Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
27666019
PubMed Central
PMC5036054
DOI
10.1038/srep33714
PII: srep33714
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.
Department of Zoology Faculty of Science Charles University Vinicna 7 Prague 2 128 44 Czech Republic
Zobrazit více v PubMed
Klinovska K., Sebkova N. & Dvorakova-Hortova K. Sperm-Egg Fusion: A Molecular Enigma of Mammalian Reproduction. Int. J. Mol. Sci. 15, 10652–10668 (2014). PubMed PMC
Jahn R., Lang T. & Südhof T. C. Membrane fusion. Cell. 112, 519–533 (2003). PubMed
Satouh Y., Inoue N., Ikawa M. & Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 125, 4985–4990 (2012). PubMed
Frolikova M. et al.. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. Folia Zool. 61, 84–94 (2012).
Florman H. M., Jungnickel M. K. & Sutton K. A. Regulating the acrosome reaction. Int J Dev Biol. 52, 503–10 (2008). PubMed
Zitranski N. et al.. The “acrosomal synapse” Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun. Integr. Biol. 3(6), 513–521 (2010). PubMed PMC
Miranda P. V., Allaire A. & Sosnik J. & Visconti P. E. Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol. of Reprod. 80, 897–904 (2009). PubMed PMC
Sosnik J. et al.. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J. Cell. Sci. 122, 2741–2749 (2009). PubMed PMC
Sebkova N., Ded L., Vesela K. & Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction. 147, 231–240 (2014). PubMed
Brener E. et al.. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol. Reprod. 68, 837–845 (2003). PubMed
Dvorakova K., Moore H. D., Sebkova N. & Palecek J. Cytoskeleton localization in the sperm head prior to fertilization. Reproduction. 130, 61–69 (2005). PubMed
Wojnicz D., Bar J. & Jankowski S. The role of membrane glycoproteins CD46, CD55 and CD59 in protection of tumor cells against complement lysis. Postepy Hig. Med. Dosw. 56(5), 603–16 (2002). PubMed
Inoue N. et al.. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell. Biol. 23, 2614–2622 (2003). PubMed PMC
Johnson P. M. et al.. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus). Reproduction. 134, 739–747 (2007). PubMed
Clift L. E. et al.. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius). Reprod. Biol. Endocrinol. 7, 29 (2009). PubMed PMC
Riley-Vargas R. C. et al.. CD46: expanding beyond complement regulation. Trends Immunol. 25, 496–503 (2004). PubMed
Wong T. C. et al.. The cytoplasmic domains of complement regulatory protein CD46 interact with multiple kinases in macrophages. J. Leukoc. Biol. 62, 892–900 (1997). PubMed
Wang G., Liszewski M. K., Chan A. C. & Atkinson J. P. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. J. Immunol. 164, 1839–1846 (2000). PubMed
Liszewski M. K., Kemper C., Price J. D. & Atkinson J. P. Emerging roles and new functions of CD46. Springer Semin. Immun. 27, 345–358 (2005). PubMed
Yamamoto H., Fara A. F., Dasgupta P. & Kemper C. CD46: the ‘multitasker’ of complement proteins. Int. J. Biochem. Cell Biol. 45, 2808–2820 (2013). PubMed
Zaffran Y. et al.. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J. Immunol. 167, 6780–6785 (2001). PubMed
Lozahic S. et al.. CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans. Eur. J Immunol. 30, 900–97 (2000). PubMed
Kurita-Taniguchi M. et al.. Molecular assembly of CD46 with CD9, alpha3-beta1 integrin and protein tyrosine phosphatase SHP-1 in human macrophages through differentiation by GM-CSF. Mol. Immunol. 38, 689–700 (2002). PubMed
Rezcallah M. S. et al.. Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell Microbiol. 7, 645–653 (2005). PubMed
Barraud-Lange V. et al.. Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev. Biol. 7, 102 (2007). PubMed PMC
Liu S., Calderwood D. A. & Ginsberg M. H. Integrin cytoplasmic domain-binding proteins. J. Cell. Sci. 113, 3563–3571 (2000). PubMed
Critchley D. R. Focal adhesions - the cytoskeletal connection. Curr. Opin. Cell. Biol. 12, 133–139 (2000). PubMed
Fénichel P. & Durand-Clément M. Role of integrins during fertilization in mammals. Hum. Reprod. 13, 31–46 (1998). PubMed
Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69, 11–25 (1992). PubMed
Schwartz M. A., Schaller M. D. & Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11, 549–599 (1995). PubMed
Boucheix C. & Rubinstein E. Tetraspanins. Cell. Mol. Life. Sci. 58, 1189–1205 (2001). PubMed PMC
Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell. Sci. 114, 4143–4151 (2001). PubMed
Hemler M. E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell. Dev. Biol. 19, 397–422 (2003). PubMed
Takahashi Y. et al.. Analysis of the role of egg integrins in sperm-egg binding and fusion. Mol. Reprod. 56, 412–423 (2000). PubMed
Ziyyat A. et al.. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J. Cell Sci. 119, 416–24 (2006). PubMed
Le Naour F. et al.. Severely reduced female fertility in CD9-deficient mice. Science. 287, 319–321 (2000). PubMed
Kaji K. et al.. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24, 279–282 (2000). PubMed
Miyado K. et al.. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 287, 321–324 (2000). PubMed
Ito C., Yamatoya K. & Toshimori K. Analysis of the complexity of the sperm acrosomal membrane by super-resolution stimulated emission depletion microscopy compared with transmission electron microscopy. Microscopy (Oxf). 64, 279–287 (2015). PubMed
Glander H. J., Schaller J., Rohwedder A. & Henkel R. Adhesion molecules and matrix proteins on human spermatozoa. Andrologia. 30, 289–296 (1998). PubMed
Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity. Zygote. 2, 371–372 (1994). PubMed
Moore H., Dvoráková K., Jenkins N. & Breed W. Exceptional sperm cooperation in the wood mouse. Nature. 418, 174–177 (2002). PubMed
Lin Y. W., Hsu T. H. & Yen P. H. Mouse sperm acquire a new structure on the apical hook during epididymal maturation. Asian J. Androl. 15, 523–528 (2013). PubMed PMC
Bolte S. & Cordelières F. P. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 224 (Pt 3), 213–32 (2006). PubMed
Inoue N., Ikawa M., Ayako I. & Okabe M. The imunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 434, 234–238 (2005). PubMed
Riley R. C., Kemper C., Leung M. & Atkinson J. P. Characterization of human membrane cofactor protein (MCP; CD46) on spermatozoa. Mol. Reprod. Dev. 62, 534–546 (2002). PubMed
Taylor C. T., Biljan M. M., Kingsland C. R. & Johnson P. M. Inhibition of human spermatozoon-oocyte interaction in vitro by monoclonal antibodies to CD46 (membrane cofactor protein). Hum. Reprod. 9, 907–911 (1994). PubMed
D’Cruz O. J., Lambert H. & Haas G. G. Jr. Expression of CD15 (Lewisx) antigen on human sperm and its role in sperm-egg interaction. Am. J. Reprod. Immunol. 37, 172–183 (1997). PubMed
Le Friec G. et al.. The CD46-Jagged1 interaction is critical for human TH1 immunity. Nat. Immunol. 13, 213–221 (2012). PubMed PMC
Johnson J. et al.. Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109, 355–361 (2001). PubMed
Yamamoto H., Fara A. F., Dasgupta P. & Kemper C. CD46: the ‘multitasker’ of complement proteins. Int. J. Biochem. Cell Biol. 45, 2808–2820 (2013). PubMed
Nomura M. et al.. Genomic analysis of idiopathic infertile patients with sperm-specific depletion of CD46. Exp. Clin. Immunogenet. 18, 42–50 (2001). PubMed
Astier A. L. T-cell regulation by CD46 and its relevance in multiple sclerosis. Immunology. 124, 149–154 (2008). PubMed PMC
Sabetian S., Shamsir M. S. & Abu Naser. M. Functional features and protein network of human sperm-egg interaction. Syst. Biol. Reprod. Med. 60, 329–337 (2014). PubMed
Zuccotti M. et al.. Timing of gene expression and oolemma localization of mouse alpha6 and beta1 integrin subunits during oogenesis. Dev Biol. 200, 27–34 (1998). PubMed
Calderwood D. A., Shattil S. J. & Ginsberg M. H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000). PubMed
Kallstrom H., Islam M. D., Berggren P. O. & Jonsson A. B. Cell signalling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21777–21782 (1998). PubMed
Hynes R. O. Integrins: bidirectional, allosteric signaling machines. Cell. 110, 673–687 (2002). PubMed
Johnson M. S. et al.. Integrins during evolution: evolutionary trees and model organisms. Biochim. Biophys. Acta. 1788, 779–789 (2009). PubMed
Stipp C. S. & Hemler M. E. Transmembrane-4-superfamily proteins CD151 and CD81 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent neurite outgrowth. J. Cell Sci. 113, 1871–1882 (2000). PubMed
Anton E. S., Kreidberg J. A. & Rakic P. Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron. 22, 277–289 (1999). PubMed
Mercurio A. M., Rabinovitz I. & Shaw L. M. The alpha 6 beta 4 integrin and epithelial cell migration. Curr. Opin. Cell. Biol. 13, 541–545 (2001). PubMed
Romarowski A. et al.. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol. 405, 237–49 (2015). PubMed PMC
Fiedler S. E., Bajpai M. & Carr D. W. Identification and characterization of RHOA-interacting proteins in bovine spermatozoa. Biol Reprod. 78, 184–92 (2008). PubMed
Ducummon C. C. & Berger T. Localization of the Rho GTPases and some Rho effector proteins in the sperm of several mammalian species. Zygote. 14, 249–57 (2006). PubMed
Immler S., Moore H. D., Breed W. G. & Birkhead T. R. By hook or by crook? Morphometry, competition and cooperation in rodent sperm. PLoS One. 2, e170 (2007). PubMed PMC
Zanetti N. & Mayorga L. S. Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol. Reprod. 81, 396–405 (2009). PubMed
Yoshida K. et al.. A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin. Reproduction. 139, 533–44 (2010). PubMed
Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). PubMed
Towbin H., Staehelin T. & Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979). PubMed PMC
Protamine 2 deficiency results in Septin 12 abnormalities
Role of Integrins in Sperm Activation and Fertilization
αV Integrin Expression and Localization in Male Germ Cells
The Role of Taste Receptor mTAS1R3 in Chemical Communication of Gametes
Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells
Addressing the Compartmentalization of Specific Integrin Heterodimers in Mouse Sperm
CD9 and CD81 Interactions and Their Structural Modelling in Sperm Prior to Fertilization