prev Biomark 13:1717–1721 DOI
Wang JC, Bégin LR, Bérubé NG, Chevalier S, Aprikian AG, Gourdeau H, Chevrette M (2007) Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res 13:2354–2361. https://doi.org/10.1158/1078-0432.CCR-06-1692 PubMed DOI
Brzozowski JS, Bond DR, Jankowski H et al (2018) Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-27180-z DOI
Logozzi M, Angelini DF, Iessi E, Mizzoni D, Raimo RD, Federici C, Lugini L, Borsellino G, Gentilucci A, Pierella F, Marzio V, Sciarra A, Battistini L, Fais S (2017) Increased PSA expression on prostate cancer exosomes in in vitro condition and in cancer patients. Cancer Lett 403:318–329. https://doi.org/10.1016/j.canlet.2017.06.036 PubMed DOI
Padda RS, Deng FK, Brett SI, Biggs CN, Durfee PN, Brinker ChJ, Williams KC, Leong HS (2019) Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma. Prostate 79:592–603. https://doi.org/10.1002/pros.23764 PubMed DOI
Goyal SM (1993) Porcine reproductive and respiratory syndrome. J Vet Diagn Investig Off Publ Am Assoc Vet Lab Diagn Inc 5:656–664. https://doi.org/10.1177/104063879300500435 DOI
de Jong M, Cromvijk W, Cromvijk P (1991) The new pig dis-ease-epidemiology and production losses in the Netherlands. Comm Eur Commun 1:9–19
Shanmukhappa K, Kim JK, Kapil S (2007) Role of CD151, a tetraspanin, in porcine reproductive and respiratory syndrome virus infection. Virol J 4:62. https://doi.org/10.1186/1743-422X-4-62 PubMed DOI PMC
Kreutz LC, Ackermann MR (1996) Porcine reproductive and respiratory syndrome virus enters cells through a low pH-dependent endocytic pathway. Virus Res 42:137–147. https://doi.org/10.1016/0168-1702(96)01313-5 PubMed DOI
Sincock PM, Fitter S, Parton RG, Berndt MC, Gamble JR, Ashman LK (1999) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci 112:833–844 PubMed DOI
Fast LA, Lieber D, Lang T, Florin L (2017) Tetraspanins in infections by human cytomegalo- and papillomaviruses. Biochem Soc Trans 45:489–497. https://doi.org/10.1042/BST20160295 PubMed DOI
Gomes VA, de Moraes BC, Rosa-e-Silva JC, de Paz CCP, Ferriani RA, Meola J (2018) The apoptotic, angiogenic and cell proliferation genes CD63, S100A6 e GNB2L1 are altered in patients with endometriosis. Rev Bras Ginecol E Obstetrícia RBGO Gynecol Obstet 40:606–613. https://doi.org/10.1055/s-0038-1673364 DOI
Menon R, Dixon CL, Sheller-Miller S, Fortunato SJ, Saade GR, Palma C, Lai A, Guanzon D, Salomon C (2019) Quantitative proteomics by SWATH-MS of maternal plasma exosomes determine pathways associated with term and preterm birth. Endocrinology 160:639–650. https://doi.org/10.1210/en.2018-00820 PubMed DOI PMC
Zhao S, Qi W, Zheng J, Tian Y, Qi X, Kong D, Zhang J, Huang X (2020) Exosomes derived from adipose mesenchymal stem cells restore functional endometrium in a rat model of intrauterine adhesions. Reprod Sci. https://doi.org/10.1007/s43032-019-00112-6 PubMed DOI
Juno and CD9 protein network organization in oolemma of mouse oocyte