Role of Integrins in Sperm Activation and Fertilization

. 2021 Oct 30 ; 22 (21) : . [epub] 20211030

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34769240

Grantová podpora
GC20-20217J Grant Agency of the Czech Republic
86652036 Institute of Biotechnology of the Czech Academy of Sciences
CZ.1.05/1.1.00/02.0109 BIOCEV

In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.

Zobrazit více v PubMed

Humphries M.J. Integrin structure. Biochem. Soc. Trans. 2000;28:311–339. doi: 10.1042/bst0280311. PubMed DOI

Luo B.H., Springer T.A. Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 2006;18:579–586. doi: 10.1016/j.ceb.2006.08.005. PubMed DOI PMC

Takada Y., Ye X., Simon S. The integrins. Genome Biol. 2007;8:215. doi: 10.1186/gb-2007-8-5-215. PubMed DOI PMC

Barczyk M., Carracedo S., Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280. doi: 10.1007/s00441-009-0834-6. PubMed DOI PMC

Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. PubMed DOI

Sueoka K., Shiokawa S., Miyazaki T., Kuji N., Tanaka M., Yoshimura Y. Integrins and reproductive physiology: Expression and modulation in fertilization, embryogenesis, and implantation. Fertil. Steril. 1997;67:799–811. doi: 10.1016/S0015-0282(97)81388-X. PubMed DOI

Fénichel P., Durand-Clément M. Role of integrins during fertilization in mammals. Hum. Reprod. 1998;13((Suppl. S4)):31–46. doi: 10.1093/humrep/13.suppl_4.31. PubMed DOI

Glander H.J., Schaller J., Rohwedder A., Henkel R. Adhesion molecules and matrix proteins on human spermatozoa. Andrologia. 1998;30:289–296. doi: 10.1111/j.1439-0272.1998.tb01173.x. PubMed DOI

Klentzeris L.D., Fishel S., McDermott H., Dowell K., Hall J., Green S. A positive correlation between expression of beta 1-integrin cell adhesion molecules and fertilizing ability of human spermatozoa in vitro. Hum. Reprod. 1995;10:728–733. doi: 10.1093/oxfordjournals.humrep.a136023. PubMed DOI

Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC

Frolikova M., Valaskova E., Cerny J., Lumeau A., Sebkova N., Palenikova V., Sanches-Hernandez N., Pohlova A., Manaskova-Postlerova P., Dvorakova-Hortova K. Addressing the Compartmentalization of Specific Integrin Heterodimers in Mouse Sperm. Int. J. Mol. Sci. 2019;20:1004. doi: 10.3390/ijms20051004. PubMed DOI PMC

Jankovicova J., Frolikova M., Palenikova V., Valaskova E., Cerny J., Secova P., Bartokova M., Horovska L., Manaskova-Postlerova P., Antalikova J., et al. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci. Rep. 2020;10:4374. doi: 10.1038/s41598-020-61334-2. PubMed DOI PMC

Glander H.J., Schaller J. Beta 1-integrins of spermatozoa: A flow cytophotometric analysis. Int. J. Androl. 1993;16:105–111. doi: 10.1111/j.1365-2605.1993.tb01162.x. PubMed DOI

Fusi F., Tamburini C., Mangili F., Montesano M., Ferrai A., Bronson R. The expression of αv, α5, β1, and β3 integrin chains on ejaculated human spermatozoa varies with their functional state. MHR Basic Sci. Reprod. Med. 1996;2:169–175. doi: 10.1093/molehr/2.3.169. PubMed DOI

Reddy V.R., Rajeev S.K., Gupta V. Alpha 6 beta 1 Integrin is a potential clinical marker for evaluating sperm quality in men. Fertil. Steril. 2003;79((Suppl. S3)):1590–1596. doi: 10.1016/S0015-0282(03)00368-6. PubMed DOI

Barraud-Lange V., Naud-Barriant N., Saffar L., Gattegno L., Ducot B., Drillet A.S., Bomsel M., Wolf J.P., Ziyyat A. Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev. Biol. 2007;7:102. doi: 10.1186/1471-213X-7-102. PubMed DOI PMC

Palenikova V., Frolikova M., Valaskova E., Postlerova P., Komrskova K. αV Integrin Expression and Localization in Male Germ Cells. Int. J. Mol. Sci. 2021;22:9525. doi: 10.3390/ijms22179525. PubMed DOI PMC

Boissonnas C.C., Montjean D., Lesaffre C., Auer J., Vaiman D., Wolf J.P., Ziyyat A. Role of sperm alphavbeta3 integrin in mouse fertilization. Dev. Dyn. 2010;239:773–783. doi: 10.1002/dvdy.22206. PubMed DOI

Harper M. Sperm and egg transport. Reproduction in Mammals. Book 1. Germ Cells and Fertilization. Cambridge University Press; Cambridge, UK: 1982. pp. 102–127.

Suarez S. In: Gamete and zygote transport In Knobil and Neill’s Physiology of Reproduction. Plant T.M., Zeleznik A., editors. Elsevier; Amsterdam, The Netherlands: 2015.

Puga Molina L.C., Luque G.M., Balestrini P.A., Marín-Briggiler C.I., Romarowski A., Buffone M.G. Molecular Basis of Human Sperm Capacitation. Front. Cell Dev. Biol. 2018;6:72. doi: 10.3389/fcell.2018.00072. PubMed DOI PMC

Gaddum-Rosse P. Some observations on sperm transport through the uterotubal junction of the rat. Am. J. Anat. 1981;160:333–341. doi: 10.1002/aja.1001600309. PubMed DOI

Suarez S.S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016;363:185–194. doi: 10.1007/s00441-015-2244-2. PubMed DOI PMC

Cho C., Bunch D.O., Faure J.E., Goulding E.H., Eddy E.M., Primakoff P., Myles D.G. Fertilization defects in sperm from mice lacking fertilin beta. Science. 1998;281:1857–1859. doi: 10.1126/science.281.5384.1857. PubMed DOI

Yamaguchi R., Fujihara Y., Ikawa M., Okabe M. Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa. Mol. Biol. Cell. 2012;23:2671–2679. doi: 10.1091/mbc.e11-12-1025. PubMed DOI PMC

Ikawa M., Inoue N., Benham A.M., Okabe M. Fertilization: A sperm’s journey to and interaction with the oocyte. J. Clin. Investig. 2010;120:984–994. doi: 10.1172/JCI41585. PubMed DOI PMC

Gabler C., Chapman D.A., Killian G.J. Expression and presence of osteopontin and integrins in the bovine oviduct during the oestrous cycle. Reproduction. 2003;126:721–729. doi: 10.1530/rep.0.1260721. PubMed DOI

Nakanishi T., Isotani A., Yamaguchi R., Ikawa M., Baba T., Suarez S.S., Okabe M. Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol. Reprod. 2004;71:959–965. doi: 10.1095/biolreprod.104.028647. PubMed DOI

Ikawa M., Nakanishi T., Yamada S., Wada I., Kominami K., Tanaka H., Nozaki M., Nishimune Y., Okabe M. Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev. Biol. 2001;240:254–261. doi: 10.1006/dbio.2001.0462. PubMed DOI

Suarez S.S., Pacey A.A. Sperm transport in the female reproductive tract. Human. Reprod. Update. 2005;12:23–37. doi: 10.1093/humupd/dmi047. PubMed DOI

Lyons A., Narciandi F., Donnellan E., Romero-Aguirregomezcorta J., Farrelly C.O., Lonergan P., Meade K.G., Fair S. Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia. Reprod. Fertil. Dev. 2018;30:1472–1481. doi: 10.1071/RD17415. PubMed DOI

Cortés P.P., Orihuela P.A., Zúñiga L.M., Velásquez L.A., Croxatto H.B. Sperm binding to oviductal epithelial cells in the rat: Role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface. Biol. Reprod. 2004;71:1262–1269. doi: 10.1095/biolreprod.104.027474. PubMed DOI

Wagner A., Ekhlasi-Hundrieser M., Hettel C., Petrunkina A., Waberski D., Nimtz M., Töpfer-Petersen E. Carbohydrate-based interactions of oviductal sperm reservoir formation-studies in the pig. Mol. Reprod. Dev. 2002;61:249–257. doi: 10.1002/mrd.1154. PubMed DOI

Lefebvre R., Lo M.C., Suarez S.S. Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol. Reprod. 1997;56:1198–1204. doi: 10.1095/biolreprod56.5.1198. PubMed DOI

Osycka-Salut C.E., Castellano L., Fornes D., Beltrame J.S., Alonso C.A.I., Jawerbaum A., Franchi A., Díaz E.S., Perez Martinez S. Fibronectin from Oviductal Cells Fluctuates During the Estrous Cycle and Contributes to Sperm-Oviduct Interaction in Cattle. J. Cell Biochem. 2017;118:4095–4108. doi: 10.1002/jcb.26067. PubMed DOI

Ignotz G.G., Cho M.Y., Suarez S.S. Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol. Reprod. 2007;77:906–913. doi: 10.1095/biolreprod.107.062505. PubMed DOI

Boilard M., Reyes-Moreno C., Lachance C., Massicotte L., Bailey J.L., Sirard M.A., Leclerc P. Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol. Reprod. 2004;71:1879–1889. doi: 10.1095/biolreprod.103.026849. PubMed DOI

Rodríguez-Martínez H., Saravia F., Wallgren M., Tienthai P., Johannisson A., Vázquez J.M., Martínez E., Roca J., Sanz L., Calvete J.J. Boar spermatozoa in the oviduct. Theriogenology. 2005;63:514–535. doi: 10.1016/j.theriogenology.2004.09.028. PubMed DOI

Hunter R.H., Léglise P.C. Polyspermic fertilization following tubal surgery in pigs, with particular reference to the rôle of the isthmus. J. Reprod. Fertil. 1971;24:233–246. doi: 10.1530/jrf.0.0240233. PubMed DOI

Teijeiro J.M., Marini P.E. The effect of oviductal deleted in malignant brain tumor 1 over porcine sperm is mediated by a signal transduction pathway that involves pro-AKAP4 phosphorylation. Reproduction. 2012;143:773–785. doi: 10.1530/REP-11-0314. PubMed DOI

Hunter R.H.F. Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles. Mol. Reprod. Dev. 2008;75:167–174. doi: 10.1002/mrd.20776. PubMed DOI

Osycka-Salut C.E., Martínez-León E., Gervasi M.G., Castellano L., Davio C., Chiarante N., Franchi A.M., Ribeiro M.L., Díaz E.S., Perez-Martinez S. Fibronectin induces capacitation-associated events through the endocannabinoid system in bull sperm. Theriogenology. 2020;153:91–101. doi: 10.1016/j.theriogenology.2020.04.031. PubMed DOI

Caballero J., Frenette G., Sullivan R. Post testicular sperm maturational changes in the bull: Important role of the epididymosomes and prostasomes. Vet. Med. Int. 2010;2011:757194. doi: 10.4061/2011/757194. PubMed DOI PMC

Al-Dossary A.A., Strehler E.E., Martin-Deleon P.A. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: Association with oviductal exosomes and uptake in sperm. PLoS ONE. 2013;8:e80181. doi: 10.1371/journal.pone.0080181. PubMed DOI PMC

Ferraz M., Carothers A., Dahal R., Noonan M.J., Songsasen N. Oviductal extracellular vesicles interact with the spermatozoon’s head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci. Rep. 2019;9:9484. doi: 10.1038/s41598-019-45857-x. PubMed DOI PMC

Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC

Schwarz A., Wennemuth G., Post H., Brandenburger T., Aumüller G., Wilhelm B. Vesicular transfer of membrane components to bovine epididymal spermatozoa. Cell Tissue Res. 2013;353:549–561. doi: 10.1007/s00441-013-1633-7. PubMed DOI

Al-Dossary A.A., Bathala P., Caplan J.L., Martin-DeLeon P.A. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: Detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM) J. Biol. Chem. 2015;290:17710–17723. doi: 10.1074/jbc.M114.633156. PubMed DOI PMC

Kozlov M.M., Leikin S.L., Chernomordik L.V., Markin V.S., Chizmadzhev Y.A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur. Biophys. J. 1989;17:121–129. doi: 10.1007/BF00254765. PubMed DOI

Wennemuth G., Babcock D.F., Hille B. Calcium clearance mechanisms of mouse sperm. J. Gen. Physiol. 2003;122:115–128. doi: 10.1085/jgp.200308839. PubMed DOI PMC

Gadella B.M., Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014;81:74–84. doi: 10.1016/j.theriogenology.2013.09.005. PubMed DOI

Brener E., Rubinstein S., Cohen G., Shternall K., Rivlin J., Breitbart H. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol. Reprod. 2003;68:837–845. doi: 10.1095/biolreprod.102.009233. PubMed DOI

Toshimori K., Eddy E. Knobil and Neill’s Physiology of Reproduction. Elsevier; Amsterdam, The Netherlands: 2015. The spermatozoon.

Cuasnicú P.S., Da Ros V.G., Weigel Muñoz M., Cohen D.J. Acrosome Reaction as a Preparation for Gamete Fusion. Adv. Anat. Embryol. Cell Biol. 2016;220:159–172. doi: 10.1007/978-3-319-30567-7_9. PubMed DOI

Hirohashi N., Yanagimachi R. Sperm acrosome reaction: Its site and role in fertilization. Biol. Reprod. 2018;99:127–133. doi: 10.1093/biolre/ioy045. PubMed DOI

Satouh Y., Inoue N., Ikawa M., Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell. Sci. 2012;125:4985–4990. doi: 10.1242/jcs.100867. PubMed DOI

Frolikova M., Manaskova-Postlerova P., Cerny J., Jankovicova J., Simonik O., Pohlova A., Secova P., Antalikova J., Dvorakova-Hortova K. CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization. Int. J. Mol. Sci. 2018;19:1236. doi: 10.3390/ijms19041236. PubMed DOI PMC

Zanetti N., Mayorga L.S. Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol. Reprod. 2009;81:396–405. doi: 10.1095/biolreprod.109.076166. PubMed DOI

Liu S., Calderwood D.A., Ginsberg M.H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 2000;113:3563–3571. doi: 10.1242/jcs.113.20.3563. PubMed DOI

Lozahic S., Christiansen D., Manié S., Gerlier D., Billard M., Boucheix C., Rubinstein E. CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans. Eur. J. Immunol. 2000;30:900–907. doi: 10.1002/1521-4141(200003)30:3<900::AID-IMMU900>3.0.CO;2-X. PubMed DOI

Kurita-Taniguchi M., Hazeki K., Murabayashi N., Fukui A., Tsuji S., Matsumoto M., Toyoshima K., Seya T. Molecular assembly of CD46 with CD9, alpha3-beta1 integrin and protein tyrosine phosphatase SHP-1 in human macrophages through differentiation by GM-CSF. Mol. Immunol. 2002;38:689–700. doi: 10.1016/S0161-5890(01)00100-6. PubMed DOI

Rezcallah M.S., Hodges K., Gill D.B., Atkinson J.P., Wang B., Cleary P.P. Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell. Microbiol. 2005;7:645–653. doi: 10.1111/j.1462-5822.2004.00497.x. PubMed DOI

Inoue N., Ikawa M., Nakanishi T., Matsumoto M., Nomura M., Seya T., Okabe M. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell. Biol. 2003;23:2614–2622. doi: 10.1128/MCB.23.7.2614-2622.2003. PubMed DOI PMC

Clift L.E., Andrlikova P., Frolikova M., Stopka P., Bryja J., Flanagan B.F., Johnson P.M., Dvorakova-Hortova K. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius) Reprod. Biol. Endocrinol. 2009;7:29. doi: 10.1186/1477-7827-7-29. PubMed DOI PMC

Frolíková M., Stopková R., Antalíková J., Johnson P.M., Stopka P., Dvořáková-Hortová K. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. J. Vertebr. Biol. 2012;61:84–94. doi: 10.25225/fozo.v61.i1.a12.2012. DOI

Johnson P.M., Clift L.E., Andrlikova P., Jursova M., Flanagan B.F., Cummerson J.A., Stopka P., Dvorakova-Hortova K. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus) Reproduction. 2007;134:739–747. doi: 10.1530/REP-07-0363. PubMed DOI

Colburn Z.T., Jones J.C. α(6)β(4) Integrin Regulates the Collective Migration of Epithelial Cells. Am. J. Respir. Cell. Mol. Biol. 2017;56:443–452. doi: 10.1165/rcmb.2016-0313OC. PubMed DOI PMC

Ramírez-Ramírez D., Salgado-Lucio M.L., Roa-Espitia A.L., Fierro R., González-Márquez H., Cordero-Martínez J., Hernández-González E.O. Rac1 is necessary for capacitation and acrosome reaction in guinea pig spermatozoa. J. Cell. Biochem. 2020;121:2864–2876. doi: 10.1002/jcb.29521. PubMed DOI

Ito C., Yamatoya K., Yoshida K., Maekawa M., Miyado K., Toshimori K. Tetraspanin family protein CD9 in the mouse sperm: Unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 2010;340:583–594. doi: 10.1007/s00441-010-0967-7. PubMed DOI

Barraud-Lange V., Chalas Boissonnas C., Serres C., Auer J., Schmitt A., Lefèvre B., Wolf J.P., Ziyyat A. Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reproduction. 2012;144:53–66. doi: 10.1530/REP-12-0040. PubMed DOI

Salvolini E., Buldreghini E., Lucarini G., Vignini A., Lenzi A., Di Primio R., Balercia G. Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertil. Steril. 2013;99:697–704. doi: 10.1016/j.fertnstert.2012.10.042. PubMed DOI

Jankovicova J., Frolikova M., Sebkova N., Simon M., Cupperova P., Lipcseyova D., Michalkova K., Horovska L., Sedlacek R., Stopka P., et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction. 2016;152:785–793. doi: 10.1530/REP-16-0304. PubMed DOI

Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–324. doi: 10.1126/science.287.5451.321. PubMed DOI

Yu J., Lee C.Y., Changou C.A., Cedano-Prieto D.M., Takada Y.K., Takada Y. The CD9, CD81, and CD151 EC2 domains bind to the classical RGD-binding site of integrin αvβ3. Biochem. J. 2017;474:589–596. doi: 10.1042/BCJ20160998. PubMed DOI

Chen M.S., Tung K.S., Coonrod S.A., Takahashi Y., Bigler D., Chang A., Yamashita Y., Kincade P.W., Herr J.C., White J.M. Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: Implications for murine fertilization. Proc. Natl. Acad. Sci. USA. 1999;96:11830–11835. doi: 10.1073/pnas.96.21.11830. PubMed DOI PMC

Rubinstein E., Ziyyat A., Prenant M., Wrobel E., Wolf J.P., Levy S., Le Naour F., Boucheix C. Reduced fertility of female mice lacking CD81. Dev. Biol. 2006;290:351–358. doi: 10.1016/j.ydbio.2005.11.031. PubMed DOI

Runge K.E., Evans J.E., He Z.Y., Gupta S., McDonald K.L., Stahlberg H., Primakoff P., Myles D.G. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 2007;304:317–325. doi: 10.1016/j.ydbio.2006.12.041. PubMed DOI

Umeda R., Satouh Y., Takemoto M., Nakada-Nakura Y., Liu K., Yokoyama T., Shirouzu M., Iwata S., Nomura N., Sato K., et al. Structural insights into tetraspanin CD9 function. Nat. Commun. 2020;11:1606. doi: 10.1038/s41467-020-15459-7. PubMed DOI PMC

Miyado K., Yoshida K., Yamagata K., Sakakibara K., Okabe M., Wang X., Miyamoto K., Akutsu H., Kondo T., Takahashi Y., et al. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. USA. 2008;105:12921–12926. doi: 10.1073/pnas.0710608105. PubMed DOI PMC

Barraud-Lange V., Naud-Barriant N., Bomsel M., Wolf J.P., Ziyyat A. Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J. 2007;21:3446–3449. doi: 10.1096/fj.06-8035hyp. PubMed DOI

Ziyyat A., Rubinstein E., Monier-Gavelle F., Barraud V., Kulski O., Prenant M., Boucheix C., Bomsel M., Wolf J.P. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J. Cell Sci. 2006;119:416–424. doi: 10.1242/jcs.02730. PubMed DOI

Bedford J.M., Moore H.D., Franklin L.E. Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp. Cell. Res. 1979;119:119–126. doi: 10.1016/0014-4827(79)90341-0. PubMed DOI

Georgadaki K., Khoury N., Spandidos D.A., Zoumpourlis V. The molecular basis of fertilization (Review) Int. J. Mol. Med. 2016;38:979–986. doi: 10.3892/ijmm.2016.2723. PubMed DOI PMC

Johnson M.H., Eager D., Muggleton-Harris A., Grave H.M. Mosaicism in organisation concanavalin A receptors on surface membrane of mouse egg. Nature. 1975;257:321–322. doi: 10.1038/257321a0. PubMed DOI

Okabe M. Mechanism of fertilization: A modern view. Exp. Anim. 2014;63:357–365. doi: 10.1538/expanim.14-0026. PubMed DOI PMC

Deneke V.E., Pauli A. The Fertilization Enigma: How Sperm and Egg Fuse. Annu. Rev. Cell Dev. Biol. 2021 doi: 10.1146/annurev-cellbio-120219-021751. PubMed DOI

Barbaux S., Ialy-Radio C., Chalbi M., Dybal E., Homps-Legrand M., Do Cruzeiro M., Vaiman D., Wolf J.-P., Ziyyat A. Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion. Sci. Rep. 2020;10:1–15. doi: 10.1038/s41598-020-62091-y. PubMed DOI PMC

Bianchi E., Doe B., Goulding D., Wright G.J. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–487. doi: 10.1038/nature13203. PubMed DOI PMC

Fujihara Y., Lu Y., Noda T., Oji A., Larasati T., Kojima-Kita K., Yu Z., Matzuk R.M., Matzuk M.M., Ikawa M. Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice. Proc. Natl. Acad. Sci. USA. 2020;117:9393–9400. doi: 10.1073/pnas.1917060117. PubMed DOI PMC

Inoue N., Hagihara Y., Wada I. Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. Elife. 2021;10 doi: 10.7554/eLife.66313. PubMed DOI PMC

Inoue N., Ikawa M., Isotani A., Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–238. doi: 10.1038/nature03362. PubMed DOI

Lamas-Toranzo I., Hamze J.G., Bianchi E., Fernández-Fuertes B., Pérez-Cerezales S., Laguna-Barraza R., Fernández-González R., Lonergan P., Gutiérrez-Adán A., Wright G.J., et al. TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife. 2020;9 doi: 10.7554/eLife.53913. PubMed DOI PMC

Noda T., Blaha A., Fujihara Y., Gert K.R., Emori C., Deneke V.E., Oura S., Berent S., Kodani M., Panser K., et al. Sperm membrane proteins DCST1 and DCST2 are required for the sperm-egg fusion process in mice and fish. bioRxiv. 2021 doi: 10.1101/2021.04.18.440256. PubMed DOI PMC

Noda T., Lu Y., Fujihara Y., Oura S., Koyano T., Kobayashi S., Matzuk M.M., Ikawa M. Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice. Proc. Natl. Acad. Sci. USA. 2020;117:11493–11502. doi: 10.1073/pnas.1922650117. PubMed DOI PMC

Blobel C.P., Wolfsberg T.G., Turck C.W., Myles D.G., Primakoff P., White J.M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992;356:248–252. doi: 10.1038/356248a0. PubMed DOI

Primakoff P., Hyatt H., Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol. 1987;104:141–149. doi: 10.1083/jcb.104.1.141. PubMed DOI PMC

Evans J.P., Kopf G.S., Schultz R.M. Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: Evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev. Biol. 1997;187:79–93. doi: 10.1006/dbio.1997.8611. PubMed DOI

Nishimura H., Cho C., Branciforte D.R., Myles D.G., Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev. Biol. 2001;233:204–213. doi: 10.1006/dbio.2001.0166. PubMed DOI

Campbell S., Swann H.R., Seif M.W., Kimber S.J., Aplin J.D. Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum. Reprod. 1995;10:1571–1578. doi: 10.1093/HUMREP/10.6.1571. PubMed DOI

Fusi F.M., Vignali M., Busacca M., Bronson R.A. Evidence for the presence of an integrin cell adhesion receptor on the oolemma of unfertilized human oocytes. Mol. Reprod. Dev. 1992;31:215–222. doi: 10.1002/mrd.1080310309. PubMed DOI

Fusi F.M., Vignali M., Gailit J., Bronson R.A. Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal integrins. Mol. Reprod. Dev. 1993;36:212–219. doi: 10.1002/mrd.1080360212. PubMed DOI

Chen H., Sampson N.S. Mediation of sperm-egg fusion: Evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilinbeta. Chem. Biol. 1999;6:1–10. doi: 10.1016/S1074-5521(99)80015-5. PubMed DOI

Almeida E.A., Huovila A.P., Sutherland A.E., Stephens L.E., Calarco P.G., Shaw L.M., Mercurio A.M., Sonnenberg A., Primakoff P., Myles D.G., et al. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell. 1995;81:1095–1104. doi: 10.1016/S0092-8674(05)80014-5. PubMed DOI

Evans J.P. Sperm disintegrins, egg integrins, and other cell adhesion molecules of mammalian gamete plasma membrane interactions. Front. Biosci. 1999;4:D114–D131. doi: 10.2741/evans. PubMed DOI

Miller B.J., Georges-Labouesse E., Primakoff P., Myles D.G. Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J. Cell. Biol. 2000;149:1289–1296. doi: 10.1083/jcb.149.6.1289. PubMed DOI PMC

Goncalves R., Wolinetz C., Killian G. Influence of arginine-glycine-aspartic acid (RGD), integrins (αV and α5) and osteopontin on bovine sperm–egg binding, and fertilization in vitro. Theriogenology. 2007;67:468–474. doi: 10.1016/j.theriogenology.2006.08.013. PubMed DOI

Gonçalves R.F., Bertolla R.P., Orlandi C.M.B., Barnabe V.H. Expression of α6 integrin subunit in bovine oocyte and its potential role during fertilization. Adv. Biociences Biotechnol. 2013;4:617–622. doi: 10.4236/abb.2013.45081. DOI

Linfor J., Berger T. Potential role of alphav and beta1 integrins as oocyte adhesion molecules during fertilization in pigs. J. Reprod. Fertil. 2000;120:65–72. doi: 10.1530/jrf.0.1200065. PubMed DOI

Pate B.J., White K.L., Winger Q.A., Rickords L.F., Aston K.I., Sessons B.R., Li G.P., Campbell K.D., Weimer B., Bunch T.D. Specific integrin subunits in bovine oocytes, including novel sequences for alpha 6 and beta 3 subunits. Mol. Reprod. Dev. 2007;74:600–607. doi: 10.1002/mrd.20649. PubMed DOI

Antosik P., Kempisty B., Jackowska M., Bukowska D., Lianeri M., Brussow K., Wozna M. The morphology of porcine oocytes is associated with zona pellucida glycoprotein 3 and integrin beta 2 protein levels. Vet. Med. 2010;55:154–162. doi: 10.17221/38/2010-VETMED. DOI

Hodivala-Dilke K.M., McHugh K.P., Tsakiris D.A., Rayburn H., Crowley D., Ullman-Culleré M., Ross F.P., Coller B.S., Teitelbaum S., Hynes R.O. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Investig. 1999;103:229–238. doi: 10.1172/JCI5487. PubMed DOI PMC

He Z.Y., Brakebusch C., Fässler R., Kreidberg J.A., Primakoff P., Myles D.G. None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev. Biol. 2003;254:226–237. doi: 10.1016/S0012-1606(02)00043-X. PubMed DOI

Florman H., Fissore R. Knobil and Neill’s Physiology of Reproduction. Elsevier; Amsterdam, The Netherlands: 2015. Fertilization in Mammals.

Vjugina U., Zhu X., Oh E., Bracero N.J., Evans J.P. Reduction of mouse egg surface integrin alpha9 subunit (ITGA9) reduces the egg’s ability to support sperm-egg binding and fusion. Biol. Reprod. 2009;80:833–841. doi: 10.1095/biolreprod.108.075275. PubMed DOI PMC

Desiderio U.V., Zhu X., Evans J.P. ADAM2 interactions with mouse eggs and cell lines expressing α4/α9 (ITGA4/ITGA9) integrins: Implications for integrin-based adhesion and fertilization. PLoS ONE. 2010;5:e13744. doi: 10.1371/journal.pone.0013744. PubMed DOI PMC

Lin X., Tan S.M., Law S.K., Torres J. Unambiguous prediction of human integrin transmembrane heterodimer interactions using only homologous sequences. Proteins. 2006;65:274–279. doi: 10.1002/prot.21072. PubMed DOI

Sengoku K., Takuma N., Miyamoto T., Horikawa M., Ishikawa M. Integrins are not involved in the process of human sperm-oolemmal fusion. Hum. Reprod. 2004;19:639–644. doi: 10.1093/humrep/deh095. PubMed DOI

Lin F., Huang C.J., Liu C.S., Guo L.L., Liu G., Liu H.J. Laminin-111 Inhibits Bovine Fertilization but Improves Embryonic Development in vitro, and Receptor Integrin-β1 is Involved in Sperm-Oocyte Binding. Reprod. Domest. Anim. 2016;51:638–648. doi: 10.1111/rda.12716. PubMed DOI

Velho A., Wang H., Koenig L., Grant K.E., Menezes E.S., Kaya A., Moura A., Memili E. Expression dynamics of Integrin Subunit Beta 5 in bovine gametes and embryos imply functions in male fertility and early embryonic development. Andrologia. 2019;51:e13305. doi: 10.1111/and.13305. PubMed DOI

Feugang J.M., Kaya A., Page G.P., Chen L., Mehta T., Hirani K., Nazareth L., Topper E., Gibbs R., Memili E. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genom. 2009;10:176. doi: 10.1186/1471-2164-10-176. PubMed DOI PMC

Castellano L., Arroyo-Salvo C.A., Chiarante N., Alonso C.A.I., Lottero-Leconte R.M., Vernaz Z.J., Navarro M., Mutto A., Osycka-Salut C., Ribeiro M.L., et al. Evaluation of α5β1 integrin as a candidate marker for fertility in bull sperm samples. Theriogenology. 2021;168:66–74. doi: 10.1016/j.theriogenology.2021.04.001. PubMed DOI

Barraud-Lange V., Ialy-Radio C., Chalas C., Holtzmann I., Wolf J.-P., Barbaux S., Ziyyat A. Partial Sperm beta1 Integrin Subunit Deletion Proves its Involvement in Mouse Gamete Adhesion/Fusion. Int. J. Mol. Sci. 2020;21:8494. PubMed PMC

Thys M., Nauwynck H., Maes D., Hoogewijs M., Vercauteren D., Rijsselaere T., Favoreel H., Van Soom A. Expression and putative function of fibronectin and its receptor (integrin alpha(5)beta(1)) in male and female gametes during bovine fertilization in vitro. Reproduction. 2009;138:471–482. doi: 10.1530/REP-09-0094. PubMed DOI

Baessler K.A., Lee Y., Sampson N.S. Beta1 integrin is an adhesion protein for sperm binding to eggs. ACS Chem. Biol. 2009;4:357–366. doi: 10.1021/cb900013d. PubMed DOI PMC

Inoue N., Hagihara Y., Wright D., Suzuki T., Wada I. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat. Commun. 2015;6:8858. doi: 10.1038/ncomms9858. PubMed DOI PMC

Lorenzetti D., Poirier C., Zhao M., Overbeek P.A., Harrison W., Bishop C.E. A transgenic insertion on mouse chromosome 17 inactivates a novel immunoglobulin superfamily gene potentially involved in sperm-egg fusion. Mamm. Genome. 2014;25:141–148. doi: 10.1007/s00335-013-9491-x. PubMed DOI

Evans J.P. Sperm-egg interaction. Annu. Rev. Physiol. 2012;74:477–502. doi: 10.1146/annurev-physiol-020911-153339. PubMed DOI

Klinovska K., Sebkova N., Dvorakova-Hortova K. Sperm-egg fusion: A molecular enigma of mammalian reproduction. Int. J. Mol. Sci. 2014;15:10652–10668. doi: 10.3390/ijms150610652. PubMed DOI PMC

Herrero M.B., Mandal A., Digilio L.C., Coonrod S.A., Maier B., Herr J.C. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization. Dev. Biol. 2005;284:126–142. doi: 10.1016/j.ydbio.2005.05.008. PubMed DOI

Sachdev M., Mandal A., Mulders S., Digilio L.C., Panneerdoss S., Suryavathi V., Pires E., Klotz K.L., Hermens L., Herrero M.B., et al. Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization. Dev. Biol. 2012;363:40–51. doi: 10.1016/j.ydbio.2011.12.021. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Expression of genes regulating cell division in porcine follicular granulosa cells

. 2023 Aug 07 ; 18 (1) : 12. [epub] 20230807

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace