Atmospheric deposition of chlorinated and brominated polycyclic aromatic hydrocarbons in central Europe analyzed by GC-MS/MS

. 2021 Nov ; 28 (43) : 61360-61368. [epub] 20210626

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34173951
Odkazy

PubMed 34173951
PubMed Central PMC8580896
DOI 10.1007/s11356-021-15038-3
PII: 10.1007/s11356-021-15038-3
Knihovny.cz E-zdroje

Chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs) are persistent organic pollutants that are ubiquitous in the atmospheric environment. The sources, fate, and sinks in the atmosphere of these substances are largely unknown. One of the reasons is the lack of widely accessible analytical instrumentation. In this study, a new analytical method for ClPAHs and BrPAHs using gas-chromatography coupled with triple quadrupole mass spectrometry is presented. The method was applied to determine ClPAHs and BrPAHs in total deposition samples collected at two sites in central Europe. Deposition fluxes of ClPAHs and BrPAHs ranged 580 (272-962) and 494 (161-936) pg m-2 day-1, respectively, at a regional background site, Košetice, and 547 (351-724) and 449 (202-758) pg m-2 day-1, respectively, at a semi-urban site, Praha-Libuš. These fluxes are similar to those of PCBs and more than 2 orders of magnitude lower than those of the parent PAHs in the region. Seasonal variations of the deposition fluxes of these halogenated PAHs were found with maxima in summer and autumn, and minima in winter at Košetice, but vice versa at Praha-Libuš. The distribution of ClPAHs and BrPAHs between the particulate and dissolved phases in deposition samples suggests higher degradability of particulate BrFlt/Pyr and BrBaA than of the corresponding ClPAHs. A number of congeners were detected for the first time in the atmospheric environment.

Zobrazit více v PubMed

Atlas E, Giam CS. Ambient concentration and precipitation scavenging of atmospheric organic pollutants. Water Air Soil Pollut. 1988;38:19–36. doi: 10.1007/BF00279583. DOI

Banerjee K, Utture S, Dasgupta S, Kandaswamy C, Pradhan S, Kulkarni S, Adsule P. Multiresidue determination of 375 organic contaminants including pesticides, polychlorinated biphenyls and polyaromatic hydrocarbons in fruits and vegetables by gas chromatography-triple quadrupole mass spectrometry with introduction of semi-quantification approach. J Chromatogr A. 2012;1270:283–295. doi: 10.1016/j.chroma.2012.10.066. PubMed DOI

Bidleman TF. Atmospheric processes. Environ Sci Technol. 1988;22:361–367. doi: 10.1021/es00169a002. PubMed DOI

Čupr P, Pěnkava B (2012) Vzorkovač atmosférické depozice (Atmospheric deposition sampler). Patent No. 23347 (owner: Masaryk University, Brno, and Baghirra s.r.o., Praha), Industrial Property Office, Czech Republic

Degrendele C, Audy O, Hofman J, Kučerik J, Kukučka P, Mulder MD, Přibylová P, Prokeš R, Sáňka M, Schaumann GE, Lammel G. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a central European receptor area. Environ Sci Technol. 2016;50:4278–4288. doi: 10.1021/acs.est.5b05671. PubMed DOI

Fu JX, Suuberg EM. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 2012;31:486–493. doi: 10.1002/etc.1709. PubMed DOI PMC

Geller AM, Krüger H-U, Liu Q, Zetzsch C, Elend M, Preiss A (2008) Quantitative 1H NMR-analysis of technical octabrominated diphenylether DE-79™ and UV spectra of its components and photolytic transformation products. Chemosphere 73:S44–S52 PubMed

Goldfarb JL, Suuberg EM. The effect of halogen hetero-atoms on the vapor pressures and thermodynamics of polycyclic aromatic compounds measured via the Knudsen effusion technique. J Chem Thermodyn. 2008;40:460–466. doi: 10.1016/j.jct.2007.09.006. PubMed DOI PMC

Huang C, Xu X, Wang D, Ma M, Rao K, Wang Z. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) Chemosphere. 2018;211:640–647. doi: 10.1016/j.chemosphere.2018.07.087. PubMed DOI

Ieda T, Ochiai N, Miyawaki T, Ohura T, Horii Y. Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. J Chromatogr A. 2011;1218:3224–3232. doi: 10.1016/j.chroma.2011.01.013. PubMed DOI

Jakobi G, Kirchner M, Henkelmann B, Koerner W, Offenthaler I, Moche W, Weiss P, Schaub M, Schramm K-W. Atmospheric bulk deposition measurements of organochlorine pesticides at three alpine summits. Atmos Environ. 2015;101:158–165. doi: 10.1016/j.atmosenv.2014.10.060. DOI

Jiang XX, Liu GR, Wang M, Liu WB, Tang C, Li L, Zheng MH. Case study of polychlorinated naphthalene emissions and factors influencing emission variations in secondary aluminum production. J Hazard Mater. 2015;286:545–552. doi: 10.1016/j.jhazmat.2015.01.009. PubMed DOI

Jiang XX, Liu GR, Wang M, Zheng MH. Fly ash-mediated formation of polychlorinated naphthalenes during secondary copper smelting and mechanistic aspects. Chemosphere. 2015;119:1091–1098. doi: 10.1016/j.chemosphere.2014.09.052. PubMed DOI

Jiménez JC, Dachs J, Eisenreich SJ (2015) Chapter 8 - atmospheric deposition of POPs: implications for the chemical pollution of aquatic environments. In: Zeng EY (Editor), Comprehensive analytical chemistry. Elsevier, pp. 295-322

Jin R, Liu G, Jiang X, Liang Y, Fiedler H, Yang L, Zhu Q, Xu Y, Gao L, Su G, Xiao K, Zheng M. Profiles, sources and potential exposures of parent, chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated atmosphere. Sci Total Environ. 2017;593–594:390–398. doi: 10.1016/j.scitotenv.2017.03.134. PubMed DOI

Jin R, Liu G, Zheng M, Fiedler H, Jiang X, Yang L, Wu X, Xu Y. Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method. J Chromatogr A. 2017;1509:114–122. doi: 10.1016/j.chroma.2017.06.022. PubMed DOI

Jin R, Zheng M, Yang H, Yang L, Wu X, Xu Y, Liu G. Gas–particle phase partitioning and particle size distribution of chlorinated and brominated polycyclic aromatic hydrocarbons in haze. Environ Pollut. 2017;231:1601–1608. doi: 10.1016/j.envpol.2017.09.066. PubMed DOI

Jin R, Yang L, Zheng M, Xu Y, Li C, Liu G. Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes. Environ Pollut. 2018;242:1346–1352. doi: 10.1016/j.envpol.2018.08.025. PubMed DOI

Jin R, Bu D, Liu G, Zheng M, Lammel G, Fu J, Yang L, Li C, Habib A, Yang Y, Liu X. New classes of organic pollutants in the remote continental environment - chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau. Environ Int. 2020;137:105574. doi: 10.1016/j.envint.2020.105574. PubMed DOI

Jin R, Zheng M, Lammel G, Bandowe BAM, Liu G. Chlorinated and brominated polycyclic aromatic hydrocarbons: sources, formation mechanisms, and occurrence in the environment. Prog Energy Combust Sci. 2020;76:100803. doi: 10.1016/j.pecs.2019.100803. DOI

Lammel G, Mulder MD, Shahpoury P, Kukučka P, Lišková H, Přibylová P, Prokeš R, Wotawa G. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air. Atmos Chem Phys. 2017;17:6257–6270. doi: 10.5194/acp-17-6257-2017. DOI

Li F, Jin J, Sun X, Wang X, Li Y, Shah SM, Chen J. Gas chromatography-triple quadrupole mass spectrometry for the determination of atmospheric polychlorinated naphthalenes. J Hazard Mater. 2014;280:111–117. doi: 10.1016/j.jhazmat.2014.07.060. PubMed DOI

Luo P, Ni HG, Bao LJ, Li SM, Zeng EY. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition. Environ Sci Technol. 2014;48:13793–13799. doi: 10.1021/es5042018. PubMed DOI

Luo P, Bao LJ, Guo Y, Li SM, Zeng EY (2016) Size-dependent atmospheric deposition and inhalation exposure of particle-bound organophosphate flame retardants. J Hazard Mater 301:504–511 PubMed

Mi HH (2012) Atmospheric dry deposition of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in southern Taiwan. Aerosol Air Qual Res 12:1016–1029

Nežiková B, Degrendele C, Čupr P, Hohenblum P, Moche W, Prokeš R, Vaňková L, Kukučka P, Martiník J, Audy O, Přibylová P, Holoubek I, Weiss P, Klánová J, Lammel G. Bulk atmospheric deposition of persistent organic pollutants and polycyclic aromatic hydrocarbons in Central Europe. Environ Sci Pollut Res. 2019;26:23429–23441. doi: 10.1007/s11356-019-05464-9. PubMed DOI PMC

Offenthaler I, Jakobi G, Kaiser A, Kirchner M, Kräuchi N, Niedermoser B, Schramm KW, Sedivy I, Staudinger M, Thanner G, Weiss P, Moche W. Novel sampling methods for atmospheric semi-volatile organic compounds (SOCs) in a high altitude alpine environment. Environ Pollut. 2009;157:3290–3297. doi: 10.1016/j.envpol.2009.05.053. PubMed DOI

Ohura T, Kitazawa A, Amagai T, Makino M. Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban air. Environ Sci Technol. 2005;39:85–91. doi: 10.1021/es040433s. PubMed DOI

Ohura T, Morita M, Makino M, Amagai T, Shimoi K. Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons. Chem Res Toxicol. 2007;20:1237–1241. doi: 10.1021/tx700148b. PubMed DOI

Ohura T, Fujima S, Amagai T, Shinomiya M. Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: seasonal levels, gas-particle partitioning, and origin. Environ Sci Technol. 2008;42:3296–3302. doi: 10.1021/es703068n. PubMed DOI

Ohura T, Sawada KI, Amagai T, Shinomiya M. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and Ahr activity. Environ Sci Technol. 2009;43:2269–2275. doi: 10.1021/es803633d. PubMed DOI

Ohura T, Horii Y, Kojima M, Kamiya Y. Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in urban air. Japan Atmos Environ. 2013;81:84–91. doi: 10.1016/j.atmosenv.2013.08.044. DOI

Ohura T, Kamiya Y, Ikemori F. Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity. J Hazard Mater. 2016;312:254–261. doi: 10.1016/j.jhazmat.2016.03.072. PubMed DOI

OSPAR (2019) Convention for the protection of the marine environment in the North-East Atlantic: the OSPAR list of chemicals for priority action - suggestions for future actions, OSPAR Commission, London. 81

Shahpoury P, Kitanovski Z, Lammel G. Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic. Atmos Chem Phys. 2018;18:13495–13510. doi: 10.5194/acp-18-13495-2018. DOI

Škrdlíková L, Landlová L, Klánová J, Lammel G. Wet deposition and scavenging efficiency of gaseous and particulate phase polycyclic aromatic compounds at a central European suburban site. Atmos Environ. 2011;45:4305–4312. doi: 10.1016/j.atmosenv.2011.04.072. DOI

Söderström G, Sellström U, de Wit CA, Tysklind M. Photolytic debromination of decabromodiphenyl ether (BDE 209) Environ Sci Technol. 2004;38:127–132. doi: 10.1021/es034682c. PubMed DOI

Sun JL, Zeng H, Ni HG. Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere. 2013;90:1751–1759. doi: 10.1016/j.chemosphere.2012.10.094. PubMed DOI

UNECE . Convention on long-range transboundary air pollution, protocol on persistent organic pollutants. Denmark: Århus; 1998.

United States Environmental Protection Agency (2008): Chlorinated biphenyl congeners in water, soil, sediment, biosolids, and tissue by HRGC/HRMS

United States Environmental Protection Agency (2010): Tetra- through octa-chlorinated dioxins and furans by isotope dillution high resolution gas chromatography/high resolution mass spectrometry

van Bavel B, Geng D, Cherta L, Nacher-Mestre J, Portoles T, Abalos M, Saulo J, Abad E, Dunstan J, Jones R, Kotz A, Winterhalter H, Malisch R, Traag W, Hagberg J, Ericson Jogsten I, Beltran J, Hernandez F. Atmospheric-pressure chemical ionization tandem mass spectrometry (APGC/MS/MS) an alternative to high-resolution mass spectrometry (HRGC/HRMS) for the determination of dioxins. Anal Chem. 2015;87:9047–9053. doi: 10.1021/acs.analchem.5b02264. PubMed DOI

Wan D, Chen Y, Su J, Liu L, Zuo Y. Ultraviolet absorption redshift induced direct photodegradation of halogenated parabens under simulated sunlight. Water Res. 2018;142:46–54. doi: 10.1016/j.watres.2018.05.039. PubMed DOI

Wu J, Hu JC, Ma YL, Wang SJ, Wang Y, Jin J. Determination of dioxin-like compounds in soil by accelerated solvent extraction-silica gel column cleanup-basic alumina column separation coupled with gas chromatography-triple quadrupole mass spectrometry. Chin J Anal Chem. 2017;45:799–808.

Zhang BZ, Zhang K, Li SM, Wong CS, Zeng EY. Size-dependent dry deposition of airborne polybrominated diphenyl ethers in urban Guangzhou. China Environ Sci Technol. 2012;46:7207–7214. doi: 10.1021/es300944a. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...