Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction

. 2016 Sep 26 ; 6 () : 33714. [epub] 20160926

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27666019

The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.

Zobrazit více v PubMed

Klinovska K., Sebkova N. & Dvorakova-Hortova K. Sperm-Egg Fusion: A Molecular Enigma of Mammalian Reproduction. Int. J. Mol. Sci. 15, 10652–10668 (2014). PubMed PMC

Jahn R., Lang T. & Südhof T. C. Membrane fusion. Cell. 112, 519–533 (2003). PubMed

Satouh Y., Inoue N., Ikawa M. & Okabe M. Visualization of the moment of mouse sperm-egg fusion and dynamic localization of IZUMO1. J. Cell Sci. 125, 4985–4990 (2012). PubMed

Frolikova M. et al.. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. Folia Zool. 61, 84–94 (2012).

Florman H. M., Jungnickel M. K. & Sutton K. A. Regulating the acrosome reaction. Int J Dev Biol. 52, 503–10 (2008). PubMed

Zitranski N. et al.. The “acrosomal synapse” Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun. Integr. Biol. 3(6), 513–521 (2010). PubMed PMC

Miranda P. V., Allaire A. & Sosnik J. & Visconti P. E. Localization of low-density detergent-resistant membrane proteins in intact and acrosome-reacted mouse sperm. Biol. of Reprod. 80, 897–904 (2009). PubMed PMC

Sosnik J. et al.. Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J. Cell. Sci. 122, 2741–2749 (2009). PubMed PMC

Sebkova N., Ded L., Vesela K. & Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction. 147, 231–240 (2014). PubMed

Brener E. et al.. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol. Reprod. 68, 837–845 (2003). PubMed

Dvorakova K., Moore H. D., Sebkova N. & Palecek J. Cytoskeleton localization in the sperm head prior to fertilization. Reproduction. 130, 61–69 (2005). PubMed

Wojnicz D., Bar J. & Jankowski S. The role of membrane glycoproteins CD46, CD55 and CD59 in protection of tumor cells against complement lysis. Postepy Hig. Med. Dosw. 56(5), 603–16 (2002). PubMed

Inoue N. et al.. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell. Biol. 23, 2614–2622 (2003). PubMed PMC

Johnson P. M. et al.. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus). Reproduction. 134, 739–747 (2007). PubMed

Clift L. E. et al.. Absence of spermatozoal CD46 protein expression and associated rapid acrosome reaction rate in striped field mice (Apodemus agrarius). Reprod. Biol. Endocrinol. 7, 29 (2009). PubMed PMC

Riley-Vargas R. C. et al.. CD46: expanding beyond complement regulation. Trends Immunol. 25, 496–503 (2004). PubMed

Wong T. C. et al.. The cytoplasmic domains of complement regulatory protein CD46 interact with multiple kinases in macrophages. J. Leukoc. Biol. 62, 892–900 (1997). PubMed

Wang G., Liszewski M. K., Chan A. C. & Atkinson J. P. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. J. Immunol. 164, 1839–1846 (2000). PubMed

Liszewski M. K., Kemper C., Price J. D. & Atkinson J. P. Emerging roles and new functions of CD46. Springer Semin. Immun. 27, 345–358 (2005). PubMed

Yamamoto H., Fara A. F., Dasgupta P. & Kemper C. CD46: the ‘multitasker’ of complement proteins. Int. J. Biochem. Cell Biol. 45, 2808–2820 (2013). PubMed

Zaffran Y. et al.. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J. Immunol. 167, 6780–6785 (2001). PubMed

Lozahic S. et al.. CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspans. Eur. J Immunol. 30, 900–97 (2000). PubMed

Kurita-Taniguchi M. et al.. Molecular assembly of CD46 with CD9, alpha3-beta1 integrin and protein tyrosine phosphatase SHP-1 in human macrophages through differentiation by GM-CSF. Mol. Immunol. 38, 689–700 (2002). PubMed

Rezcallah M. S. et al.. Engagement of CD46 and alpha5beta1 integrin by group A streptococci is required for efficient invasion of epithelial cells. Cell Microbiol. 7, 645–653 (2005). PubMed

Barraud-Lange V. et al.. Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev. Biol. 7, 102 (2007). PubMed PMC

Liu S., Calderwood D. A. & Ginsberg M. H. Integrin cytoplasmic domain-binding proteins. J. Cell. Sci. 113, 3563–3571 (2000). PubMed

Critchley D. R. Focal adhesions - the cytoskeletal connection. Curr. Opin. Cell. Biol. 12, 133–139 (2000). PubMed

Fénichel P. & Durand-Clément M. Role of integrins during fertilization in mammals. Hum. Reprod. 13, 31–46 (1998). PubMed

Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69, 11–25 (1992). PubMed

Schwartz M. A., Schaller M. D. & Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11, 549–599 (1995). PubMed

Boucheix C. & Rubinstein E. Tetraspanins. Cell. Mol. Life. Sci. 58, 1189–1205 (2001). PubMed PMC

Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J. Cell. Sci. 114, 4143–4151 (2001). PubMed

Hemler M. E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell. Dev. Biol. 19, 397–422 (2003). PubMed

Takahashi Y. et al.. Analysis of the role of egg integrins in sperm-egg binding and fusion. Mol. Reprod. 56, 412–423 (2000). PubMed

Ziyyat A. et al.. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J. Cell Sci. 119, 416–24 (2006). PubMed

Le Naour F. et al.. Severely reduced female fertility in CD9-deficient mice. Science. 287, 319–321 (2000). PubMed

