Sperm-egg fusion: a molecular enigma of mammalian reproduction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24933635
PubMed Central
PMC4100174
DOI
10.3390/ijms150610652
PII: ijms150610652
Knihovny.cz E-zdroje
- MeSH
- fertilizace fyziologie MeSH
- imunoglobuliny metabolismus MeSH
- integriny metabolismus MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- ovum metabolismus MeSH
- proteiny semenné plazmy metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- spermie metabolismus MeSH
- tetraspaniny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- imunoglobuliny MeSH
- integriny MeSH
- IZUMO1 protein, human MeSH Prohlížeč
- membránové proteiny MeSH
- proteiny semenné plazmy MeSH
- receptory buněčného povrchu MeSH
- tetraspaniny MeSH
The mechanism of gamete fusion remains largely unknown on a molecular level despite its indisputable significance. Only a few of the molecules required for membrane interaction are known, among them IZUMO1, which is present on sperm, tetraspanin CD9, which is present on the egg, and the newly found oolema protein named Juno. A concept of a large multiprotein complex on both membranes forming fusion machinery has recently emerged. The Juno and IZUMO1, up to present, is the only known extracellular receptor pair in the process of fertilization, thus, facilitating the essential binding of gametes. However, neither IZUMO1 nor Juno appears to be the fusogenic protein. At the same time, the tetraspanin is expected to play a role in organizing the egg membrane order and to interact laterally with other factors. This review summarizes, to present, the known molecules involved in the process of sperm-egg fusion. The complexity and expected redundancy of the involved factors makes the process an intricate and still poorly understood mechanism, which is difficult to comprehend in its full distinction.
Zobrazit více v PubMed
Yanagimachi R. Sperm-egg fusion. Curr. Top. Membr. Transp. 1988;32:3–43.
Bianchi E., Doe B., Goulding D., Wright G. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–487. doi: 10.1038/nature13203. PubMed DOI PMC
Inoue N., Ikawa M., A. Isotani A., Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–238. doi: 10.1038/nature03362. PubMed DOI
Ellerman D.A., Pei J., Gupta S., Snell W.J., Myles D., Primakoff P. Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol. Reprod. Dev. 2009;76:1188–11995. doi: 10.1002/mrd.21092. PubMed DOI PMC
Jahn R., Lang T., Südhof T.C. Membrane fusion. Cell. 2003;112:519–533. doi: 10.1016/S0092-8674(03)00112-0. PubMed DOI
Stein K.K., Primakoff P., Myles D. Sperm-egg fusion: Events at the plasma membrane. J. Cell Sci. 2004;117:6269–6274. doi: 10.1242/jcs.01598. PubMed DOI
Aguilar P.S., Baylies M.K., Fleissner A., Helming L., Inoue N., Podbilewicz B., Wang H., Wong M. Genetic basis of cell-cell fusion mechanisms. Trend Genet. 2013;29:427–437. doi: 10.1016/j.tig.2013.01.011. PubMed DOI PMC
Dimitrov D.S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2004;2:109–122. doi: 10.1038/nrmicro817. PubMed DOI PMC
Taylor M.V. Muscle differentiation: How two cells become one. Curr. Biol. 2002;12:224–228. doi: 10.1016/S0960-9822(02)00757-1. PubMed DOI
Oren-Suisse M., Podbilewicz B. Cell fusion during development. Trends Cell Biol. 2007;17:537–546. doi: 10.1016/j.tcb.2007.09.004. PubMed DOI
Chan D.C., Kim P.S. HIV entry and its inhibition. Cell. 1998;93:681–684. PubMed
Harrison S.C. Viral membrane fusion. Nat. Struct. Mol. Biol. 2008;15:690–698. doi: 10.1038/nsmb.1456. PubMed DOI PMC
Weber T., Zemelman B.V., McNew J.A., Westermann B., Gmachl M., Parlati F., Söllner T.H., Rothman J.E. SNAREpins: Minimal machinery for membrane fusion. Cell. 1998;92:759–772. doi: 10.1016/S0092-8674(00)81404-X. PubMed DOI
Rizo J., Rosenmund C. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 2008;15:665–674. doi: 10.1038/nsmb.1450. PubMed DOI PMC
Dupressoir A., Marceau G., Vernochet C., Bénit L., Kanellopoulos C., Sapin V., Heidmann T. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc. Natl. Acad. Sci. USA. 2005;102:725–730. PubMed PMC
Chen A., Leikina E., Melikov K., Podbilewicz B., Kozlov M.M., Chernomordik L.V. Fusion-pore expansion during syncytium formation is restricted by an actin network. J. Cell Sci. 2008;121:3619–3628. doi: 10.1242/jcs.032169. PubMed DOI PMC
White J.M., Delos S.E., Brecher M., Schornberg K. Structures and mechanisms of viral membrane fusion proteins: Multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 2008;43:189–219. doi: 10.1080/10409230802058320. PubMed DOI PMC
Zuccotti M., Piccinelli A., Rossi P.G., Garagna S., Redi C.A. Chromatin organization during mouse oocyte growth. Mol. Reprod. Dev. 1995;41:479–485. doi: 10.1002/mrd.1080410410. PubMed DOI
Tash J.S., Means A.R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol. Reprod. 1983;28:75–104. doi: 10.1095/biolreprod28.1.75. PubMed DOI
Sebkova N., Ded L., Vesela K., Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction. 2014;147:231–240. doi: 10.1530/REP-13-0193. PubMed DOI
Jin M., Fujiwara E., Kakiuchi Y., Okabe M., Satouh Y., Baba S.A., Chiba K., Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc. Natl Acad. Sci. USA. 2011;108:4892–4896. doi: 10.1073/pnas.1018202108. PubMed DOI PMC
Yanagimachi R., Noda Y.D. Physiological changes in the post-nuclear cap region of mammalian spermatozoa: A necessary preliminary to the membrane fusion between sperm and egg cells. J. Ultrastruct. Res. 1970;31:486–493. doi: 10.1016/S0022-5320(70)90164-4. PubMed DOI
Johnson M.H., Eager D., Muggleton-Harris A., Grave H.M. Mosaicism in organisation concanavalin A receptors on surface membrane of mouse egg. Nature. 1975;257:321–322. doi: 10.1038/257321a0. PubMed DOI
Ebensperger C., Barros C. Changes at the hamster oocyte surface from the germinal vesicle stage to ovulation. Gamete Res. 1984;9:387–397. doi: 10.1002/mrd.1120090404. DOI
Primakoff P., Myles D.G. Cell-cell membrane fusion during mammalian fertilization. FEBS Lett. 2007;581:2174–2180. doi: 10.1016/j.febslet.2007.02.021. PubMed DOI
He Z.Y., Brakebusch C., Fässler R., Kreidberg J.A., Primakoff P., Myles D.G. None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev. Biol. 2003;254:226–237. doi: 10.1016/S0012-1606(02)00043-X. PubMed DOI
Herrero M.B., Mandal A., Digilio L.C., Coonrod S.A., Maier B., Herr J.C. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization. Dev. Biol. 2005;284:126–142. doi: 10.1016/j.ydbio.2005.05.008. PubMed DOI
Ohnami N., Nakamura A., Miyado M., Sato M., Kawano N., Yoshida K., Harada Y., Takezawa Y., Kanai S., Ono C., et al. CD81 and CD9 work independently as extracellular components upon fusion of sperm and Oocyte. Biol. Open. 2012;1:640–647. doi: 10.1242/bio.20121420. PubMed DOI PMC
Sachdev M., Mandal A., Mulders S., Digilio L.C., Panneerdoss S., Suryavathi V., Pires E., Klotz K.L., Hermens L., Herrero M.B., et al. Oocyte specific oolemmal SAS1B involved in sperm binding through intra-acrosomal SLLP1 during fertilization. Dev. Biol. 2012;363:40–51. doi: 10.1016/j.ydbio.2011.12.021. PubMed DOI PMC
Okabe M., Yagasaki M., Oda H., Matzno S., Kohama Y., Mimura T. Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J. Reprod. Immunol. 1988;13:211–219. doi: 10.1016/0165-0378(88)90002-2. PubMed DOI
Inoue N., Ikawa M., Okabe M. The mechanism of sperm-egg interaction and the involvement of IZUMO1 in fusion. Asian J. Androl. 2011;13:81–87. doi: 10.1038/aja.2010.70. PubMed DOI PMC
Inoue N., Hamada D., Kamikubo H., Hirata K., Kataoka M., Yamamoto M., Ikawa M., Okabe M., Hagihara Y. Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion. Development. 2013;140:3221–3229. doi: 10.1242/dev.094854. PubMed DOI
Inoue N., Kasahara T., Ikawa M., Okabe M. Identification and disruption of sperm-specific angiotensin converting enzyme-3 (ACE3) in mouse. PLoS One. 2010;5:e10301. doi: 10.1371/journal.pone.0010301. PubMed DOI PMC
Almeida E.A., Huovila A.P., Sutherland A.E., Stephens L.E., Calarco P.G., Shaw L.M., Mercurio A.M., Sonnenberg A., Primakoff P., Myles D.G., et al. Mouse egg integrin α6β1 functions as a sperm receptor. Cell. 1995;81:1095–1104. PubMed
Miller B.J., Georges-Labouesse E., Primakoff P., Myles D.G. Normalfertilizationoccurs with eggslacking the integrinalpha6beta1 and is CD9-dependent. J. Cell Biol. 2000;149:1289–1296. doi: 10.1083/jcb.149.6.1289. PubMed DOI PMC
Barraud-Lange V., Naud-Barriant N., Saffar L., Gattegno L., Ducot B., Drillet A.S., Bomsel M., Wolf J.P., Ziyyat A. Alpha6beta1 integrin expressed by sperm is determinant in mouse fertilization. BMC Dev. Biol. 2007;7 doi: 10.1186/1471-213X-7-102. PubMed DOI PMC
Miyado K., Yoshida K., Yamagata K., Sakakibara K., Okabe M., Wang X., Miyamoto K., Akutsu H., Kondo T., Takahashi Y., et al. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl Acad. Sci. USA. 2008;105:12921–12926. doi: 10.1073/pnas.0710608105. PubMed DOI PMC
Chen H., Sampson N.S. Mediation of sperm-egg fusion: Evidence that mouse egg α6β1 integrin is the receptor for sperm fertilinbeta. Chem. Biol. 1999;6:1–10. doi: 10.1016/S1074-5521(99)80015-5. PubMed DOI
Evans J.P. Fertilin β and other ADAMs as integrin ligands: Insights into cell adhesion and fertilization. Bioessay. 2001;23:628–639. doi: 10.1002/bies.1088. PubMed DOI
Baessler K.A., Lee Y., Sampson N.S. β1 integrin is an adhesion protein for sperm binding to eggs. ACS Chem. Biol. 2009;4:357–366. doi: 10.1021/cb900013d. PubMed DOI PMC
Evans J.P., Kopf G.S., Schultz R.M. Characterization of the binding of recombinant mouse sperm fertilin β subunit to mouse eggs: Evidence for adhesive activity via an egg β1integrin-mediated interaction. Dev. Biol. 1997;187:79–93. doi: 10.1006/dbio.1997.8611. PubMed DOI
Cho C., Bunch D.O., Faure J.E., Goulding E.H., Eddy E.M., Primakoff P., Myles D.G. Fertilizationdefects in sperm from mice lacking fertilin β. Science. 1998;281:1857–1859. PubMed
Bigler D., Takahashi Y., Chen M.S., Almeida E.A., Osbourne L., White J.M. Sequence-specific interaction between the disintegrin domain of mouse ADAM2 (fertilin β) and murine eggs. Role of the α6 integrin subunit. J. Biol. Chem. 2000;275:11576–11584. PubMed
Yamaguchi R., Muro Y., Isotani A., Tokuhiro K., Takumi K., Adham I., Ikawa M., Okabe M. Disruption of ADAM3 impairs the migration of sperm into oviduct in mouse. Biol. Reprod. 2009;81:142–146. doi: 10.1095/biolreprod.108.074021. PubMed DOI
Nishimura H., Cho C., Brandiforte D.R., Myles D.G., Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev. Biol. 2001;233:204–214. doi: 10.1006/dbio.2001.0166. PubMed DOI
Mizuno M., Harris C.L., Johnson P.M., Morgan B.P. Rat membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C3. Biol. Reprod. 2004;71:1374–1384. doi: 10.1095/biolreprod.104.030114. PubMed DOI
Taylor C.T., Biljan M.M., Kingland C.R., Johnson P.M. Inhibition of human spermatozoon-oocyte interaction in vitro by monoclonal antibodies to CD46 (membrane cofactor protein) Hum. Reprod. 1994;9:907–911. PubMed
Lozahic S., Christiansen D., Manié S., Gerlier D., Billard M., Boucheix C., Rubinstein E. CD46 (membrane cofactor protein) associates with multiple beta1 integrins and tetraspa. Eur. J. Immunol. 2000;30:900–907. doi: 10.1002/1521-4141(200003)30:3<900::AID-IMMU900>3.0.CO;2-X. PubMed DOI
Inoue N., Ikawa M., Nakanishi T., Matsumoto M., Nomura M., Seya T., Okabe M. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol. Cell. Biol. 2003;23:2614–2622. doi: 10.1128/MCB.23.7.2614-2622.2003. PubMed DOI PMC
Johnson P.M., Clift L.E., Andrlíková P., Jursová M., Flanagan B.F., Cummerson J.A., Stopka P., Dvořáková-Hortová K. Rapid sperm acrosome reaction in the absence of acrosomal CD46 expression in promiscuous field mice (Apodemus) Reproduction. 2007;134:739–747. doi: 10.1530/REP-07-0363. PubMed DOI
Stipp C.S., Kolesnikova T.V., Hemler M.E. Functional domains in tetraspanin proteins. Trends Biochem. Sci. 2003;28:106–112. doi: 10.1016/S0968-0004(02)00014-2. PubMed DOI
Claas C., Stipp C.S., Hemler M.E. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J. Biol. Chem. 2001;276:7974–7984. doi: 10.1074/jbc.M008650200. PubMed DOI
Zoller M. Tetraspanins: Push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer. 2009;9:40–55. doi: 10.1038/nrc2543. PubMed DOI
Farquhar M.J., Harris H.J., McKeating J.A. Hepatitis C virus entry and the tetraspanin CD81. Biochem. Soc. Trans. 2001;39:532–536. doi: 10.1042/BST0390532. PubMed DOI
Tachibana I., Hemler M.E. Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance. J. Cell Biol. 1999;146:893–904. doi: 10.1083/jcb.146.4.893. PubMed DOI PMC
Takeda Y., Tachibana I., Miyado K., Kobayashi M., Miyazaki T., Funakoshi T., Kimura H., Yamane H., Saito Y., Goto H., et al. Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J. Cell Biol. 2003;161:945–956. doi: 10.1083/jcb.200212031. PubMed DOI PMC
Glazar A.I., Evans J.P. Immunoglobulin superfamily member IgSF8 (EWI-2) and CD9 in fertilisation: Evidence of distinct functions for CD9 and a CD9-associated protein in mammalian sperm-egg interaction. Reprod. Fertil. Dev. 2009;21:293–303. doi: 10.1071/RD08158. PubMed DOI PMC
Le Naour F., André M., Boucheix C., Rubinstein E. Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts. Proteomics. 2006;6:6447–6454. doi: 10.1002/pmic.200600282. PubMed DOI
Chen M.S., Tung K.S., Coonrod S.A., Takahashi Y., Bigler D., Chang A., Yamashita Y., Kincade P.W., Herr J.C., White J.M. Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin α6β1: Implications for murine fertilization. Proc. Natl. Acad. Sci. USA. 1999;96:11830–11835. doi: 10.1073/pnas.96.21.11830. PubMed DOI PMC
Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., et al. Requirement of CD9 on the egg plasma membrane for fertilization. Science. 2000;287:321–324. doi: 10.1126/science.287.5451.321. PubMed DOI
Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science. 2000;287:319–321. doi: 10.1126/science.287.5451.319. PubMed DOI
Kaji K., Oda S., Shikano T., Ohnuki T., Uematsu Y., Sakagami J., Tada N., Miyazaki S., Kudo A. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 2000;24:279–282. doi: 10.1038/73502. PubMed DOI
Waterhouse R., Ha C., Dveksler G.S. Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J. Exp. Med. 2002;195:277–282. doi: 10.1084/jem.20011741. PubMed DOI PMC
Ellerman D.A., Ha C., Primakoff P., Myles D.G., Dveksler G.S. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol. Biol. Cell. 2003;14:5098–5103. doi: 10.1091/mbc.E03-04-0244. PubMed DOI PMC
Jégou A., Ziyyat A., Barraud-Lange V., Perez E., Wolf J.P., Pincet F., Gourier C. CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization. Proc. Natl. Acad. Sci. USA. 2011;108:10946–10951. PubMed PMC
Zhu X., Evans J.P. Analysis of the roles of RGD-binding integrins, α4/α9 integrins, α6 integrins, and CD9 in the interaction of the fertilin β (ADAM2) disintegrin domain with the mouse egg membrane. Biol. Reprod. 2002;66:1193–1202. doi: 10.1095/biolreprod66.4.1193. PubMed DOI
Runge K.E., Evans J.E., He Z.Y., Gupta S., McDonald K.L., Stahlberg H., Primakoff P., Myles D.G. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 2007;304:317–325. doi: 10.1016/j.ydbio.2006.12.041. PubMed DOI
Horváth G., Serru V., Clay D., Billard M., Boucheix C., Rubinstein E. CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J. Biol. Chem. 1998;273:30537–30543. doi: 10.1074/jbc.273.46.30537. PubMed DOI
Rubinstein E., Ziyyat A., Prenant M., Wrobel E., Wolf J.P., Levy S., le Naour F., Boucheix C. Reduced fertility of female mice lacking CD81. Dev. Biol. 2006;290:351–358. doi: 10.1016/j.ydbio.2005.11.031. PubMed DOI
Pileri P., Uematsu Y., Campagnoli S., Galli G., Falugi F., Petracca R., Weiner A.J., Houghton M., Rosa D., Grandi G., et al. Binding of hepatitis C virus to human CD81. Science. 1998;282:938–941. doi: 10.1126/science.282.5390.938. PubMed DOI
Coonrod S.A., Naaby-Hansen S., Shetty J., Shibahara H., Chen M., White J.M., Herr J.C. Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev. Biol. 1999;207:334–349. doi: 10.1006/dbio.1998.9161. PubMed DOI
Alfieri J.A., Martin A.D., Takeda J., Kondoh G., Myles D.G., Primakoff P. Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J. Cell Sci. 2003;116:2149–2155. PubMed
Lefèvre B., Wolf J.P., Ziyyat A. Sperm-egg interaction: Is there a link between tetraspanin(s) and GPI-anchored protein(s)? Bioessays. 2010;32:143–152. doi: 10.1002/bies.200900159. PubMed DOI
Talbot P., Shur B.D., Myles D.G. Cell adhesion and fertilization: Steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol. Reprod. 2003;68:1–9. PubMed
Yamagata K., Nakanishi T., Ikawa M., Yamaguchi R., Moss S.B., Okabe M. Sperm from the calmegin-deficient mouse have normal abilities for binding and fusion to the egg plasma membrane. Dev. Biol. 2002;250:348–357. doi: 10.1006/dbio.2002.0803. PubMed DOI
Inoue N., Nishikawa T., Ikawa M., Okabe M. Tetraspanin-interacting protein IGSF8 is dispensable for mouse fertility. Fertil. Steril. 2012;98:465–470. doi: 10.1016/j.fertnstert.2012.04.029. PubMed DOI
Kaji K., Oda S., Miyazaki S., Kudo A. Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev. Biol. 2002;247:327–334. doi: 10.1006/dbio.2002.0694. PubMed DOI
Evans J.P. Sperm-egg interaction. Annu. Rev. Physiol. 2012;74:477–502. doi: 10.1146/annurev-physiol-020911-153339. PubMed DOI
Grayson P., Civetta A. Positive selection and the evolution of izumo genes in mammals. Int. J. Evol. Biol. 2012 doi: 10.1155/2012/958164. PubMed DOI PMC
Grayson P., Civetta A. Positive selection in the adhesion domain of Mus sperm Adam genes through gene duplication and function-driven gene complex formations. BMC Evol. Biol. 2013;13 doi: 10.1186/1471-2148-13-217. PubMed DOI PMC
MAIA, Fc receptor-like 3, supersedes JUNO as IZUMO1 receptor during human fertilization
Role of Integrins in Sperm Activation and Fertilization
Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction