Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32152440
PubMed Central
PMC7062741
DOI
10.1038/s41598-020-61334-2
PII: 10.1038/s41598-020-61334-2
Knihovny.cz E-zdroje
- MeSH
- antigeny CD151 chemie genetika metabolismus MeSH
- exprese genu * MeSH
- fluorescenční protilátková technika MeSH
- integrin alfa6 chemie metabolismus MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- myši MeSH
- spermie metabolismus MeSH
- testis metabolismus MeSH
- transport proteinů MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zárodečné buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD151 MeSH
- integrin alfa6 MeSH
The physiological importance of CD151 tetraspanin is known from somatic cells and its outside-in signalling through integrins was described. In male germ cells, two tetraspanins, CD9 and CD81, are involved in sperm-egg membrane fusion, and similarly to integrins, they occupy characteristic regions. We report here on a newly discovered presence of CD151 in sperm, and present its expression and distribution during spermatogenesis and sperm transition during the acrosome reaction. We traced CD151 gene and protein expression in testicular cell subpopulations, with strong enrichment in spermatogonia and spermatids. The testicular and epididymal localization pattern is designated to the sperm head primary fusion site called the equatorial segment and when compared to the acrosome vesicle status, CD151 was located into the inner acrosomal membrane overlying the nucleus. Moreover, we show CD151 interaction with α6 integrin subunit, which forms a dimer with β4 as a part of cis-protein interactions within sperm prior to gamete fusion. We used mammalian species with distinct sperm morphology and sperm maturation such as mouse and bull and compared the results with human. In conclusion, the delivered findings characterise CD151 as a novel sperm tetraspanin network member and provide knowledge on its physiology in male germ cells.
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague 2 Czech Republic
Zobrazit více v PubMed
Hemler ME. Integrin associated proteins. Curr. Opin. Cell Biol. 1998;10:578–585. doi: 10.1016/S0955-0674(98)80032-X. PubMed DOI
Spinardi L, Ren YL, Sanders R, Giancotti FG. The beta 4 subunit cytoplasmic domain mediates the interaction of alpha 6 beta 4 integrin with the cytoskeleton of hemidesmosomes. Molecular biology of the cell. 1993;4:871–884. doi: 10.1091/mbc.4.9.871. PubMed DOI PMC
Ramírez‐Ramírez, D. et al. Rac1 is necessary for capacitation and acrosome reaction in guinea pig spermatozoa. J. Cell. Biochem. (2019). PubMed
Mainiero F, et al. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. The EMBO journal. 1995;14:4470–4481. doi: 10.1002/j.1460-2075.1995.tb00126.x. PubMed DOI PMC
Boucheix C, Rubinstein E. Tetraspanins. Cellular and Molecular Life Sciences CMLS. 2001;58:1189–1205. doi: 10.1007/pl00000933. PubMed DOI PMC
Colburn ZT, Jones JC. α6β4 integrin regulates the collective migration of epithelial cells. American journal of respiratory cell and molecular biology. 2017;56:443–452. doi: 10.1165/rcmb.2016-0313OC. PubMed DOI PMC
Kaji K, et al. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 2000;24:279. doi: 10.1038/73502. PubMed DOI
Miyado K, et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–324. doi: 10.1126/science.287.5451.321. PubMed DOI
Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287:319–321. doi: 10.1126/science.287.5451.319. PubMed DOI
Ohnami N, et al. CD81 and CD9 work independently as extracellular components upon fusion of sperm and oocyte. Biology open. 2012;1:640–647. doi: 10.1242/bio.20121420. PubMed DOI PMC
Jankovicova J, et al. Detection of CD9 and CD81 tetraspanins in bovine and porcine oocytes and embryos. International journal of biological macromolecules. 2019;123:931–938. doi: 10.1016/j.ijbiomac.2018.11.161. PubMed DOI
Antalíková J, et al. Localization of CD 9 Molecule on Bull Spermatozoa: Its Involvement in the Sperm–Egg Interaction. Reproduction in domestic animals. 2015;50:423–430. doi: 10.1111/rda.12508. PubMed DOI
Frolikova M, et al. CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization. International journal of molecular sciences. 2018;19:1236. doi: 10.3390/ijms19041236. PubMed DOI PMC
Jankovicova, J. et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction, REP-16-0304 (2016). PubMed
Parthasarathy V, et al. Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology. 2009;127:237–248. doi: 10.1111/j.1365-2567.2008.02945.x. PubMed DOI PMC
Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell. Dev. Biol. 2003;19:397–422. doi: 10.1146/annurev.cellbio.19.111301.153609. PubMed DOI
Glander HJ, Schaller J. Beta 1‐integrins of spermatozoa: a flow cytophotometric analysis. International journal of andrology. 1993;16:105–111. doi: 10.1111/j.1365-2605.1993.tb01162.x. PubMed DOI
Reddy VRK, Rajeev SK, Gupta V. α6β1 Integrin is a potential clinical marker for evaluating sperm quality in men. Fertility and Sterility. 2003;79:1590–1596. doi: 10.1016/S0015-0282(03)00368-6. PubMed DOI
Barraud-Lange V, et al. Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev. Biol. 2007;7:102. doi: 10.1186/1471-213X-7-102. PubMed DOI PMC
Frolikova M, et al. Addressing the Compartmentalization of Specific Integrin Heterodimers in Mouse Sperm. International journal of molecular sciences. 2019;20:1004. doi: 10.3390/ijms20051004. PubMed DOI PMC
Lammerding J, Kazarov AR, Huang H, Lee RT, Hemler ME. Tetraspanin CD151 regulates α6β1 integrin adhesion strengthening. Proceedings of the National Academy of Sciences. 2003;100:7616–7621. doi: 10.1073/pnas.1337546100. PubMed DOI PMC
Ziyyat A, et al. CD9 controls the formation of clusters that contain tetraspanins and the integrin α6β1, which are involved in human and mouse gamete fusion. J. Cell Sci. 2006;119:416–424. doi: 10.1242/jcs.02730. PubMed DOI
Kajiji S, Tamura RN, Quaranta V. A novel integrin (alpha E beta 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. The EMBO journal. 1989;8:673–680. doi: 10.1002/j.1460-2075.1989.tb03425.x. PubMed DOI PMC
Serru V, et al. Selective tetraspan–integrin complexes (CD81/α4β1, CD151/α3β1, CD151/α6β1) under conditions disrupting tetraspan interactions. Biochem. J. 1999;340:103–111. PubMed PMC
Lotus MT, et al. The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin α6β4 and may regulate the spatial organization of hemidesmosomes. The Journal of cell biology. 2000;149:969–982. doi: 10.1083/jcb.149.4.969. PubMed DOI PMC
Evinger AJ, III, Levin ER. Requirements for estrogen receptor α membrane localization and function. Steroids. 2005;70:361–363. doi: 10.1016/j.steroids.2005.02.015. PubMed DOI
Berditchevski F, Odintsova E, Sawada S, Gilbert E. Expression of the palmitoylation-deficient CD151 weakens the association of α3β1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J. Biol. Chem. 2002;277:36991–37000. doi: 10.1074/jbc.M205265200. PubMed DOI
Nielsen M, Bøgh IB, Schmidt M, Greve T. Immunohistochemical localization of estrogen receptor-α in sex ducts and gonads of newborn piglets. Histochemistry and Cell Biology. 2001;115:521–526. doi: 10.1007/s004180100269. PubMed DOI
Kitiyanant Y, Chaisalee B, Pavasuthipaisit K. Evaluation of the acrosome reaction and viability in buffalo spermatozoa using two staining methods: the effects of heparin and calcium ionophore A23187. International Journal of Andrology. 2002;25:215–222. doi: 10.1046/j.1365-2605.2002.00350.x. PubMed DOI
Satouh Y, Inoue N, Ikawa M, Okabe M. Visualization of the moment of mouse sperm–egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 2012;125:4985–4990. doi: 10.1242/jcs.100867. PubMed DOI
Ito, C., Yamatoya, K. & Toshimori, K. In Sexual Reproduction in Animals and Plants 85–95 (Springer, Tokyo, 2014).
Frolikova M, Sebkova N, Ded L, Dvorakova-Hortova K. Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Scientific Reports. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC
Frolíková M, et al. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. Folia Zoologica. 2012;61:84–95. doi: 10.25225/fozo.v61.i1.a12.2012. DOI
Sebkova N, Ded L, Vesela K, Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction. 2014;147:231–240. doi: 10.1530/REP-13-0193. PubMed DOI
Jankovicova J, et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction. 2016;152:785–793. doi: 10.1530/REP-16-0304. PubMed DOI
Nakanishi T, et al. Real‐time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 1999;449:277–283. doi: 10.1016/S0014-5793(99)00433-0. PubMed DOI
Fitter S, Tetaz TJ, Berndt MC, Ashman LK. Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3. Blood. 1995;86:1348–1355. doi: 10.1182/blood.V86.4.1348.bloodjournal8641348. PubMed DOI
Zola, H., Swart, B., Nicholson, I. & Woss, E. Leukocyte and Stromal Cell Molecules: The CDMarkers. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007).
Wang Z, et al. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget. 2016;7:60623. PubMed PMC
Spiro RG. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43R–56R. doi: 10.1093/glycob/12.4.43R. PubMed DOI
Inoue N, Ikawa M, Okabe M. The mechanism of sperm–egg interaction and the involvement of IZUMO1 in fusion. Asian journal of andrology. 2011;13:81. doi: 10.1038/aja.2010.70. PubMed DOI PMC
Cohen DJ, et al. Participation of epididymal cysteine‐rich secretory proteins in sperm‐egg fusion and their potential use for male fertility regulation. Asian journal of andrology. 2007;9:528–532. doi: 10.1111/j.1745-7262.2007.00283.x. PubMed DOI
Yoshida K, et al. A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin. Reproduction. 2010;139:533–544. doi: 10.1530/REP-09-0434. PubMed DOI
Ito C, et al. Tetraspanin family protein CD9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 2010;340:583–594. doi: 10.1007/s00441-010-0967-7. PubMed DOI
Yang XH, et al. CD151 restricts the α6 integrin diffusion mode. J. Cell Sci. 2012;125:1478–1487. doi: 10.1242/jcs.093963. PubMed DOI PMC
Singethan K, Schneider-Schaulies J. Tetraspanins: Small transmembrane proteins with big impact on membrane microdomain structures. Communicative & integrative biology. 2008;1:11–13. doi: 10.4161/cib.1.1.6406. PubMed DOI PMC
Stipp CS, Kolesnikova TV, Hemler ME. Functional domains in tetraspanin proteins. Trends Biochem. Sci. 2003;28:106–112. doi: 10.1016/S0968-0004(02)00014-2. PubMed DOI
Goschnick MW, et al. Impaired “outside-in” integrin αIIbβ3 signaling and thrombus stability in TSSC6-deficient mice. Blood. 2006;108:1911–1918. doi: 10.1182/blood-2006-02-004267. PubMed DOI
Charrin S, et al. Lateral organization of membrane proteins: tetraspanins spin their web. Biochem. J. 2009;420:133–154. doi: 10.1042/BJ20082422. PubMed DOI
Sabetian S, Shamsir MS, Naser MA. Functional features and protein network of human sperm-egg interaction. Systems biology in reproductive medicine. 2014;60:329–337. doi: 10.3109/19396368.2014.955896. PubMed DOI
Hemler M, Crouse C, Sonnenberg A. Association of the VLA alpha 6 subunit with a novel protein. A possible alternative to the common VLA beta 1 subunit on certain cell lines. J. Biol. Chem. 1989;264:6529–6535. PubMed
Simon‐Assmann P, et al. Differential expression of laminin isoforms and α6‐β4 integrin subunits in the developing human and mouse intestine. Dev. Dyn. 1994;201:71–85. doi: 10.1002/aja.1002010108. PubMed DOI
Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. Lab. Invest. 2014;94:41. doi: 10.1038/labinvest.2013.136. PubMed DOI
Liu L, et al. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J. Biol. Chem. 2007;282:31631–31642. doi: 10.1074/jbc.M701165200. PubMed DOI
Winterwood NE, Varzavand A, Meland MN, Ashman LK, Stipp CS. A critical role for tetraspanin CD151 in α3β1 and α6β4 integrin–dependent tumor cell functions on laminin-5. Molecular biology of the cell. 2006;17:2707–2721. doi: 10.1091/mbc.e05-11-1042. PubMed DOI PMC
te Molder L, et al. Tetraspanin CD151 and integrin α3β1 contribute to the stabilization of integrin α6β4-containing cell-matrix adhesions. J. Cell Sci. 2019;132:jcs235366. doi: 10.1242/jcs.235366. PubMed DOI
Kierszenbaum AL, Rivkin E, Tres LL. Molecular biology of sperm head shaping. Society of Reproduction and Fertility supplement. 2007;65:33. PubMed
Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. PubMed DOI
Lozahic S, et al. CD46 (membrane cofactor protein) associates with multiple β1 integrins and tetraspans. Eur. J. Immunol. 2000;30:900–907. doi: 10.1002/1521-4141(200003)30:3<900::AID-IMMU900>3.0.CO;2-X. PubMed DOI
Kazarov AR, Yang X, Stipp CS, Sehgal B, Hemler ME. An extracellular site on tetraspanin CD151 determines α3 and α6 integrin–dependent cellular morphology. The Journal of cell biology. 2002;158:1299–1309. doi: 10.1083/jcb.200204056. PubMed DOI PMC
Chang Y-F, Lee-Chang JS, Panneerdoss S, MacLean JA, Rao MK. Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. BioTechniques. 2011;51:341–344. doi: 10.2144/000113764. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Yang J, et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods. 2015;12:7–8. doi: 10.1038/nmeth.3213. PubMed DOI PMC
The UniProt, C. UniProt: the universal protein knowledgebase. Nucleic. Acids. Res. 2017;45:D158–D169. doi: 10.1093/nar/gkw1099. PubMed DOI PMC
Kozakov D, et al. How good is automated protein docking? Proteins. 2013;81:2159–2166. doi: 10.1002/prot.24403. PubMed DOI PMC
Kozakov D, Brenke R, Comeau SR, Vajda S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins. 2006;65:392–406. doi: 10.1002/prot.21117. PubMed DOI
Schrodinger, L. L. C. The PyMOL Molecular Graphics System, Version 2.1 (2015).
Role of Integrins in Sperm Activation and Fertilization
αV Integrin Expression and Localization in Male Germ Cells