MAIA, Fc receptor-like 3, supersedes JUNO as IZUMO1 receptor during human fertilization

. 2022 Sep 09 ; 8 (36) : eabn0047. [epub] 20220907

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36070373

Grantová podpora
P30 CA093373 NCI NIH HHS - United States
R01 EY030546 NEI NIH HHS - United States
R01 HG009299 NHGRI NIH HHS - United States

Gamete fusion is a critical event of mammalian fertilization. A random one-bead one-compound combinatorial peptide library represented synthetic human egg mimics and identified a previously unidentified ligand as Fc receptor-like 3, named MAIA after the mythological goddess intertwined with JUNO. This immunoglobulin super family receptor was expressed on human oolemma and played a major role during sperm-egg adhesion and fusion. MAIA forms a highly stable interaction with the known IZUMO1/JUNO sperm-egg complex, permitting specific gamete fusion. The complexity of the MAIA isotype may offer a cryptic sexual selection mechanism to avoid genetic incompatibility and achieve favorable fitness outcomes.

Centre for Stem Cell Biology University of Sheffield Sheffield S10 2TN UK

Department of Biochemistry and Molecular Medicine University of California Davis School of Medicine Davis CA USA

Department of Cell Biology and Human Anatomy University of California Davis School of Medicine Davis CA USA

Department of Computational and Systems Biology University of Pittsburgh Pittsburgh PA USA

Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic

Department of Human Genetics University of Utah Salt Lake City UT USA

Department of Oncology and Metabolism University of Sheffield Medical School Sheffield S10 2RX UK

Department of Veterinary Sciences Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague Kamycka 129 165 00 Prague Czech Republic

Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic

Imaging Methods Core Facility at BIOCEV Faculty of Science Charles University Prumyslova 595 252 50 Vestec Czech Republic

Laboratory of Molecular Therapy Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Prumyslova 595 252 50 Vestec Czech Republic

Laboratory of Reproductive Biology Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Prumyslova 595 252 50 Vestec Czech Republic

Laboratory of Structural Bioinformatics of Proteins Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Prumyslova 595 252 50 Vestec Czech Republic

ProCrea Swiss IVF Center Prague Czech Republic

Reprofit International Clinic of Reproductive Medicine Brno Czech Republic

Research Institute for Microbial Diseases Osaka University Osaka Japan

School of Pharmacy and Medical Science Griffith University Parklands Avenue Southport Qld 4222 Australia

Zobrazit více v PubMed

Klinovska K., Sebkova N., Dvorakova-Hortova K., Sperm-egg fusion: A molecular enigma of mammalian reproduction. Int. J. Mol. Sci. 15, 10652–10668 (2014). PubMed PMC

Inoue N., Ikawa M., Isotani A., Okabe M., The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238 (2005). PubMed

Bianchi E., Doe B., Goulding D., Wright G. J., JUNO is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508, 483–487 (2014). PubMed PMC

Ohto U., Ishida H., Krayukhina E., Uchiyama S., Inoue N., Shimizu T., Structure of IZUMO1–JUNO reveals sperm–oocyte recognition during mammalian fertilization. Nature 534, 566–569 (2016). PubMed

Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C., Severely reduced female fertility in CD9-deficient mice. Science 287, 319–321 (2000). PubMed

Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., Okabe M., Mekada E., Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321–324 (2000). PubMed

Han L., Nishimura K., Sadat Al Hosseini H., Bianchi E., Wright G. J., Jovine L., Divergent evolution of vitamin B9 binding underlies JUNO-mediated adhesion of mammalian gametes. Curr. Biol. 26, R100–R101 (2016). PubMed PMC

Bianchi E., Wright G. J., Sperm meets egg: The genetics of mammalian fertilization. Annu. Rev. Genet. 50, 93–111 (2016). PubMed

Bedford J., Why mammalian gametes don’t mix. Nature 291, 286–288 (1981). PubMed

Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J., A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991). PubMed

Peng L., Ruiwu L., Marik J., Wang X., Takada Y., Lam K. S., Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat. Chem. Biol. 2, 381–389 (2006). PubMed

Hamze J., Hamze J. G., Canha-Gouveia A., Algarra B., Gómez-Torres M. J., Concepción Olivares M., Romar R., Jiménez-Movilla M., Mammalian spermatozoa and cumulus cells bind to a 3D model generated by recombinant zona pellucida protein-coated beads. Sci. Rep. 9, 17989 (2019). PubMed PMC

Xiao W., Wang Y., Lau E. Y., Luo J., Yao N., Shi C., Meza L., Tseng H., Maeda Y., Kumaresan P., Liu R., Lightstone F. C., Takada Y., Lam K. S., The use of one-bead one-compound combinatorial library technology to discover high-affinity αvβ3 integrin and cancer targeting arginine-glycine-aspartic acid ligands with a built-in handle. Mol. Cancer Ther. 9, 2714–2723 (2010). PubMed PMC

Ravaux B., Garroum N., Perez E., Willaime H., Gourier C., A specific flagellum beating mode for inducing fusion in mammalian fertilization and kinetics of sperm internalization. Sci. Rep. 6, 31886 (2016). PubMed PMC

Davis R. S., Fc receptor-like molecules. Annu. Rev. Immunol. 25, 525–560 (2007). PubMed

Kochi Y., Myouzen K., Yamada R., Suzuki A., Kurosaki T., Nakamura Y., Yamamoto K., FCRL3, an autoimmune susceptibility gene, has inhibitory potential on B-cell receptor-mediated signaling. J. Immunol. 183, 5502–5510 (2009). PubMed

Kocabas A. M., Crosby J., Ross P. J., Otu H. H., Beyhan Z., Can H., Tam W. L., Rosa G. J., Halgren R. G., Lim B., Fernandez E., Cibelli J. B., The transcriptome of human oocytes. Proc. Natl. Acad. Sci. U.S.A. 103, 14027–14032 (2006). PubMed PMC

Bronson R., Fusi F., Fleit H., Monoclonal antibodies identify Fcγ receptors on unfertilized human oocytes but not spermatozoa. J. Reprod. Immunol. 21, 293–307 (1992). PubMed

Moore H. D., Hartman T. D., Brown A. C., Smith C. A., Ellis D. H., Expression of sperm antigens during spermatogenesis and maturation detected with monoclonal antibodies. Exp. Clin. Immunogenet. 2, 84–96 (1985). PubMed

Yanagimachi R., Yanagimachi H., Rogers B. J., The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol. Reprod. 15, 471–476 (1976). PubMed

Clark N., Alani E., Aquadro C., Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Res. 22, 714–720 (2012). PubMed PMC

Wolfe N. W., Clark N. L., ERC analysis: Web-based inference of gene function via evolutionary rate covariation. Bioinformatics 31, 3835–3837 (2015). PubMed PMC

Priedigkeit N., Wolfe N., Clark N. L., Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks. PLOS Genet. 11, e1004967 (2015). PubMed PMC

Brunette G. J., Jamalruddin M. A., Baldock R. A., Clark N. L., Bernstein K. A., Evolution-based screening enables genome-wide prioritization and discovery of DNA repair genes. Proc. Natl. Acad. Sci. U.S.A. 116, 19593–19599 (2019). PubMed PMC

Raza Q., Choi J. Y., Li Y., O’Dowd R. M., Watkins S. C., Chikina M., Hong Y., Clark N. L., Kwiatkowski A. V., Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLOS Genet. 15, e1007720 (2019). PubMed PMC

Kowalczyk A., Gbadamosi O., Kolor K., Sosa J., Andrzejczuk L., Gibson G., Croix C. S., Chikina M., Aizenman E., Clark N., Kiselyov K., Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Biochem. J. 478, 3205–3220 (2021). PubMed PMC

Inoue N., Hagihara Y., Wada I., Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. eLife 10, e66313 (2021). PubMed PMC

Fujihara Y., Lu Y., Noda T., Oji A., Larasati T., Kojima-Kita K., Yu Z., Matzuk R. M., Matzuk M. M., Ikawa M., Spermatozoa lacking fertilization influencing membrane protein (FIMP) fail to fuse with oocytes in mice. Proc. Natl. Acad. Sci. U.S.A. 117, 9393–9400 (2020). PubMed PMC

Barbaux S., Ialy-Radio C., Chalbi M., Dybal E., Homps-Legrand M., Do Cruzeiro M., Vaiman D., Wolf J.-P., Ziyyat A., Sperm SPACA6 protein is required for mammalian sperm-egg adhesion/fusion. Sci. Rep. 10, 5335 (2020). PubMed PMC

Noda T., Lu Y., Fujihara Y., Oura S., Koyano T., Kobayashi S., Matzuk M. M., Ikawa M., Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm−oocyte fusion in mice. Proc. Natl. Acad. Sci. U.S.A. 117, 11493–11502 (2020). PubMed PMC

Leu C.-M., Davis R. S., Gartland L. A., Fine W. D., Cooper M. D., FcRH1: An activation coreceptor on human B cells. Blood 105, 1121–1126 (2005). PubMed

Kato K., Satouh Y., Nishimasu H., Kurabayashi A., Morita J., Fujihara Y., Oji A., Ishitani R., Ikawa M., Nureki O., Structural and functional insights into IZUMO1 recognition by JUNO in mammalian fertilization. Nat. Commun. 7, 12198 (2016). PubMed PMC

Ashida E., Scofield V., Lymphocyte major histocompatibility complex-encoded class II structures may act as sperm receptors. Proc. Natl. Acad. Sci. U.S.A. 84, 3395–3399 (1987). PubMed PMC

Fayngerts S., Najakshin A., Taranin A., Species-specific evolution of the FcR family in endothermic vertebrates. Immunogenetics 59, 493–506 (2007). PubMed

Liu Y., Wang D.-K., Chen L.-M., The physiology of bicarbonate transporters in mammalian reproduction. Biol. Reprod. 86, 99 (2012). PubMed

Guselnikov S. V., Ershova S. A., Mechetina L. V., Najakshin A. M., Volkova O. Y., Alabyev B. Y., Taranin A. V., A family of highly diverse human and mouse genes structurally links leukocyte FcR, gp42 and PECAM-1. Immunogenetics 54, 87–95 (2002). PubMed

Davis R. S., Stephan R. P., Chen C.-C., Dennis G. Jr., Cooper M. D., Differential B cell expression of mouse Fc receptor homologs. Int. Immunol. 16, 1343–1353 (2004). PubMed

Bianchi E., Wright G. J., Find and fuse: Unsolved mysteries in sperm-egg recognition. PLOS Biol. 18, e3000953 (2020). PubMed PMC

Oliver S. L., Brady J. J., Sommer M. H., Reichelt M., Sung P., Blau H. M., Arvin A. M., An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, 1911–1916 (2013). PubMed PMC

Tregenza T., Wedell N., Genetic compatibility, mate choice and patterns of parentage: Invited review. Mol. Ecol. 9, 1013–1027 (2000). PubMed

Wedekind C., Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 303–311 (1994). PubMed

Yao N., Xiao W., Wang X., Marik J., Park S. H., Takada Y., Lam K. S., Discovery of targeting ligands for breast cancer cells using the one-bead one-compound combinatorial method. J. Med. Chem. 52, 126–133 (2009). PubMed PMC

Brewis I., Clayton R., Barratt C. L., Hornby D. P., Moore H. D., Recombinant human zona pellucida glycoprotein 3 induces calcium influx and acrosome reaction in human spermatozoa. Mol. Hum. Reprod. 2, 583–589 (1996). PubMed

Clayton R., Cooke D., Partridge L., Moore H., A combinatorial phage display library for the generation of specific Fab fragments recognizing human spermatozoa and inhibiting fertilizing capacity in vitro. Biol. Reprod. 59, 1180–1186 (1998). PubMed

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC

Sable R., Jambunathan N., Singh S., Pallerla S., Kousoulas K. G., Jois S., Proximity ligation assay to study protein–protein interactions of proteins on two different cells. Biotechniques 65, 149–157 (2018). PubMed PMC

Lamas-Toranzo I., Hamze J. G., Bianchi E., Fernández-Fuertes B., Pérez-Cerezales S., Laguna-Barraza R., Fernández-González R., Lonergan P., Gutiérrez-Adán A., Wright G. J., Jiménez-Movilla M., Bermejo-Álvarez P., TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife 2, e53913 (2020). PubMed PMC

Findlay G. D., Sitnik J. L., Wang W., Aquadro C. F., Clark N. L., Wolfner M. F., Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLOS Genet. 10, e1004108 (2014). PubMed PMC

Yang Z., PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed

Partha R., Kowalczyk A., Clark N. L., Chikina M., Robust method for detecting convergent shifts in evolutionary rates. Mol. Biol. Evol. 36, 1817–1830 (2019). PubMed PMC

R. Partha, Evolutionary-Based Methods for Predicting Genotype-Phenotype Associations in the Mammalian Genome, thesis, University of Pittsburgh, 2019; http://d-scholarship.pitt.edu/37231/.

Talavera G., Castresana J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007). PubMed

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010). PubMed

The UniProt Consortium , UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). PubMed PMC

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y., The I-TASSER suite: Protein structure and function prediction. Nat. Methods 12, 7–8 (2015). PubMed PMC

Zimmerman B., Kelly B., McMillan B. J., Seegar T. C., Dror R. O., Kruse A. C., Blacklow S. C., Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051.e11 (2016). PubMed PMC

Webb B., Sali A., Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47, 5.6.1–5.6.32 (2014). PubMed

Kozakov D., Hall D. R., Xia B., Porter K. A., Padhorny D., Yueh C., Beglov D., Vajda S., The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017). PubMed PMC

Lazaridis T., Effective energy function for proteins in lipid membranes. Proteins 52, 176–192 (2003). PubMed

Jo S., Kim T., Iyer V. G., Im W., CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). PubMed

Brooks B. R., Brooks C. L. III, Mackerell A. D. Jr., Nilsson L., Petrella R. J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., Caflisch A., Caves L., Cui Q., Dinner A. R., Feig M., Fischer S., Gao J., Hodoscek M., Im W., Kuczera K., Lazaridis T., Ma J., Ovchinnikov V., Paci E., Pastor R. W., Post C. B., Pu J. Z., Schaefer M., Tidor B., Venable R. M., Woodcock H. L., Wu X., Yang W., York D. M., Karplus M., CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009). PubMed PMC

Dolinsky T. J., Czodrowski P., Li H., Nielsen J. E., Jensen J. H., Klebe G., Baker N. A., PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007). PubMed PMC

Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001). PubMed PMC

Schrodinger LLC, The PyMOL Molecular Graphics System, Version 1.8 (2015).

NIS-Elements imaging software. www.microscope.healthcare.nikon.com/products/software/nis-elements.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...