In Vitro Scolicidal Activity of the Sesquiterpenes Isofuranodiene, α-Bisabolol and Farnesol on Echinococcus granulosus Protoscoleces
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32784679
PubMed Central
PMC7464821
DOI
10.3390/molecules25163593
PII: molecules25163593
Knihovny.cz E-zdroje
- Klíčová slova
- cystic echinococcosis, farnesol, isofuranodiene, protoscolex, α-bisabolol,
- MeSH
- antiparazitární látky farmakologie MeSH
- Echinococcus granulosus účinky léků MeSH
- farnesol farmakologie MeSH
- furany chemie farmakologie MeSH
- LD50 MeSH
- monocyklické seskviterpeny farmakologie MeSH
- seskviterpeny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiparazitární látky MeSH
- bisabolol MeSH Prohlížeč
- farnesol MeSH
- furany MeSH
- isofuranodiene MeSH Prohlížeč
- monocyklické seskviterpeny MeSH
- seskviterpeny MeSH
Cystic echinococcosis (CE) remains an important challenge both in humans and animals. There is no safe and suitable remedy for CE, so the discovery of new compounds with promising scolicidal effects, particularly from herbal sources, is of great importance for therapeutic uses in the treatment and prevention of CE reappearance. Sesquiterpenes are C15 organic compounds made up of three isoprene units and mostly occurring as fragrant components of essential oils. They are of economic importance for the cosmetic and pharmaceutical industry, and recently attracted the attention of the scientific community for their remarkable parasiticidal properties. In the present study, we have focused on three known sesquiterpenes, isofuranodiene (IFD), α-bisabolol (BSB), and farnesol (FOH), as important phytoconstituents of the essential oils of wild celery (Smyrnium olusatrum), chamomile (Matricaria chamomilla), and acacia farnese (Vachellia farnesiana), respectively. Protoscoleces were recovered from fertile hydatid cysts and were exposed to different concentrations of the three tested compounds for different exposure times. The viability of protoscoleces was confirmed by 0.1% eosin staining. Results of scolicidal activity evaluations showed that IFD possessed the best effect against Echinococcus granulosus protoscoleces (LC50 and LC90 values of 8.87 and 25.48 µg/mL, respectively), followed by BSB (LC50 of 103.2 µg/mL) and FOH (LC50 of 113.68 µg/mL). The overall toxicity of IFD differed significantly from those of FOH and BSB, while there was no significant difference in toxicity between the latter compounds (p > 0.05). The present study showed that IFD seems to be a promising scolicidal agent and can be further tested to become a candidate for CE treatment.
Crop Research Institute Drnovska 507 Ruzyne 161 06 Prague 6 Czech Republic
Department of Veterinary Parasitology Babol Branch Islamic Azad University Babol 19585 466 Iran
Faculty of Veterinary Medicine Amol University of Special Modern Technologies Amol 4618649767 Iran
Faculty of Veterinary Medicine Babol Branch Islamic Azad University Babol 19585 466 Iran
School of Pharmacy University of Camerino via Sant'Agostino 1 62032 Camerino Italy
Zobrazit více v PubMed
Youssefi M.R., Mirshafiei S., Moshfegh Z., Soleymani N., Rahimi M.T. Cystic echinococcosis is an occupational disease? J. Parasit. Dis. 2016;40:586–590. doi: 10.1007/s12639-014-0543-2. PubMed DOI PMC
Kohansal M.H., Nourian A., Rahimi M.T., Daryani A., Spotin A., Ahmadpour E. Natural products applied against hydatid cyst protoscoleces: a review of past to present. Acta Trop. 2017;176:385–394. doi: 10.1016/j.actatropica.2017.09.013. PubMed DOI
Rahimi-Esboei B., Ebrahimzadeh M., Fathi H., Rezaei Anzahaei F. Scolicidal effect of Allium sativum flowers on hydatid cyst protoscoleces. Eur. Rev. Med. Pharmacol. Sci. 2016;20:129–132. PubMed
Niazi M., Saki M., Sepahvand M., Jahanbakhsh S., Khatami M., Beyranvand M. In vitro and ex vivo scolicidal effects of Olea europaea L. to inactivate the protoscolecs during hydatid cyst surgery. Ann. Med. Surg. 2019;42:7–10. doi: 10.1016/j.amsu.2019.04.006. PubMed DOI PMC
Arif S.H., Wani N.A., Zargar S.A., Wani M.A., Tabassum R., Hussain Z., Baba A.A., Lone R.A. Albendazole as an adjuvant to the standard surgical management of hydatid cyst liver. Int. J. Surg. 2008;6:448–451. doi: 10.1016/j.ijsu.2008.08.003. PubMed DOI
Pavela R., Maggi F., Cianfaglione K., Bruno M., Benelli G. Larvicidal activity of essential oils of five Apiaceae taxa and some of their main constituents against Culex quinquefasciatus. Chem. Biodivers. 2018;15:e1700382. doi: 10.1002/cbdv.201700382. PubMed DOI
Fakhar M., Chabra A., Rahimi-Esboei B., Rezaei F. In vitro protoscolicidal effects of fungal chitosan isolated from Penicillium waksmanii and Penicillium citrinum. J. Paras. Dis. 2015;39:162–167. doi: 10.1007/s12639-013-0300-y. PubMed DOI PMC
Posadzki P., Watson L., Ernst E. Herb–drug interactions: an overview of systematic reviews. Br. J. Clin. Pharmacol. 2013;75:603–618. doi: 10.1111/j.1365-2125.2012.04350.x. PubMed DOI PMC
Dewick P.M. The biosynthesis of C 5–C 25 terpenoid compounds. Nat. Prod. Rep. 2002;19:181–222. doi: 10.1039/b002685i. PubMed DOI
Sut S., Maggi F., Nicoletti M., Baldan V., Dall’Acqua S. New drugs from old natural compounds: scarcely investigated sesquiterpenes as new possible therapeutic agents. Curr. Med. Chem. 2018;25:1241–1258. doi: 10.2174/0929867324666170404150351. PubMed DOI
Maggi F., Papa F., Giuliani C., Maleci Bini L., Venditti A., Bianco A., Nicoletti M., Iannarelli R., Caprioli G., Sagratini G., et al. Essential oil chemotypification and secretory structures of the neglected vegetable Smyrnium olusatrum L. (Apiaceae) growing in central Italy. Flavour Frag. J. 2015;30:139–159. doi: 10.1002/ffj.3221. DOI
Quassinti L., Maggi F., Barboni L., Ricciutelli M., Cortese M., Papa F., Garulli C., Kalogris C., Vittori S., Bramucci M. Wild celery (Smyrnium olusatrum L.) oil and isofuranodiene induce apoptosis in human colon carcinoma cells. Fitoterapia. 2014;97:133–141. doi: 10.1016/j.fitote.2014.06.004. PubMed DOI
Petrelli R., Ranjbarian F., Dall’Acqua S., Papa F., Iannarelli R., Kamte S.L.N., Vittori S., Benelli G., Maggi F., Hofer A., et al. An overlooked horticultural crop, Smyrnium olusatrum, as a potential source of compounds effective against African trypanosomiasis. Parasitol. Int. 2017;66:146–151. doi: 10.1016/j.parint.2017.01.001. PubMed DOI
Benelli G., Pavela R., Canale A., Nicoletti M., Petrelli R., Cappellacci L., Galassi R., Maggi F. Isofuranodiene and germacrone from Smyrnium olusatrum essential oil as acaricides and oviposition inhibitors against Tetranychus urticae: impact of chemical stabilization of isofuranodiene by interaction with silver triflate. J. Pest. Sci. 2017;90:693–699. doi: 10.1007/s10340-016-0829-5. DOI
Benelli G., Pavela R., Iannarelli R., Petrelli R., Cappellacci L., Cianfaglione K., Afshar F.H., Nicoletti M., Canale A., Maggi F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crop. Prod. 2017;96:186–195. doi: 10.1016/j.indcrop.2016.11.059. DOI
Kavallieratos N.G., Boukouvala M.C., Ntalli N., Skourti A., Karagianni E.S., Nika E.P., Kontodimas D.C., Cappellacci L., Petrelli R., Cianfaglione K., et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020;139:111255. doi: 10.1016/j.fct.2020.111255. PubMed DOI
Li W., Shi J., Papa F., Maggi F., Chen X. Isofuranodiene, the main volatile constituent of wild celery (Smyrnium olusatrum L.), protects d-galactosamin/lipopolysacchride-induced liver injury in rats. Nat. Prod. Res. 2016;30:1162–1165. doi: 10.1080/14786419.2015.1041139. PubMed DOI
Pavela R., Pavoni L., Bonacucina G., Cespi M., Kavallieratos N.G., Cappellacci L., Petrelli R., Maggi F., Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest. Sci. 2019;92:909–921. doi: 10.1007/s10340-018-01076-3. DOI
Rosato A., Maggi F., Cianfaglione K., Conti F., Ciaschetti G., Rakotosaona R., Fracchiolla G., Clodoveo M.L., Franchini C., Corbo F. Chemical composition and antibacterial activity of seven uncommon essential oils. J. Essent. Oil Res. 2018;30:233–243. doi: 10.1080/10412905.2018.1442753. DOI
Maggi F., Papa F., Pucciarelli S., Bramucci M., Quassinti L., Barboni L., Dal Ben D., Ramadori A.T., Graiff C., Galassi R. Stabilization of the cyclodecadiene derivative isofuranodiene by silver (I) coordination. Mechanistic and biological aspects. Fitoterapia. 2017;117:52–60. doi: 10.1016/j.fitote.2016.12.009. PubMed DOI
Brunetti A., Marinelli O., Morelli M.B., Iannarelli R., Amantini C., Russotti D., Santoni G., Maggi F., Nabissi M. Isofuranodiene synergizes with temozolomide in inducing glioma cells death. Phytomedicine. 2019;52:51–59. doi: 10.1016/j.phymed.2018.09.220. PubMed DOI
Maggi F., Barboni L., Papa F., Caprioli G., Ricciutelli M., Sagratini G., Vittori S. A forgotten vegetable (Smyrnium olusatrum L., Apiaceae) as a rich source of isofuranodiene. Food Chem. 2012;135:2852–2862. doi: 10.1016/j.foodchem.2012.07.027. PubMed DOI
Pisani M., Quassinti L., Bramucci M., Galassi R., Maggi F., Rossi B., Damin A., Carloni P., Astolfi P. Nanostructured Liquid Crystalline Particles as Delivery Vectors for Isofuranodiene: Characterization and In-vitro Anticancer Activity. Colloid. Surf. B. 2020;192:111050. doi: 10.1016/j.colsurfb.2020.111050. PubMed DOI
Kim S., Jung E., Kim J.H., Park Y.H., Lee J., Park D. Inhibitory effects of (−)-α-bisabolol on LPS-induced inflammatory response in RAW264. 7 macrophages. Food Chem. Toxicol. 2011;49:2580–2585. doi: 10.1016/j.fct.2011.06.076. PubMed DOI
Tabari M.A., Tehrani M.A.B. Evidence for the involvement of the GABAergic, but not serotonergic transmission in the anxiolytic-like effect of bisabolol in the mouse elevated plus maze. N-S Arch. Pharmacol. 2017;390:1041–1046. doi: 10.1007/s00210-017-1405-0. PubMed DOI
Bhatia S.P., McGinty D., Letizia C.S., Api A.M. Fragrance material review on alpha-bisabolol. Food Chem. Toxicol. 2008;46:S72–S76. doi: 10.1016/j.fct.2008.06.025. PubMed DOI
Murata Y., Kokuryo T., Yokoyama Y., Yamaguchi J., Miwa T., Shibuya M., Yamamoto Y., Nagino M. The anticancer effects of novel α-bisabolol derivatives against pancreatic cancer. Anticancer Res. 2017;37:589–598. doi: 10.21873/anticanres.11352. PubMed DOI
Cavalieri E., Rigo A., Bonifacio M., de Prati A.C., Guardalben E., Bergamini C., Fato R., Pizzolo G., Suzuki H., Vinante F. Pro-apoptotic activity of α-bisabolol in preclinical models of primary human acute leukemia cells. J. Transl. Med. 2011;9:45. doi: 10.1186/1479-5876-9-45. PubMed DOI PMC
Rigo A., Vinante F. The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes. Apoptosis. 2016;21:917–927. doi: 10.1007/s10495-016-1257-y. PubMed DOI
Bockman M.R., Kalinda A.S., Petrelli R., De La Mora-Rey T., Tiwari D., Liu F., Dawadi S., Nandakumar M., Rhee K.Y., Schnappinger D., et al. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. J. Med. Chem. 2015;58:7349–7369. PubMed PMC
Rigo A., Ferrarini I., Bonalumi A., Tecchio C., Montresor A., Laudanna C., Vinante F. Efficient lysis of B-chronic lymphocytic leukemia cells by the plant-derived sesquiterpene alcohol α-bisabolol, a dual proapoptotic and antiautophagic agent. Oncotarget. 2018;9:25877. doi: 10.18632/oncotarget.25398. PubMed DOI PMC
Cavalieri E., Mariotto S., Fabrizi C., de Prati A.C., Gottardo R., Leone S., Berra L.V., Lauro G.M., Ciampa A.R., Suzuki H. α-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem. Bioph. Res. Co. 2004;315:589–594. doi: 10.1016/j.bbrc.2004.01.088. PubMed DOI
Khan R., Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation, and apoptotic responses in the colon of Wistar rats. Chem. Biol. Interact. 2011;192:193–200. doi: 10.1016/j.cbi.2011.03.009. PubMed DOI
De Araújo Delmondes G., Bezerra D.S., de Queiroz Dias D., de Souza Borges A., Araújo I.M., da Cunha G.L., Bandeira F.R., Barbosa R., Bezerra Felipe C.F., Melo Coutinho H.D., et al. Toxicological and pharmacologic effects of farnesol (C15H26O): a descriptive systematic review. Food Chem. Toxicol. 2019;129:169–200. doi: 10.1016/j.fct.2019.04.037. PubMed DOI
Lapczynski A., Bhatia S.P., Letizia C.S., Api A.M. Fragrance material review on farnesol. Food Chem. Toxicol. 2008;46:149–156. doi: 10.1016/j.fct.2008.06.046. PubMed DOI
Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils–a review. Food Chem. Toxicol. 2008;46:446–475. doi: 10.1016/j.fct.2007.09.106. PubMed DOI
Shahnouri M., Tabari M.A., Araghi A. Neuropharmacological properties of farnesol in Murine model. Iran J. Vet. Res. 2016;17:259. PubMed PMC
Hornby J.M., Jensen E.C., Lisec A.D., Tasto J.J., Jahnke B., Shoemaker R., Dussault P., Nickerson K.W. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 2001;67:2982–2992. doi: 10.1128/AEM.67.7.2982-2992.2001. PubMed DOI PMC
Lorek J., Pöggeler S., Weide M.R., Breves R., Bockmühl D.P. Influence of farnesol on the morphogenesis of Aspergillus niger. J. Basic Microbiol. 2008;48:99–103. doi: 10.1002/jobm.200700292. PubMed DOI
Shea J.M., Del Poeta M. Lipid signaling in pathogenic fungi. Curr. Opin. Microbiol. 2006;9:352–358. doi: 10.1016/j.mib.2006.06.003. PubMed DOI
Jung Y.Y., Hwang S.T., Sethi G., Fan L., Arfuso F., Ahn K.S. Potential anti-inflammatory and anticancer properties of farnesol. Molecules. 2018;23:2827. doi: 10.3390/molecules23112827. PubMed DOI PMC
Lee J.H., Kim C., Kim S.-H., Sethi G., Ahn K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015;360:280–293. doi: 10.1016/j.canlet.2015.02.024. PubMed DOI
Kabak B., Dobson A.D. Mycotoxins in spices and herbs–An update. Crit. Rev. Food Sci. Nutr. 2017;57:18–34. doi: 10.1080/10408398.2013.772891. PubMed DOI
Tabari M.A., Youssefi M.R., Nasiri M., Hamidi M., Kiani K., Alian Samakkhah S., Maggi F. Towards green drugs against cestodes: Effectiveness of Pelargonium roseum and Ferula gummosa essential oils and their main component on Echinococcus granulosus protoscoleces. Vet. Parasitol. 2019;266:84–87. doi: 10.1016/j.vetpar.2018.12.019. PubMed DOI
Fabbri J., Maggiore M.A., Pensel P.E., Albani C.M., Denegri G.M., Elissondo M.C. Could beta-myrcene be an alternative to albendazole for the treatment of experimental cystic echinococcosis? Acta Trop. 2018;187:5–12. doi: 10.1016/j.actatropica.2018.07.013. PubMed DOI
Benelli G., Pavela R., Lupidi G., Nabissi M., Petrelli R., Kamte S.L.N., Cappellacci L., Fiorini D., Sut S., Dall’Acqua S., et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. 2018;25:10515–10525. doi: 10.1007/s11356-017-0635-5. PubMed DOI
Elissondo M.C., Albani C.M., Gende L., Eguaras M., Denegri G. Efficacy of thymol against Echinococcus granulosus protoscoleces. Parasitol. Int. 2008;57:185–190. doi: 10.1016/j.parint.2007.12.005. PubMed DOI
Elissondo M.C., Pensel P.E., Denegri G.M. Could thymol have effectiveness on scolices and germinal layer of hydatid cysts? Acta Trop. 2013;125:251–257. doi: 10.1016/j.actatropica.2012.12.007. PubMed DOI
Fabbri J., Maggiore M.A., Pensel P.E., Denegri G.M., Gende L.B., Elissondo M.C. In vitro and in vivo efficacy of carvacrol against Echinococcus granulosus. Acta Trop. 2016;164:272–279. doi: 10.1016/j.actatropica.2016.09.001. PubMed DOI
Hosseini M., Yousefi M., Abouhosseini M. Comparison of the Effect of Artemisia Sieberi Essential Oil and Albendazole Drug on Protoscoleces of Hydatid Cyst under in Vitro Conditions. J. Babol Univ. Med. Sci. 2017;19:63–68.
Su V., King D., Woodrow I., McFadden G., Gleadow R. Plasmodium falciparum growth is arrested by monoterpenes from eucalyptus oil. Flavour Frag. J. 2008;23:315–318. doi: 10.1002/ffj.1880. DOI
Arruda D.C., Miguel D.C., Yokoyama-Yasunaka J.K., Katzin A.M., Uliana S.R. Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomed. Pharmacother. 2009;63:643–649. doi: 10.1016/j.biopha.2009.02.004. PubMed DOI