Role of Integrins in Sperm Activation and Fertilization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GC20-20217J
Grant Agency of the Czech Republic
86652036
Institute of Biotechnology of the Czech Academy of Sciences
CZ.1.05/1.1.00/02.0109
BIOCEV
PubMed
34769240
PubMed Central
PMC8584121
DOI
10.3390/ijms222111809
PII: ijms222111809
Knihovny.cz E-zdroje
- Klíčová slova
- fusion, integrins, oocyte, reproduction, sperm, sperm activation,
- MeSH
- integriny metabolismus MeSH
- interakce spermie a vajíčka fyziologie MeSH
- kapacitace spermií * MeSH
- lidé MeSH
- oocyty cytologie metabolismus MeSH
- spermie cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- integriny MeSH
In mammals, integrins are heterodimeric transmembrane glycoproteins that represent a large group of cell adhesion receptors involved in cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrin receptors are an important part of signalization pathways and have an ability to transmit signals into and out of cells and participate in cell activation. In addition to somatic cells, integrins have also been detected on germ cells and are known to play a crucial role in complex gamete-specific physiological events, resulting in sperm-oocyte fusion. The main aim of this review is to summarize the current knowledge on integrins in reproduction and deliver novel perspectives and graphical interpretations presenting integrin subunits localization and their dynamic relocation during sperm maturation in comparison to the oocyte. A significant part of this review is devoted to discussing the existing view of the role of integrins during sperm migration through the female reproductive tract; oviductal reservoir formation; sperm maturation processes ensuing capacitation and the acrosome reaction, and their direct and indirect involvement in gamete membrane adhesion and fusion leading to fertilization.
Zobrazit více v PubMed
Humphries M.J. Integrin structure. Biochem. Soc. Trans. 2000;28:311–339. doi: 10.1042/bst0280311. PubMed DOI
Luo B.H., Springer T.A. Integrin structures and conformational signaling. Curr. Opin. Cell Biol. 2006;18:579–586. doi: 10.1016/j.ceb.2006.08.005. PubMed DOI PMC
Takada Y., Ye X., Simon S. The integrins. Genome Biol. 2007;8:215. doi: 10.1186/gb-2007-8-5-215. PubMed DOI PMC
Barczyk M., Carracedo S., Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280. doi: 10.1007/s00441-009-0834-6. PubMed DOI PMC
Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. PubMed DOI
Sueoka K., Shiokawa S., Miyazaki T., Kuji N., Tanaka M., Yoshimura Y. Integrins and reproductive physiology: Expression and modulation in fertilization, embryogenesis, and implantation. Fertil. Steril. 1997;67:799–811. doi: 10.1016/S0015-0282(97)81388-X. PubMed DOI
Fénichel P., Durand-Clément M. Role of integrins during fertilization in mammals. Hum. Reprod. 1998;13((Suppl. S4)):31–46. doi: 10.1093/humrep/13.suppl_4.31. PubMed DOI
Glander H.J., Schaller J., Rohwedder A., Henkel R. Adhesion molecules and matrix proteins on human spermatozoa. Andrologia. 1998;30:289–296. doi: 10.1111/j.1439-0272.1998.tb01173.x. PubMed DOI
Klentzeris L.D., Fishel S., McDermott H., Dowell K., Hall J., Green S. A positive correlation between expression of beta 1-integrin cell adhesion molecules and fertilizing ability of human spermatozoa in vitro. Hum. Reprod. 1995;10:728–733. doi: 10.1093/oxfordjournals.humrep.a136023. PubMed DOI
Frolikova M., Sebkova N., Ded L., Dvorakova-Hortova K. Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci. Rep. 2016;6:33714. doi: 10.1038/srep33714. PubMed DOI PMC
Frolikova M., Valaskova E., Cerny J., Lumeau A., Sebkova N., Palenikova V., Sanches-Hernandez N., Pohlova A., Manaskova-Postlerova P., Dvorakova-Hortova K. Addressing the Compartmentalization of Specific Integrin Heterodimers in Mouse Sperm. Int. J. Mol. Sci. 2019;20:1004. doi: 10.3390/ijms20051004. PubMed DOI PMC
Jankovicova J., Frolikova M., Palenikova V., Valaskova E., Cerny J., Secova P., Bartokova M., Horovska L., Manaskova-Postlerova P., Antalikova J., et al. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci. Rep. 2020;10:4374. doi: 10.1038/s41598-020-61334-2. PubMed DOI PMC
Glander H.J., Schaller J. Beta 1-integrins of spermatozoa: A flow cytophotometric analysis. Int. J. Androl. 1993;16:105–111. doi: 10.1111/j.1365-2605.1993.tb01162.x. PubMed DOI
Fusi F., Tamburini C., Mangili F., Montesano M., Ferrai A., Bronson R. The expression of αv, α5, β1, and β3 integrin chains on ejaculated human spermatozoa varies with their functional state. MHR Basic Sci. Reprod. Med. 1996;2:169–175. doi: 10.1093/molehr/2.3.169. PubMed DOI
Reddy V.R., Rajeev S.K., Gupta V. Alpha 6 beta 1 Integrin is a potential clinical marker for evaluating sperm quality in men. Fertil. Steril. 2003;79((Suppl. S3)):1590–1596. doi: 10.1016/S0015-0282(03)00368-6. PubMed DOI
Barraud-Lange V., Naud-Barriant N., Saffar L., Gattegno L., Ducot B., Drillet A.S., Bomsel M., Wolf J.P., Ziyyat A. Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev. Biol. 2007;7:102. doi: 10.1186/1471-213X-7-102. PubMed DOI PMC
Palenikova V., Frolikova M., Valaskova E., Postlerova P., Komrskova K. αV Integrin Expression and Localization in Male Germ Cells. Int. J. Mol. Sci. 2021;22:9525. doi: 10.3390/ijms22179525. PubMed DOI PMC
Boissonnas C.C., Montjean D., Lesaffre C., Auer J., Vaiman D., Wolf J.P., Ziyyat A. Role of sperm alphavbeta3 integrin in mouse fertilization. Dev. Dyn. 2010;239:773–783. doi: 10.1002/dvdy.22206. PubMed DOI
Harper M. Sperm and egg transport. Reproduction in Mammals. Book 1. Germ Cells and Fertilization. Cambridge University Press; Cambridge, UK: 1982. pp. 102–127.
Suarez S. In: Gamete and zygote transport In Knobil and Neill’s Physiology of Reproduction. Plant T.M., Zeleznik A., editors. Elsevier; Amsterdam, The Netherlands: 2015.
Puga Molina L.C., Luque G.M., Balestrini P.A., Marín-Briggiler C.I., Romarowski A., Buffone M.G. Molecular Basis of Human Sperm Capacitation. Front. Cell Dev. Biol. 2018;6:72. doi: 10.3389/fcell.2018.00072. PubMed DOI PMC
Gaddum-Rosse P. Some observations on sperm transport through the uterotubal junction of the rat. Am. J. Anat. 1981;160:333–341. doi: 10.1002/aja.1001600309. PubMed DOI
Suarez S.S. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016;363:185–194. doi: 10.1007/s00441-015-2244-2. PubMed DOI PMC
Cho C., Bunch D.O., Faure J.E., Goulding E.H., Eddy E.M., Primakoff P., Myles D.G. Fertilization defects in sperm from mice lacking fertilin beta. Science. 1998;281:1857–1859. doi: 10.1126/science.281.5384.1857. PubMed DOI
Yamaguchi R., Fujihara Y., Ikawa M., Okabe M. Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa. Mol. Biol. Cell. 2012;23:2671–2679. doi: 10.1091/mbc.e11-12-1025. PubMed DOI PMC
Ikawa M., Inoue N., Benham A.M., Okabe M. Fertilization: A sperm’s journey to and interaction with the oocyte. J. Clin. Investig. 2010;120:984–994. doi: 10.1172/JCI41585. PubMed DOI PMC
Gabler C., Chapman D.A., Killian G.J. Expression and presence of osteopontin and integrins in the bovine oviduct during the oestrous cycle. Reproduction. 2003;126:721–729. doi: 10.1530/rep.0.1260721. PubMed DOI
Nakanishi T., Isotani A., Yamaguchi R., Ikawa M., Baba T., Suarez S.S., Okabe M. Selective passage through the uterotubal junction of sperm from a mixed population produced by chimeras of calmegin-knockout and wild-type male mice. Biol. Reprod. 2004;71:959–965. doi: 10.1095/biolreprod.104.028647. PubMed DOI
Ikawa M., Nakanishi T., Yamada S., Wada I., Kominami K., Tanaka H., Nozaki M., Nishimune Y., Okabe M. Calmegin is required for fertilin alpha/beta heterodimerization and sperm fertility. Dev. Biol. 2001;240:254–261. doi: 10.1006/dbio.2001.0462. PubMed DOI
Suarez S.S., Pacey A.A. Sperm transport in the female reproductive tract. Human. Reprod. Update. 2005;12:23–37. doi: 10.1093/humupd/dmi047. PubMed DOI
Lyons A., Narciandi F., Donnellan E., Romero-Aguirregomezcorta J., Farrelly C.O., Lonergan P., Meade K.G., Fair S. Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia. Reprod. Fertil. Dev. 2018;30:1472–1481. doi: 10.1071/RD17415. PubMed DOI
Cortés P.P., Orihuela P.A., Zúñiga L.M., Velásquez L.A., Croxatto H.B. Sperm binding to oviductal epithelial cells in the rat: Role of sialic acid residues on the epithelial surface and sialic acid-binding sites on the sperm surface. Biol. Reprod. 2004;71:1262–1269. doi: 10.1095/biolreprod.104.027474. PubMed DOI
Wagner A., Ekhlasi-Hundrieser M., Hettel C., Petrunkina A., Waberski D., Nimtz M., Töpfer-Petersen E. Carbohydrate-based interactions of oviductal sperm reservoir formation-studies in the pig. Mol. Reprod. Dev. 2002;61:249–257. doi: 10.1002/mrd.1154. PubMed DOI
Lefebvre R., Lo M.C., Suarez S.S. Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol. Reprod. 1997;56:1198–1204. doi: 10.1095/biolreprod56.5.1198. PubMed DOI
Osycka-Salut C.E., Castellano L., Fornes D., Beltrame J.S., Alonso C.A.I., Jawerbaum A., Franchi A., Díaz E.S., Perez Martinez S. Fibronectin from Oviductal Cells Fluctuates During the Estrous Cycle and Contributes to Sperm-Oviduct Interaction in Cattle. J. Cell Biochem. 2017;118:4095–4108. doi: 10.1002/jcb.26067. PubMed DOI
Ignotz G.G., Cho M.Y., Suarez S.S. Annexins are candidate oviductal receptors for bovine sperm surface proteins and thus may serve to hold bovine sperm in the oviductal reservoir. Biol. Reprod. 2007;77:906–913. doi: 10.1095/biolreprod.107.062505. PubMed DOI
Boilard M., Reyes-Moreno C., Lachance C., Massicotte L., Bailey J.L., Sirard M.A., Leclerc P. Localization of the chaperone proteins GRP78 and HSP60 on the luminal surface of bovine oviduct epithelial cells and their association with spermatozoa. Biol. Reprod. 2004;71:1879–1889. doi: 10.1095/biolreprod.103.026849. PubMed DOI
Rodríguez-Martínez H., Saravia F., Wallgren M., Tienthai P., Johannisson A., Vázquez J.M., Martínez E., Roca J., Sanz L., Calvete J.J. Boar spermatozoa in the oviduct. Theriogenology. 2005;63:514–535. doi: 10.1016/j.theriogenology.2004.09.028. PubMed DOI
Hunter R.H., Léglise P.C. Polyspermic fertilization following tubal surgery in pigs, with particular reference to the rôle of the isthmus. J. Reprod. Fertil. 1971;24:233–246. doi: 10.1530/jrf.0.0240233. PubMed DOI
Teijeiro J.M., Marini P.E. The effect of oviductal deleted in malignant brain tumor 1 over porcine sperm is mediated by a signal transduction pathway that involves pro-AKAP4 phosphorylation. Reproduction. 2012;143:773–785. doi: 10.1530/REP-11-0314. PubMed DOI
Hunter R.H.F. Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles. Mol. Reprod. Dev. 2008;75:167–174. doi: 10.1002/mrd.20776. PubMed DOI
Osycka-Salut C.E., Martínez-León E., Gervasi M.G., Castellano L., Davio C., Chiarante N., Franchi A.M., Ribeiro M.L., Díaz E.S., Perez-Martinez S. Fibronectin induces capacitation-associated events through the endocannabinoid system in bull sperm. Theriogenology. 2020;153:91–101. doi: 10.1016/j.theriogenology.2020.04.031. PubMed DOI
Caballero J., Frenette G., Sullivan R. Post testicular sperm maturational changes in the bull: Important role of the epididymosomes and prostasomes. Vet. Med. Int. 2010;2011:757194. doi: 10.4061/2011/757194. PubMed DOI PMC
Al-Dossary A.A., Strehler E.E., Martin-Deleon P.A. Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: Association with oviductal exosomes and uptake in sperm. PLoS ONE. 2013;8:e80181. doi: 10.1371/journal.pone.0080181. PubMed DOI PMC
Ferraz M., Carothers A., Dahal R., Noonan M.J., Songsasen N. Oviductal extracellular vesicles interact with the spermatozoon’s head and mid-piece and improves its motility and fertilizing ability in the domestic cat. Sci. Rep. 2019;9:9484. doi: 10.1038/s41598-019-45857-x. PubMed DOI PMC
Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138. PubMed DOI PMC
Schwarz A., Wennemuth G., Post H., Brandenburger T., Aumüller G., Wilhelm B. Vesicular transfer of membrane components to bovine epididymal spermatozoa. Cell Tissue Res. 2013;353:549–561. doi: 10.1007/s00441-013-1633-7. PubMed DOI
Al-Dossary A.A., Bathala P., Caplan J.L., Martin-DeLeon P.A. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: Detection of fusion and underlying molecular players using three-dimensional super-resolution structured illumination microscopy (SR-SIM) J. Biol. Chem. 2015;290:17710–17723. doi: 10.1074/jbc.M114.633156. PubMed DOI PMC
Kozlov M.M., Leikin S.L., Chernomordik L.V., Markin V.S., Chizmadzhev Y.A. Stalk mechanism of vesicle fusion. Intermixing of aqueous contents. Eur. Biophys. J. 1989;17:121–129. doi: 10.1007/BF00254765. PubMed DOI
Wennemuth G., Babcock D.F., Hille B. Calcium clearance mechanisms of mouse sperm. J. Gen. Physiol. 2003;122:115–128. doi: 10.1085/jgp.200308839. PubMed DOI PMC
Gadella B.M., Luna C. Cell biology and functional dynamics of the mammalian sperm surface. Theriogenology. 2014;81:74–84. doi: 10.1016/j.theriogenology.2013.09.005. PubMed DOI
Brener E., Rubinstein S., Cohen G., Shternall K., Rivlin J., Breitbart H. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol. Reprod. 2003;68:837–845. doi: 10.1095/biolreprod.102.009233. PubMed DOI
Toshimori K., Eddy E. Knobil and Neill’s Physiology of Reproduction. Elsevier; Amsterdam, The Netherlands: 2015. The spermatozoon.
Cuasnicú P.S., Da Ros V.G., Weigel Muñoz M., Cohen D.J. Acrosome Reaction as a Preparation for Gamete Fusion. Adv. Anat. Embryol. Cell Biol. 2016;220:159–172. doi: 10.1007/978-3-319-30567-7_9. PubMed DOI
Hirohashi N., Yanagimachi R. Sperm acrosome reaction: Its site and role in fertilization. Biol. Reprod. 2018;99:127–133. doi: 10.1093/biolre/ioy045. PubMed DOI
Satouh Y., Inoue N., Ikawa M., Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell. Sci. 2012;125:4985–4990. doi: 10.1242/jcs.100867. PubMed DOI
Frolikova M., Manaskova-Postlerova P., Cerny J., Jankovicova J., Simonik O., Pohlova A., Secova P., Antalikova J., Dvorakova-Hortova K. CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization. Int. J. Mol. Sci. 2018;19:1236. doi: 10.3390/ijms19041236. PubMed DOI PMC
Zanetti N., Mayorga L.S. Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol. Reprod. 2009;81:396–405. doi: 10.1095/biolreprod.109.076166. PubMed DOI
Liu S., Calderwood D.A., Ginsberg M.H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 2000;113:3563–3571. doi: 10.1242/jcs.113.20.3563. PubMed DOI
Lozahic S., Christiansen D., Manié S., Gerlier D., Billard M., Boucheix C., Rubinstein E. CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans. Eur. J. Immunol. 2000;30:900–907. doi: 10.1002/1521-4141(200003)30:3<900::AID-IMMU900>3.0.CO;2-X. PubMed DOI
Kurita-Taniguchi M., Hazeki K., Murabayashi N., Fukui A., Tsuji S., Matsumoto M., Toyoshima K., Seya T. Molecular assembly of CD46 with CD9, alpha3-beta1 integrin and protein tyrosine phosphatase SHP-1 in human macrophages through differentiation by GM-CSF. Mol. Immunol. 2002;38:689–700. doi: 10.1016/S0161-5890(01)00100-6. PubMed DOI
Rezcallah M.S., Hodges K., Gill D.B., Atkinson J.P., Wang B., Cleary P.P. Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell. Microbiol. 2005;7:645–653. doi: 10.1111/j.1462-5822.2004.00497.x. PubMed DOI
Inoue N., Ikawa M., Nakanishi T., Matsumoto M., Nomura M., Seya T., Okabe M. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell. Biol. 2003;23:2614–2622. doi: 10.1128/MCB.23.7.2614-2622.2003. PubMed DOI PMC
Clift L.E., Andrlikova P., Frolikova M., Stopka P., Bryja J., Flanagan B.F., Johnson P.M., Dvorakova-Hortova K. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius) Reprod. Biol. Endocrinol. 2009;7:29. doi: 10.1186/1477-7827-7-29. PubMed DOI PMC
Frolíková M., Stopková R., Antalíková J., Johnson P.M., Stopka P., Dvořáková-Hortová K. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. J. Vertebr. Biol. 2012;61:84–94. doi: 10.25225/fozo.v61.i1.a12.2012. DOI
Johnson P.M., Clift L.E., Andrlikova P., Jursova M., Flanagan B.F., Cummerson J.A., Stopka P., Dvorakova-Hortova K. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus) Reproduction. 2007;134:739–747. doi: 10.1530/REP-07-0363. PubMed DOI
Colburn Z.T., Jones J.C. α(6)β(4) Integrin Regulates the Collective Migration of Epithelial Cells. Am. J. Respir. Cell. Mol. Biol. 2017;56:443–452. doi: 10.1165/rcmb.2016-0313OC. PubMed DOI PMC
Ramírez-Ramírez D., Salgado-Lucio M.L., Roa-Espitia A.L., Fierro R., González-Márquez H., Cordero-Martínez J., Hernández-González E.O. Rac1 is necessary for capacitation and acrosome reaction in guinea pig spermatozoa. J. Cell. Biochem. 2020;121:2864–2876. doi: 10.1002/jcb.29521. PubMed DOI
Ito C., Yamatoya K., Yoshida K., Maekawa M., Miyado K., Toshimori K. Tetraspanin family protein CD9 in the mouse sperm: Unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 2010;340:583–594. doi: 10.1007/s00441-010-0967-7. PubMed DOI
Barraud-Lange V., Chalas Boissonnas C., Serres C., Auer J., Schmitt A., Lefèvre B., Wolf J.P., Ziyyat A. Membrane transfer from oocyte to sperm occurs in two CD9-independent ways that do not supply the fertilising ability of Cd9-deleted oocytes. Reproduction. 2012;144:53–66. doi: 10.1530/REP-12-0040. PubMed DOI
Salvolini E., Buldreghini E., Lucarini G., Vignini A., Lenzi A., Di Primio R., Balercia G. Involvement of sperm plasma membrane and cytoskeletal proteins in human male infertility. Fertil. Steril. 2013;99:697–704. doi: 10.1016/j.fertnstert.2012.10.042. PubMed DOI
Jankovicova J., Frolikova M., Sebkova N., Simon M., Cupperova P., Lipcseyova D., Michalkova K., Horovska L., Sedlacek R., Stopka P., et al. Characterization of tetraspanin protein CD81 in mouse spermatozoa and bovine gametes. Reproduction. 2016;152:785–793. doi: 10.1530/REP-16-0304. PubMed DOI
Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–324. doi: 10.1126/science.287.5451.321. PubMed DOI
Yu J., Lee C.Y., Changou C.A., Cedano-Prieto D.M., Takada Y.K., Takada Y. The CD9, CD81, and CD151 EC2 domains bind to the classical RGD-binding site of integrin αvβ3. Biochem. J. 2017;474:589–596. doi: 10.1042/BCJ20160998. PubMed DOI
Chen M.S., Tung K.S., Coonrod S.A., Takahashi Y., Bigler D., Chang A., Yamashita Y., Kincade P.W., Herr J.C., White J.M. Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: Implications for murine fertilization. Proc. Natl. Acad. Sci. USA. 1999;96:11830–11835. doi: 10.1073/pnas.96.21.11830. PubMed DOI PMC
Rubinstein E., Ziyyat A., Prenant M., Wrobel E., Wolf J.P., Levy S., Le Naour F., Boucheix C. Reduced fertility of female mice lacking CD81. Dev. Biol. 2006;290:351–358. doi: 10.1016/j.ydbio.2005.11.031. PubMed DOI
Runge K.E., Evans J.E., He Z.Y., Gupta S., McDonald K.L., Stahlberg H., Primakoff P., Myles D.G. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 2007;304:317–325. doi: 10.1016/j.ydbio.2006.12.041. PubMed DOI
Umeda R., Satouh Y., Takemoto M., Nakada-Nakura Y., Liu K., Yokoyama T., Shirouzu M., Iwata S., Nomura N., Sato K., et al. Structural insights into tetraspanin CD9 function. Nat. Commun. 2020;11:1606. doi: 10.1038/s41467-020-15459-7. PubMed DOI PMC
Miyado K., Yoshida K., Yamagata K., Sakakibara K., Okabe M., Wang X., Miyamoto K., Akutsu H., Kondo T., Takahashi Y., et al. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. USA. 2008;105:12921–12926. doi: 10.1073/pnas.0710608105. PubMed DOI PMC
Barraud-Lange V., Naud-Barriant N., Bomsel M., Wolf J.P., Ziyyat A. Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J. 2007;21:3446–3449. doi: 10.1096/fj.06-8035hyp. PubMed DOI
Ziyyat A., Rubinstein E., Monier-Gavelle F., Barraud V., Kulski O., Prenant M., Boucheix C., Bomsel M., Wolf J.P. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J. Cell Sci. 2006;119:416–424. doi: 10.1242/jcs.02730. PubMed DOI
Bedford J.M., Moore H.D., Franklin L.E. Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp. Cell. Res. 1979;119:119–126. doi: 10.1016/0014-4827(79)90341-0. PubMed DOI
Georgadaki K., Khoury N., Spandidos D.A., Zoumpourlis V. The molecular basis of fertilization (Review) Int. J. Mol. Med. 2016;38:979–986. doi: 10.3892/ijmm.2016.2723. PubMed DOI PMC
Johnson M.H., Eager D., Muggleton-Harris A., Grave H.M. Mosaicism in organisation concanavalin A receptors on surface membrane of mouse egg. Nature. 1975;257:321–322. doi: 10.1038/257321a0. PubMed DOI
Okabe M. Mechanism of fertilization: A modern view. Exp. Anim. 2014;63:357–365. doi: 10.1538/expanim.14-0026. PubMed DOI PMC
Deneke V.E., Pauli A. The Fertilization Enigma: How Sperm and Egg Fuse. Annu. Rev. Cell Dev. Biol. 2021 doi: 10.1146/annurev-cellbio-120219-021751. PubMed DOI
Barbaux S., Ialy-Radio C., Chalbi M., Dybal E., Homps-Legrand M., Do Cruzeiro M., Vaiman D., Wolf J.-P., Ziyyat A. Sperm SPACA6 protein is required for mammalian Sperm-Egg Adhesion/Fusion. Sci. Rep. 2020;10:1–15. doi: 10.1038/s41598-020-62091-y. PubMed DOI PMC
Bianchi E., Doe B., Goulding D., Wright G.J. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–487. doi: 10.1038/nature13203. PubMed DOI PMC
Fujihara Y., Lu Y., Noda T., Oji A., Larasati T., Kojima-Kita K., Yu Z., Matzuk R.M., Matzuk M.M., Ikawa M. Spermatozoa lacking Fertilization Influencing Membrane Protein (FIMP) fail to fuse with oocytes in mice. Proc. Natl. Acad. Sci. USA. 2020;117:9393–9400. doi: 10.1073/pnas.1917060117. PubMed DOI PMC
Inoue N., Hagihara Y., Wada I. Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. Elife. 2021;10 doi: 10.7554/eLife.66313. PubMed DOI PMC
Inoue N., Ikawa M., Isotani A., Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–238. doi: 10.1038/nature03362. PubMed DOI
Lamas-Toranzo I., Hamze J.G., Bianchi E., Fernández-Fuertes B., Pérez-Cerezales S., Laguna-Barraza R., Fernández-González R., Lonergan P., Gutiérrez-Adán A., Wright G.J., et al. TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife. 2020;9 doi: 10.7554/eLife.53913. PubMed DOI PMC
Noda T., Blaha A., Fujihara Y., Gert K.R., Emori C., Deneke V.E., Oura S., Berent S., Kodani M., Panser K., et al. Sperm membrane proteins DCST1 and DCST2 are required for the sperm-egg fusion process in mice and fish. bioRxiv. 2021 doi: 10.1101/2021.04.18.440256. PubMed DOI PMC
Noda T., Lu Y., Fujihara Y., Oura S., Koyano T., Kobayashi S., Matzuk M.M., Ikawa M. Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm-oocyte fusion in mice. Proc. Natl. Acad. Sci. USA. 2020;117:11493–11502. doi: 10.1073/pnas.1922650117. PubMed DOI PMC
Blobel C.P., Wolfsberg T.G., Turck C.W., Myles D.G., Primakoff P., White J.M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992;356:248–252. doi: 10.1038/356248a0. PubMed DOI
Primakoff P., Hyatt H., Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J. Cell Biol. 1987;104:141–149. doi: 10.1083/jcb.104.1.141. PubMed DOI PMC
Evans J.P., Kopf G.S., Schultz R.M. Characterization of the binding of recombinant mouse sperm fertilin beta subunit to mouse eggs: Evidence for adhesive activity via an egg beta1 integrin-mediated interaction. Dev. Biol. 1997;187:79–93. doi: 10.1006/dbio.1997.8611. PubMed DOI
Nishimura H., Cho C., Branciforte D.R., Myles D.G., Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev. Biol. 2001;233:204–213. doi: 10.1006/dbio.2001.0166. PubMed DOI
Campbell S., Swann H.R., Seif M.W., Kimber S.J., Aplin J.D. Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum. Reprod. 1995;10:1571–1578. doi: 10.1093/HUMREP/10.6.1571. PubMed DOI
Fusi F.M., Vignali M., Busacca M., Bronson R.A. Evidence for the presence of an integrin cell adhesion receptor on the oolemma of unfertilized human oocytes. Mol. Reprod. Dev. 1992;31:215–222. doi: 10.1002/mrd.1080310309. PubMed DOI
Fusi F.M., Vignali M., Gailit J., Bronson R.A. Mammalian oocytes exhibit specific recognition of the RGD (Arg-Gly-Asp) tripeptide and express oolemmal integrins. Mol. Reprod. Dev. 1993;36:212–219. doi: 10.1002/mrd.1080360212. PubMed DOI
Chen H., Sampson N.S. Mediation of sperm-egg fusion: Evidence that mouse egg alpha6beta1 integrin is the receptor for sperm fertilinbeta. Chem. Biol. 1999;6:1–10. doi: 10.1016/S1074-5521(99)80015-5. PubMed DOI
Almeida E.A., Huovila A.P., Sutherland A.E., Stephens L.E., Calarco P.G., Shaw L.M., Mercurio A.M., Sonnenberg A., Primakoff P., Myles D.G., et al. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell. 1995;81:1095–1104. doi: 10.1016/S0092-8674(05)80014-5. PubMed DOI
Evans J.P. Sperm disintegrins, egg integrins, and other cell adhesion molecules of mammalian gamete plasma membrane interactions. Front. Biosci. 1999;4:D114–D131. doi: 10.2741/evans. PubMed DOI
Miller B.J., Georges-Labouesse E., Primakoff P., Myles D.G. Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J. Cell. Biol. 2000;149:1289–1296. doi: 10.1083/jcb.149.6.1289. PubMed DOI PMC
Goncalves R., Wolinetz C., Killian G. Influence of arginine-glycine-aspartic acid (RGD), integrins (αV and α5) and osteopontin on bovine sperm–egg binding, and fertilization in vitro. Theriogenology. 2007;67:468–474. doi: 10.1016/j.theriogenology.2006.08.013. PubMed DOI
Gonçalves R.F., Bertolla R.P., Orlandi C.M.B., Barnabe V.H. Expression of α6 integrin subunit in bovine oocyte and its potential role during fertilization. Adv. Biociences Biotechnol. 2013;4:617–622. doi: 10.4236/abb.2013.45081. DOI
Linfor J., Berger T. Potential role of alphav and beta1 integrins as oocyte adhesion molecules during fertilization in pigs. J. Reprod. Fertil. 2000;120:65–72. doi: 10.1530/jrf.0.1200065. PubMed DOI
Pate B.J., White K.L., Winger Q.A., Rickords L.F., Aston K.I., Sessons B.R., Li G.P., Campbell K.D., Weimer B., Bunch T.D. Specific integrin subunits in bovine oocytes, including novel sequences for alpha 6 and beta 3 subunits. Mol. Reprod. Dev. 2007;74:600–607. doi: 10.1002/mrd.20649. PubMed DOI
Antosik P., Kempisty B., Jackowska M., Bukowska D., Lianeri M., Brussow K., Wozna M. The morphology of porcine oocytes is associated with zona pellucida glycoprotein 3 and integrin beta 2 protein levels. Vet. Med. 2010;55:154–162. doi: 10.17221/38/2010-VETMED. DOI
Hodivala-Dilke K.M., McHugh K.P., Tsakiris D.A., Rayburn H., Crowley D., Ullman-Culleré M., Ross F.P., Coller B.S., Teitelbaum S., Hynes R.O. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Investig. 1999;103:229–238. doi: 10.1172/JCI5487. PubMed DOI PMC
He Z.Y., Brakebusch C., Fässler R., Kreidberg J.A., Primakoff P., Myles D.G. None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev. Biol. 2003;254:226–237. doi: 10.1016/S0012-1606(02)00043-X. PubMed DOI
Florman H., Fissore R. Knobil and Neill’s Physiology of Reproduction. Elsevier; Amsterdam, The Netherlands: 2015. Fertilization in Mammals.
Vjugina U., Zhu X., Oh E., Bracero N.J., Evans J.P. Reduction of mouse egg surface integrin alpha9 subunit (ITGA9) reduces the egg’s ability to support sperm-egg binding and fusion. Biol. Reprod. 2009;80:833–841. doi: 10.1095/biolreprod.108.075275. PubMed DOI PMC
Desiderio U.V., Zhu X., Evans J.P. ADAM2 interactions with mouse eggs and cell lines expressing α4/α9 (ITGA4/ITGA9) integrins: Implications for integrin-based adhesion and fertilization. PLoS ONE. 2010;5:e13744. doi: 10.1371/journal.pone.0013744. PubMed DOI PMC
Lin X., Tan S.M., Law S.K., Torres J. Unambiguous prediction of human integrin transmembrane heterodimer interactions using only homologous sequences. Proteins. 2006;65:274–279. doi: 10.1002/prot.21072. PubMed DOI
Sengoku K., Takuma N., Miyamoto T., Horikawa M., Ishikawa M. Integrins are not involved in the process of human sperm-oolemmal fusion. Hum. Reprod. 2004;19:639–644. doi: 10.1093/humrep/deh095. PubMed DOI
Lin F., Huang C.J., Liu C.S., Guo L.L., Liu G., Liu H.J. Laminin-111 Inhibits Bovine Fertilization but Improves Embryonic Development in vitro, and Receptor Integrin-β1 is Involved in Sperm-Oocyte Binding. Reprod. Domest. Anim. 2016;51:638–648. doi: 10.1111/rda.12716. PubMed DOI
Velho A., Wang H., Koenig L., Grant K.E., Menezes E.S., Kaya A., Moura A., Memili E. Expression dynamics of Integrin Subunit Beta 5 in bovine gametes and embryos imply functions in male fertility and early embryonic development. Andrologia. 2019;51:e13305. doi: 10.1111/and.13305. PubMed DOI
Feugang J.M., Kaya A., Page G.P., Chen L., Mehta T., Hirani K., Nazareth L., Topper E., Gibbs R., Memili E. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genom. 2009;10:176. doi: 10.1186/1471-2164-10-176. PubMed DOI PMC
Castellano L., Arroyo-Salvo C.A., Chiarante N., Alonso C.A.I., Lottero-Leconte R.M., Vernaz Z.J., Navarro M., Mutto A., Osycka-Salut C., Ribeiro M.L., et al. Evaluation of α5β1 integrin as a candidate marker for fertility in bull sperm samples. Theriogenology. 2021;168:66–74. doi: 10.1016/j.theriogenology.2021.04.001. PubMed DOI
Barraud-Lange V., Ialy-Radio C., Chalas C., Holtzmann I., Wolf J.-P., Barbaux S., Ziyyat A. Partial Sperm beta1 Integrin Subunit Deletion Proves its Involvement in Mouse Gamete Adhesion/Fusion. Int. J. Mol. Sci. 2020;21:8494. PubMed PMC
Thys M., Nauwynck H., Maes D., Hoogewijs M., Vercauteren D., Rijsselaere T., Favoreel H., Van Soom A. Expression and putative function of fibronectin and its receptor (integrin alpha(5)beta(1)) in male and female gametes during bovine fertilization in vitro. Reproduction. 2009;138:471–482. doi: 10.1530/REP-09-0094. PubMed DOI
Baessler K.A., Lee Y., Sampson N.S. Beta1 integrin is an adhesion protein for sperm binding to eggs. ACS Chem. Biol. 2009;4:357–366. doi: 10.1021/cb900013d. PubMed DOI PMC
Inoue N., Hagihara Y., Wright D., Suzuki T., Wada I. Oocyte-triggered dimerization of sperm IZUMO1 promotes sperm-egg fusion in mice. Nat. Commun. 2015;6:8858. doi: 10.1038/ncomms9858. PubMed DOI PMC
Lorenzetti D., Poirier C., Zhao M., Overbeek P.A., Harrison W., Bishop C.E. A transgenic insertion on mouse chromosome 17 inactivates a novel immunoglobulin superfamily gene potentially involved in sperm-egg fusion. Mamm. Genome. 2014;25:141–148. doi: 10.1007/s00335-013-9491-x. PubMed DOI
Evans J.P. Sperm-egg interaction. Annu. Rev. Physiol. 2012;74:477–502. doi: 10.1146/annurev-physiol-020911-153339. PubMed DOI
Klinovska K., Sebkova N., Dvorakova-Hortova K. Sperm-egg fusion: A molecular enigma of mammalian reproduction. Int. J. Mol. Sci. 2014;15:10652–10668. doi: 10.3390/ijms150610652. PubMed DOI PMC
Herrero M.B., Mandal A., Digilio L.C., Coonrod S.A., Maier B., Herr J.C. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization. Dev. Biol. 2005;284:126–142. doi: 10.1016/j.ydbio.2005.05.008. PubMed DOI
Sachdev M., Mandal A., Mulders S., Digilio L.C., Panneerdoss S., Suryavathi V., Pires E., Klotz K.L., Hermens L., Herrero M.B., et al. Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization. Dev. Biol. 2012;363:40–51. doi: 10.1016/j.ydbio.2011.12.021. PubMed DOI PMC