Kaji K. et al.. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24, 279–282 (2000). PubMed

Miyado K. et al.. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 287, 321–324 (2000). PubMed

Ito C., Yamatoya K. & Toshimori K. Analysis of the complexity of the sperm acrosomal membrane by super-resolution stimulated emission depletion microscopy compared with transmission electron microscopy. Microscopy (Oxf). 64, 279–287 (2015). PubMed

Glander H. J., Schaller J., Rohwedder A. & Henkel R. Adhesion molecules and matrix proteins on human spermatozoa. Andrologia. 30, 289–296 (1998). PubMed

Yanagimachi R. Fertility of mammalian spermatozoa: its development and relativity. Zygote. 2, 371–372 (1994). PubMed

Moore H., Dvoráková K., Jenkins N. & Breed W. Exceptional sperm cooperation in the wood mouse. Nature. 418, 174–177 (2002). PubMed

Lin Y. W., Hsu T. H. & Yen P. H. Mouse sperm acquire a new structure on the apical hook during epididymal maturation. Asian J. Androl. 15, 523–528 (2013). PubMed PMC

Bolte S. & Cordelières F. P. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 224 (Pt 3), 213–32 (2006). PubMed

Inoue N., Ikawa M., Ayako I. & Okabe M. The imunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 434, 234–238 (2005). PubMed

Riley R. C., Kemper C., Leung M. & Atkinson J. P. Characterization of human membrane cofactor protein (MCP; CD46) on spermatozoa. Mol. Reprod. Dev. 62, 534–546 (2002). PubMed

Taylor C. T., Biljan M. M., Kingsland C. R. & Johnson P. M. Inhibition of human spermatozoon-oocyte interaction in vitro by monoclonal antibodies to CD46 (membrane cofactor protein). Hum. Reprod. 9, 907–911 (1994). PubMed

D’Cruz O. J., Lambert H. & Haas G. G. Jr. Expression of CD15 (Lewisx) antigen on human sperm and its role in sperm-egg interaction. Am. J. Reprod. Immunol. 37, 172–183 (1997). PubMed

Le Friec G. et al.. The CD46-Jagged1 interaction is critical for human TH1 immunity. Nat. Immunol. 13, 213–221 (2012). PubMed PMC

Johnson J. et al.. Notch pathway genes are expressed in mammalian ovarian follicles. Mech. Dev. 109, 355–361 (2001). PubMed

Yamamoto H., Fara A. F., Dasgupta P. & Kemper C. CD46: the ‘multitasker’ of complement proteins. Int. J. Biochem. Cell Biol. 45, 2808–2820 (2013). PubMed

Nomura M. et al.. Genomic analysis of idiopathic infertile patients with sperm-specific depletion of CD46. Exp. Clin. Immunogenet. 18, 42–50 (2001). PubMed

Astier A. L. T-cell regulation by CD46 and its relevance in multiple sclerosis. Immunology. 124, 149–154 (2008). PubMed PMC

Sabetian S., Shamsir M. S. & Abu Naser. M. Functional features and protein network of human sperm-egg interaction. Syst. Biol. Reprod. Med. 60, 329–337 (2014). PubMed

Zuccotti M. et al.. Timing of gene expression and oolemma localization of mouse alpha6 and beta1 integrin subunits during oogenesis. Dev Biol. 200, 27–34 (1998). PubMed

Calderwood D. A., Shattil S. J. & Ginsberg M. H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000). PubMed

Kallstrom H., Islam M. D., Berggren P. O. & Jonsson A. B. Cell signalling by the type IV pili of pathogenic Neisseria. J. Biol. Chem. 273, 21777–21782 (1998). PubMed

Hynes R. O. Integrins: bidirectional, allosteric signaling machines. Cell. 110, 673–687 (2002). PubMed

Johnson M. S. et al.. Integrins during evolution: evolutionary trees and model organisms. Biochim. Biophys. Acta. 1788, 779–789 (2009). PubMed

Stipp C. S. & Hemler M. E. Transmembrane-4-superfamily proteins CD151 and CD81 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent neurite outgrowth. J. Cell Sci. 113, 1871–1882 (2000). PubMed

Anton E. S., Kreidberg J. A. & Rakic P. Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron. 22, 277–289 (1999). PubMed

Mercurio A. M., Rabinovitz I. & Shaw L. M. The alpha 6 beta 4 integrin and epithelial cell migration. Curr. Opin. Cell. Biol. 13, 541–545 (2001). PubMed

Romarowski A. et al.. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol. 405, 237–49 (2015). PubMed PMC

Fiedler S. E., Bajpai M. & Carr D. W. Identification and characterization of RHOA-interacting proteins in bovine spermatozoa. Biol Reprod. 78, 184–92 (2008). PubMed

Ducummon C. C. & Berger T. Localization of the Rho GTPases and some Rho effector proteins in the sperm of several mammalian species. Zygote. 14, 249–57 (2006). PubMed

Immler S., Moore H. D., Breed W. G. & Birkhead T. R. By hook or by crook? Morphometry, competition and cooperation in rodent sperm. PLoS One. 2, e170 (2007). PubMed PMC

Zanetti N. & Mayorga L. S. Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol. Reprod. 81, 396–405 (2009). PubMed

Yoshida K. et al.. A model of the acrosome reaction progression via the acrosomal membrane-anchored protein equatorin. Reproduction. 139, 533–44 (2010). PubMed

Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). PubMed

Towbin H., Staehelin T. & Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace