CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization

. 2018 Apr 19 ; 19 (4) : . [epub] 20180419

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29671763

Proteins CD9 and CD81 are members of the tetraspanin superfamily and were detected in mammalian sperm, where they are suspected to form an active tetraspanin web and to participate in sperm⁻egg membrane fusion. The importance of these two proteins during the early stages of fertilization is supported by the complete sterility of CD9/CD81 double null female mice. In this study, the putative mechanism of CD9/CD81 involvement in tetraspanin web formation in sperm and its activity prior to fertilization was addressed. Confocal microscopy and colocalization assay was used to determine a mutual CD9/CD81 localization visualised in detail by super-resolution microscopy, and their interaction was address by co-immunoprecipitation. The species-specific traits in CD9 and CD81 distribution during sperm maturation were compared between mice and humans. A mutual position of CD9/CD81 is shown in human spermatozoa in the acrosomal cap, however in mice, CD9 and CD81 occupy a distinct area. During the acrosome reaction in human sperm, only CD9 is relocated, compared to the relocation of both proteins in mice. The structural modelling of CD9 and CD81 homologous and possibly heterologous network formation was used to propose their lateral Cis as well as Trans interactions within the sperm membrane and during sperm⁻egg membrane fusion.

Zobrazit více v PubMed

Stipp C.S., Orlicky D., Hemler M. FPRP, a major, highly stoichiometric, highly specific CD81-and CD9-associated protein. J. Biol. Chem. 2001;276:4853–4862. doi: 10.1074/jbc.M009859200. PubMed DOI

Van Spriel A.B., Figdor C.G. The role of tetraspanins in the pathogenesis of infectious diseases. Microbes Infect. 2010;12:106–112. doi: 10.1016/j.micinf.2009.11.001. PubMed DOI

Boucheix C., Rubinstein E. Tetraspanins. Cell. Mol. Life Sci. 1997;58:1189–1205. doi: 10.1007/PL00000933. PubMed DOI PMC

Charrin S., le Naour F., Silvie O., Milhiet P.E., Boucheix C., Rubinstein E. Lateral organization of membrane proteins: Tetraspanins spin their web. Biochem. J. 2009;420:133–154. doi: 10.1042/BJ20082422. PubMed DOI

Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 2003;19:397–422. doi: 10.1146/annurev.cellbio.19.111301.153609. PubMed DOI

Levy S., Shoham T. The tetraspanin web modulates immune-signaling complexes. Nat. Rev. Immunol. 2005;5:136–148. doi: 10.1038/nri1548. PubMed DOI

Charrin S., Jouannet S., Boucheix C., Rubinstein E. Tetraspains at a glance. J. Cell Sci. 2014;127:1–8. doi: 10.1242/jcs.154906. PubMed DOI

Berditchevski F., Odintsova E. Characterization of Integrin–Tetraspanin Adhesion Complexes: Role of Tetraspanins in Integrin Signaling. J. Cell Biol. 1999;146:477–492. doi: 10.1083/jcb.146.2.477. PubMed DOI PMC

Stipp C.S., Hemler M.E. Transmembrane-4-superfamily proteins CD151 and CD81 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent neurite outgrowth. Pt 11J. Cell Sci. 2000;113:1871–1882. PubMed

Bassani S., Cingolani L.A. Tetraspanins: Interactions and interplay with integrins. Int. J. Biochem. Cell Biol. 2012;44:703–708. doi: 10.1016/j.biocel.2012.01.020. PubMed DOI

Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–324. doi: 10.1126/science.287.5451.321. PubMed DOI

Ziyyat A., Rubinstein E., Monier-Gavelle F., Barraud V., Kulski O., Prenant M., Boucheix C., Bomsel M., Wolf J.P. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J. Cell Sci. 2006;119 Pt 3:416–424. doi: 10.1242/jcs.02730. PubMed DOI

Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. Characterization of CD46 and beta1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC

Yanez-Mo M., Tejedor R., Rouselle P., Sanches-Madrid F. Tetraspanins in intercellular adhesion of polarized epithelial cells: Spatial and functional relationship to integrins and cadherins. J. Cell Sci. 2001;144:577–587. PubMed

Jégou A., Ziyyat A., Barraud-Lange V., Perez E., Wolf J.P., Pincet F., Gourier C. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc. Natl. Acad. Sci. USA. 2011;108:10946–10951. doi: 10.1073/pnas.1017400108. PubMed DOI PMC

Ellerman D.A., Ha C., Primakoff P., Myles D.G., Dveksler G.S. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol. Biol. Cell. 2003;14:5098–5103. doi: 10.1091/mbc.E03-04-0244. PubMed DOI PMC

Kovalenko O., Yang X., Kolesnikova T.V., Hemler M.E. Evidence for specific tetraspanin homodimers: Inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem. J. 2004;377:407–417. doi: 10.1042/bj20031037. PubMed DOI PMC

Barreiro O., Zamai M., Yáñez-Mó M., Tejera E., López-Romero P., Monk P.N., Gratton E., Caiolfa V.R., Sánchez-Madrid F. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 2008;183:527–542. doi: 10.1083/jcb.200805076. PubMed DOI PMC

Ito C., Yamatoya K., Yoshida K., Maekawa M., Miyado K., Toshimori K. Tetraspanin family protein CD9 in the mouse sperm: Unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 2010;340:583–594. doi: 10.1007/s00441-010-0967-7. PubMed DOI

Jankovicova J., Frolikova M., Sebkova N., Simon M., Cupperova P., Lipcseyova D., Michalkova K., Horovska L., Sedlacek R., Stopka P., et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction. 2000;152:785–793. doi: 10.1530/REP-16-0304. PubMed DOI

Rubinstein E., Ziyyat A., Prenant M., Wrobel E., Wolf J.P., Levy S., Le Naour F., Boucheix C. Reduced fertility of female mice lacking CD81. Dev. Biol. 2006;290:351–358. doi: 10.1016/j.ydbio.2005.11.031. PubMed DOI

Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287:319–321. doi: 10.1126/science.287.5451.319. PubMed DOI

Anifandis G., Messini C., Dafopoulos K., Sotiriou S., Messinis I. Molecular and cellular mechanisms of sperm-oocyte interactions opinions relative ti in vitro fertilization (IVF) Int. J. Mol. Sci. 2014;15:12972–12997. doi: 10.3390/ijms150712972. PubMed DOI PMC

Zimmerman B., Kelly B., McMilla B.J., Seegar T.C.M., Dror R.O., Kruse A.C., Blacklow S.C. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell. 2016;167:1041–1051. doi: 10.1016/j.cell.2016.09.056. PubMed DOI PMC

Zhang X.A., Huang C. Tetraspanins and cell membrane tubular structures. Cell. Mol. Life Sci. 2012;69:2843–2852. doi: 10.1007/s00018-012-0954-0. PubMed DOI PMC

Żyłkiewicz E., Nowakowska J., Maleszewski M. Decrease in CD9 content and reorganization of microvilli may contribute to the oolemma block to sperm penetration during fertilization of mouse oocyte. Zygote. 2010;18:195–201. doi: 10.1017/S0967199409990189. PubMed DOI

Evans P.J. Sperm-Egg interaction. Annu. Rev. Physiol. 2012;74:477–502. doi: 10.1146/annurev-physiol-020911-153339. PubMed DOI

Berditchevski F., Odintsova E., Sawada S., Gilbert E. Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signalling. J. Biol. Chem. 2002;277:36991–37000. doi: 10.1074/jbc.M205265200. PubMed DOI

Charrin S., Manié S., Oualid M., Billard M., Boucheix C., Rubinstein E. Differential stability of tetraspanin/tetraspanin inetractions: Role of palmitoylation. FEBS Lett. 2002;516:139–144. doi: 10.1016/S0014-5793(02)02522-X. PubMed DOI

Charrin S., Maniá S., Thiele C., Billard M., Gerlier D., Boucheix C., Rubinstein E. A physical and functional link between cholesterol and tetraspanins. Eur. J. Immunol. 2003;33:2479–2489. doi: 10.1002/eji.200323884. PubMed DOI

Odintsova E., Butters T.D., Monti E., Sprong H., van Meer G., Berditchevski F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem. J. 2006;400:315–325. doi: 10.1042/BJ20060259. PubMed DOI PMC

Yang X., Claas C., Kraeft S.K., Chen J.B., Wang Z., Kreidberg J.A., Hemler M.E. Palmitoylation of tetraspanin proteins: Modulation of CD151 latera interactions, Subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell. 2002;13:767–781. doi: 10.1091/mbc.01-05-0275. PubMed DOI PMC

Yanagimachi R. In: The Physiology of Reprodution. Knobil J.D.N., editor. Raven Press; New York, NY, USA: 1994. pp. 189–317.

Sleight S.B., Miranda P.V., Plaskett N.W., Maier B., Lysiak J., Scrable H., Herr J., Visconti P.E. Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: Evidence for dissociation of lipid rafts during capacitation. Biol. Reprod. 2005;73:721–729. doi: 10.1095/biolreprod.105.041533. PubMed DOI

Hogue I.B., Grover J.R., Soheilian F., Nagashima K., Ono A. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched domains at HIV-1 assembly sites on plasma membrane. J. Virol. 2011;85:9749–9766. doi: 10.1128/JVI.00743-11. PubMed DOI PMC

Tanphaichitr N., Carmona E., Khalil M.B., Xu H., Berger T., Gerton G. New insights into sperm-zona pellucida interaction: Involvement of sperm lipid rafts. Front. Biosci. 2007;12:1748–1766. doi: 10.2741/2186. PubMed DOI

Sosnik J., Buffone M.G., Visconti P.E. Analysis of CAPAZA3 localization reveals temporally discrete events during the acrosome reaction. J. Cell. Phys. 2010;224:575–580. doi: 10.1002/jcp.22211. PubMed DOI PMC

Inoue N., Satouh Y., Ikawa M., Okabe M., Yanagimachi R. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc. Natl. Acad. Sci. USA. 2011;108:20008–20011. doi: 10.1073/pnas.1116965108. PubMed DOI PMC

Stipp C.S., Kolesnikova T.V., Hemler M.E. EWI-2 is a major CD9 and CD81 partner and membber of a novel Ig protein subfamily. J. Biol. Chem. 2001;276:40545–40554. doi: 10.1074/jbc.M107338200. PubMed DOI

Sala-Valdés M., Ursa A., Charrin S., Rubinstein E., Hemler M.E., Sánchez-Madrid F., Yáñez-Mó M. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 2006;281:19665–19675. doi: 10.1074/jbc.M602116200. PubMed DOI

Horvath G., Serru V., Clay D., Billard M., Boucheix C., Rubinstein E. CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J. Biol. Chem. 1998;273:30537–30543. doi: 10.1074/jbc.273.46.30537. PubMed DOI

Sebkova N., Cerna M., Ded L., Peknicova J., Dvorakova-Hortova K. The slower the better: How sperm capacitation and acrosome reaction is modified in the presence of estrogens. Reproduction. 2012;143:297–307. doi: 10.1530/REP-11-0326. PubMed DOI

Ivankin A., Kuzmenko I., Gidalevitz D. Cholesterol mediates membrane curvature during fusion events. Phys. Rev. Lett. 2012;108:238103. doi: 10.1103/PhysRevLett.108.238103. PubMed DOI PMC

Buschiazzo J., Ialy-Radio C., Auer J., Wolf J.P., Serres C., Lefevre B., Ziyyat A. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization. PLoS ONE. 2013;8:1–13. doi: 10.1371/journal.pone.0062919. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some application. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC

The UniProt Consortium UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169. doi: 10.1093/nar/gkw1099. PubMed DOI PMC

Webb B., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2014;47 doi: 10.1002/0471250953.bi0506s47. PubMed DOI

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC

Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017;12:255–278. doi: 10.1038/nprot.2016.169. PubMed DOI PMC

Lazaridis T. Effective energy function for proteins in lipid membranes. Proteins. 2003;52:176–192. doi: 10.1002/prot.10410. PubMed DOI

Jo S., Kim T., Iyer V.G., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Brooks B.R., Brooks C.L., 3rd, Mackerell A.D., Jr., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287. PubMed DOI PMC

Schrodinger L.L.C. [(accessed on 4 December 2015)];The PyMOL Molecular Graphics System. 2015 Version 1.8. Available online: https://pymol.org/2/support.html?#citing.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...