CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29671763
PubMed Central
PMC5979608
DOI
10.3390/ijms19041236
PII: ijms19041236
Knihovny.cz E-zdroje
- Klíčová slova
- CD81, CD9, acrosome reaction, capacitation, fertilization, human, membrane fusion, mouse, sperm, structural modelling, tetraspanin network,
- MeSH
- akrozomální reakce * MeSH
- antigeny CD81 analýza metabolismus MeSH
- antigeny CD9 analýza metabolismus MeSH
- fertilizace MeSH
- fúze membrán MeSH
- kapacitace spermií * MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- molekulární modely MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- spermie cytologie metabolismus ultrastruktura MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD81 MeSH
- antigeny CD9 MeSH
Proteins CD9 and CD81 are members of the tetraspanin superfamily and were detected in mammalian sperm, where they are suspected to form an active tetraspanin web and to participate in sperm⁻egg membrane fusion. The importance of these two proteins during the early stages of fertilization is supported by the complete sterility of CD9/CD81 double null female mice. In this study, the putative mechanism of CD9/CD81 involvement in tetraspanin web formation in sperm and its activity prior to fertilization was addressed. Confocal microscopy and colocalization assay was used to determine a mutual CD9/CD81 localization visualised in detail by super-resolution microscopy, and their interaction was address by co-immunoprecipitation. The species-specific traits in CD9 and CD81 distribution during sperm maturation were compared between mice and humans. A mutual position of CD9/CD81 is shown in human spermatozoa in the acrosomal cap, however in mice, CD9 and CD81 occupy a distinct area. During the acrosome reaction in human sperm, only CD9 is relocated, compared to the relocation of both proteins in mice. The structural modelling of CD9 and CD81 homologous and possibly heterologous network formation was used to propose their lateral Cis as well as Trans interactions within the sperm membrane and during sperm⁻egg membrane fusion.
Zobrazit více v PubMed
Stipp C.S., Orlicky D., Hemler M. FPRP, a major, highly stoichiometric, highly specific CD81-and CD9-associated protein. J. Biol. Chem. 2001;276:4853–4862. doi: 10.1074/jbc.M009859200. PubMed DOI
Van Spriel A.B., Figdor C.G. The role of tetraspanins in the pathogenesis of infectious diseases. Microbes Infect. 2010;12:106–112. doi: 10.1016/j.micinf.2009.11.001. PubMed DOI
Boucheix C., Rubinstein E. Tetraspanins. Cell. Mol. Life Sci. 1997;58:1189–1205. doi: 10.1007/PL00000933. PubMed DOI PMC
Charrin S., le Naour F., Silvie O., Milhiet P.E., Boucheix C., Rubinstein E. Lateral organization of membrane proteins: Tetraspanins spin their web. Biochem. J. 2009;420:133–154. doi: 10.1042/BJ20082422. PubMed DOI
Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 2003;19:397–422. doi: 10.1146/annurev.cellbio.19.111301.153609. PubMed DOI
Levy S., Shoham T. The tetraspanin web modulates immune-signaling complexes. Nat. Rev. Immunol. 2005;5:136–148. doi: 10.1038/nri1548. PubMed DOI
Charrin S., Jouannet S., Boucheix C., Rubinstein E. Tetraspains at a glance. J. Cell Sci. 2014;127:1–8. doi: 10.1242/jcs.154906. PubMed DOI
Berditchevski F., Odintsova E. Characterization of Integrin–Tetraspanin Adhesion Complexes: Role of Tetraspanins in Integrin Signaling. J. Cell Biol. 1999;146:477–492. doi: 10.1083/jcb.146.2.477. PubMed DOI PMC
Stipp C.S., Hemler M.E. Transmembrane-4-superfamily proteins CD151 and CD81 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent neurite outgrowth. Pt 11J. Cell Sci. 2000;113:1871–1882. PubMed
Bassani S., Cingolani L.A. Tetraspanins: Interactions and interplay with integrins. Int. J. Biochem. Cell Biol. 2012;44:703–708. doi: 10.1016/j.biocel.2012.01.020. PubMed DOI
Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–324. doi: 10.1126/science.287.5451.321. PubMed DOI
Ziyyat A., Rubinstein E., Monier-Gavelle F., Barraud V., Kulski O., Prenant M., Boucheix C., Bomsel M., Wolf J.P. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J. Cell Sci. 2006;119 Pt 3:416–424. doi: 10.1242/jcs.02730. PubMed DOI
Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. Characterization of CD46 and beta1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC
Yanez-Mo M., Tejedor R., Rouselle P., Sanches-Madrid F. Tetraspanins in intercellular adhesion of polarized epithelial cells: Spatial and functional relationship to integrins and cadherins. J. Cell Sci. 2001;144:577–587. PubMed
Jégou A., Ziyyat A., Barraud-Lange V., Perez E., Wolf J.P., Pincet F., Gourier C. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc. Natl. Acad. Sci. USA. 2011;108:10946–10951. doi: 10.1073/pnas.1017400108. PubMed DOI PMC
Ellerman D.A., Ha C., Primakoff P., Myles D.G., Dveksler G.S. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol. Biol. Cell. 2003;14:5098–5103. doi: 10.1091/mbc.E03-04-0244. PubMed DOI PMC
Kovalenko O., Yang X., Kolesnikova T.V., Hemler M.E. Evidence for specific tetraspanin homodimers: Inhibition of palmitoylation makes cysteine residues available for cross-linking. Biochem. J. 2004;377:407–417. doi: 10.1042/bj20031037. PubMed DOI PMC
Barreiro O., Zamai M., Yáñez-Mó M., Tejera E., López-Romero P., Monk P.N., Gratton E., Caiolfa V.R., Sánchez-Madrid F. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 2008;183:527–542. doi: 10.1083/jcb.200805076. PubMed DOI PMC
Ito C., Yamatoya K., Yoshida K., Maekawa M., Miyado K., Toshimori K. Tetraspanin family protein CD9 in the mouse sperm: Unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 2010;340:583–594. doi: 10.1007/s00441-010-0967-7. PubMed DOI
Jankovicova J., Frolikova M., Sebkova N., Simon M., Cupperova P., Lipcseyova D., Michalkova K., Horovska L., Sedlacek R., Stopka P., et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction. 2000;152:785–793. doi: 10.1530/REP-16-0304. PubMed DOI
Rubinstein E., Ziyyat A., Prenant M., Wrobel E., Wolf J.P., Levy S., Le Naour F., Boucheix C. Reduced fertility of female mice lacking CD81. Dev. Biol. 2006;290:351–358. doi: 10.1016/j.ydbio.2005.11.031. PubMed DOI
Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287:319–321. doi: 10.1126/science.287.5451.319. PubMed DOI
Anifandis G., Messini C., Dafopoulos K., Sotiriou S., Messinis I. Molecular and cellular mechanisms of sperm-oocyte interactions opinions relative ti in vitro fertilization (IVF) Int. J. Mol. Sci. 2014;15:12972–12997. doi: 10.3390/ijms150712972. PubMed DOI PMC
Zimmerman B., Kelly B., McMilla B.J., Seegar T.C.M., Dror R.O., Kruse A.C., Blacklow S.C. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell. 2016;167:1041–1051. doi: 10.1016/j.cell.2016.09.056. PubMed DOI PMC
Zhang X.A., Huang C. Tetraspanins and cell membrane tubular structures. Cell. Mol. Life Sci. 2012;69:2843–2852. doi: 10.1007/s00018-012-0954-0. PubMed DOI PMC
Żyłkiewicz E., Nowakowska J., Maleszewski M. Decrease in CD9 content and reorganization of microvilli may contribute to the oolemma block to sperm penetration during fertilization of mouse oocyte. Zygote. 2010;18:195–201. doi: 10.1017/S0967199409990189. PubMed DOI
Evans P.J. Sperm-Egg interaction. Annu. Rev. Physiol. 2012;74:477–502. doi: 10.1146/annurev-physiol-020911-153339. PubMed DOI
Berditchevski F., Odintsova E., Sawada S., Gilbert E. Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signalling. J. Biol. Chem. 2002;277:36991–37000. doi: 10.1074/jbc.M205265200. PubMed DOI
Charrin S., Manié S., Oualid M., Billard M., Boucheix C., Rubinstein E. Differential stability of tetraspanin/tetraspanin inetractions: Role of palmitoylation. FEBS Lett. 2002;516:139–144. doi: 10.1016/S0014-5793(02)02522-X. PubMed DOI
Charrin S., Maniá S., Thiele C., Billard M., Gerlier D., Boucheix C., Rubinstein E. A physical and functional link between cholesterol and tetraspanins. Eur. J. Immunol. 2003;33:2479–2489. doi: 10.1002/eji.200323884. PubMed DOI
Odintsova E., Butters T.D., Monti E., Sprong H., van Meer G., Berditchevski F. Gangliosides play an important role in the organization of CD82-enriched microdomains. Biochem. J. 2006;400:315–325. doi: 10.1042/BJ20060259. PubMed DOI PMC
Yang X., Claas C., Kraeft S.K., Chen J.B., Wang Z., Kreidberg J.A., Hemler M.E. Palmitoylation of tetraspanin proteins: Modulation of CD151 latera interactions, Subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell. 2002;13:767–781. doi: 10.1091/mbc.01-05-0275. PubMed DOI PMC
Yanagimachi R. In: The Physiology of Reprodution. Knobil J.D.N., editor. Raven Press; New York, NY, USA: 1994. pp. 189–317.
Sleight S.B., Miranda P.V., Plaskett N.W., Maier B., Lysiak J., Scrable H., Herr J., Visconti P.E. Isolation and proteomic analysis of mouse sperm detergent-resistant membrane fractions: Evidence for dissociation of lipid rafts during capacitation. Biol. Reprod. 2005;73:721–729. doi: 10.1095/biolreprod.105.041533. PubMed DOI
Hogue I.B., Grover J.R., Soheilian F., Nagashima K., Ono A. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched domains at HIV-1 assembly sites on plasma membrane. J. Virol. 2011;85:9749–9766. doi: 10.1128/JVI.00743-11. PubMed DOI PMC
Tanphaichitr N., Carmona E., Khalil M.B., Xu H., Berger T., Gerton G. New insights into sperm-zona pellucida interaction: Involvement of sperm lipid rafts. Front. Biosci. 2007;12:1748–1766. doi: 10.2741/2186. PubMed DOI
Sosnik J., Buffone M.G., Visconti P.E. Analysis of CAPAZA3 localization reveals temporally discrete events during the acrosome reaction. J. Cell. Phys. 2010;224:575–580. doi: 10.1002/jcp.22211. PubMed DOI PMC
Inoue N., Satouh Y., Ikawa M., Okabe M., Yanagimachi R. Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc. Natl. Acad. Sci. USA. 2011;108:20008–20011. doi: 10.1073/pnas.1116965108. PubMed DOI PMC
Stipp C.S., Kolesnikova T.V., Hemler M.E. EWI-2 is a major CD9 and CD81 partner and membber of a novel Ig protein subfamily. J. Biol. Chem. 2001;276:40545–40554. doi: 10.1074/jbc.M107338200. PubMed DOI
Sala-Valdés M., Ursa A., Charrin S., Rubinstein E., Hemler M.E., Sánchez-Madrid F., Yáñez-Mó M. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 2006;281:19665–19675. doi: 10.1074/jbc.M602116200. PubMed DOI
Horvath G., Serru V., Clay D., Billard M., Boucheix C., Rubinstein E. CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J. Biol. Chem. 1998;273:30537–30543. doi: 10.1074/jbc.273.46.30537. PubMed DOI
Sebkova N., Cerna M., Ded L., Peknicova J., Dvorakova-Hortova K. The slower the better: How sperm capacitation and acrosome reaction is modified in the presence of estrogens. Reproduction. 2012;143:297–307. doi: 10.1530/REP-11-0326. PubMed DOI
Ivankin A., Kuzmenko I., Gidalevitz D. Cholesterol mediates membrane curvature during fusion events. Phys. Rev. Lett. 2012;108:238103. doi: 10.1103/PhysRevLett.108.238103. PubMed DOI PMC
Buschiazzo J., Ialy-Radio C., Auer J., Wolf J.P., Serres C., Lefevre B., Ziyyat A. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization. PLoS ONE. 2013;8:1–13. doi: 10.1371/journal.pone.0062919. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some application. Proc. Natl. Acad. Sci. USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. PubMed DOI PMC
The UniProt Consortium UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–D169. doi: 10.1093/nar/gkw1099. PubMed DOI PMC
Webb B., Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2014;47 doi: 10.1002/0471250953.bi0506s47. PubMed DOI
Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC
Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017;12:255–278. doi: 10.1038/nprot.2016.169. PubMed DOI PMC
Lazaridis T. Effective energy function for proteins in lipid membranes. Proteins. 2003;52:176–192. doi: 10.1002/prot.10410. PubMed DOI
Jo S., Kim T., Iyer V.G., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Brooks B.R., Brooks C.L., 3rd, Mackerell A.D., Jr., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287. PubMed DOI PMC
Schrodinger L.L.C. [(accessed on 4 December 2015)];The PyMOL Molecular Graphics System. 2015 Version 1.8. Available online: https://pymol.org/2/support.html?#citing.
Juno and CD9 protein network organization in oolemma of mouse oocyte
Role of Integrins in Sperm Activation and Fertilization
αV Integrin Expression and Localization in Male Germ Cells
Tetraspanins in mammalian reproduction: spermatozoa, oocytes and embryos
Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells