MAIA, Fc receptor-like 3, supersedes JUNO as IZUMO1 receptor during human fertilization
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P30 CA093373
NCI NIH HHS - United States
R01 EY030546
NEI NIH HHS - United States
R01 HG009299
NHGRI NIH HHS - United States
PubMed
36070373
PubMed Central
PMC9451160
DOI
10.1126/sciadv.abn0047
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Gamete fusion is a critical event of mammalian fertilization. A random one-bead one-compound combinatorial peptide library represented synthetic human egg mimics and identified a previously unidentified ligand as Fc receptor-like 3, named MAIA after the mythological goddess intertwined with JUNO. This immunoglobulin super family receptor was expressed on human oolemma and played a major role during sperm-egg adhesion and fusion. MAIA forms a highly stable interaction with the known IZUMO1/JUNO sperm-egg complex, permitting specific gamete fusion. The complexity of the MAIA isotype may offer a cryptic sexual selection mechanism to avoid genetic incompatibility and achieve favorable fitness outcomes.
Centre for Stem Cell Biology University of Sheffield Sheffield S10 2TN UK
Department of Computational and Systems Biology University of Pittsburgh Pittsburgh PA USA
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Human Genetics University of Utah Salt Lake City UT USA
Department of Oncology and Metabolism University of Sheffield Medical School Sheffield S10 2RX UK
Department of Zoology Faculty of Science Charles University Vinicna 7 128 44 Prague Czech Republic
ProCrea Swiss IVF Center Prague Czech Republic
Reprofit International Clinic of Reproductive Medicine Brno Czech Republic
Research Institute for Microbial Diseases Osaka University Osaka Japan
Zobrazit více v PubMed
Klinovska K., Sebkova N., Dvorakova-Hortova K., Sperm-egg fusion: A molecular enigma of mammalian reproduction. Int. J. Mol. Sci. 15, 10652–10668 (2014). PubMed PMC
Inoue N., Ikawa M., Isotani A., Okabe M., The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238 (2005). PubMed
Bianchi E., Doe B., Goulding D., Wright G. J., JUNO is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508, 483–487 (2014). PubMed PMC
Ohto U., Ishida H., Krayukhina E., Uchiyama S., Inoue N., Shimizu T., Structure of IZUMO1–JUNO reveals sperm–oocyte recognition during mammalian fertilization. Nature 534, 566–569 (2016). PubMed
Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C., Severely reduced female fertility in CD9-deficient mice. Science 287, 319–321 (2000). PubMed
Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., Suzuki K., Kosai K., Inoue K., Ogura A., Okabe M., Mekada E., Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321–324 (2000). PubMed
Han L., Nishimura K., Sadat Al Hosseini H., Bianchi E., Wright G. J., Jovine L., Divergent evolution of vitamin B9 binding underlies JUNO-mediated adhesion of mammalian gametes. Curr. Biol. 26, R100–R101 (2016). PubMed PMC
Bianchi E., Wright G. J., Sperm meets egg: The genetics of mammalian fertilization. Annu. Rev. Genet. 50, 93–111 (2016). PubMed
Bedford J., Why mammalian gametes don’t mix. Nature 291, 286–288 (1981). PubMed
Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J., A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991). PubMed
Peng L., Ruiwu L., Marik J., Wang X., Takada Y., Lam K. S., Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging. Nat. Chem. Biol. 2, 381–389 (2006). PubMed
Hamze J., Hamze J. G., Canha-Gouveia A., Algarra B., Gómez-Torres M. J., Concepción Olivares M., Romar R., Jiménez-Movilla M., Mammalian spermatozoa and cumulus cells bind to a 3D model generated by recombinant zona pellucida protein-coated beads. Sci. Rep. 9, 17989 (2019). PubMed PMC
Xiao W., Wang Y., Lau E. Y., Luo J., Yao N., Shi C., Meza L., Tseng H., Maeda Y., Kumaresan P., Liu R., Lightstone F. C., Takada Y., Lam K. S., The use of one-bead one-compound combinatorial library technology to discover high-affinity αvβ3 integrin and cancer targeting arginine-glycine-aspartic acid ligands with a built-in handle. Mol. Cancer Ther. 9, 2714–2723 (2010). PubMed PMC
Ravaux B., Garroum N., Perez E., Willaime H., Gourier C., A specific flagellum beating mode for inducing fusion in mammalian fertilization and kinetics of sperm internalization. Sci. Rep. 6, 31886 (2016). PubMed PMC
Davis R. S., Fc receptor-like molecules. Annu. Rev. Immunol. 25, 525–560 (2007). PubMed
Kochi Y., Myouzen K., Yamada R., Suzuki A., Kurosaki T., Nakamura Y., Yamamoto K., FCRL3, an autoimmune susceptibility gene, has inhibitory potential on B-cell receptor-mediated signaling. J. Immunol. 183, 5502–5510 (2009). PubMed
Kocabas A. M., Crosby J., Ross P. J., Otu H. H., Beyhan Z., Can H., Tam W. L., Rosa G. J., Halgren R. G., Lim B., Fernandez E., Cibelli J. B., The transcriptome of human oocytes. Proc. Natl. Acad. Sci. U.S.A. 103, 14027–14032 (2006). PubMed PMC
Bronson R., Fusi F., Fleit H., Monoclonal antibodies identify Fcγ receptors on unfertilized human oocytes but not spermatozoa. J. Reprod. Immunol. 21, 293–307 (1992). PubMed
Moore H. D., Hartman T. D., Brown A. C., Smith C. A., Ellis D. H., Expression of sperm antigens during spermatogenesis and maturation detected with monoclonal antibodies. Exp. Clin. Immunogenet. 2, 84–96 (1985). PubMed
Yanagimachi R., Yanagimachi H., Rogers B. J., The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol. Reprod. 15, 471–476 (1976). PubMed
Clark N., Alani E., Aquadro C., Evolutionary rate covariation reveals shared functionality and coexpression of genes. Genome Res. 22, 714–720 (2012). PubMed PMC
Wolfe N. W., Clark N. L., ERC analysis: Web-based inference of gene function via evolutionary rate covariation. Bioinformatics 31, 3835–3837 (2015). PubMed PMC
Priedigkeit N., Wolfe N., Clark N. L., Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks. PLOS Genet. 11, e1004967 (2015). PubMed PMC
Brunette G. J., Jamalruddin M. A., Baldock R. A., Clark N. L., Bernstein K. A., Evolution-based screening enables genome-wide prioritization and discovery of DNA repair genes. Proc. Natl. Acad. Sci. U.S.A. 116, 19593–19599 (2019). PubMed PMC
Raza Q., Choi J. Y., Li Y., O’Dowd R. M., Watkins S. C., Chikina M., Hong Y., Clark N. L., Kwiatkowski A. V., Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLOS Genet. 15, e1007720 (2019). PubMed PMC
Kowalczyk A., Gbadamosi O., Kolor K., Sosa J., Andrzejczuk L., Gibson G., Croix C. S., Chikina M., Aizenman E., Clark N., Kiselyov K., Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Biochem. J. 478, 3205–3220 (2021). PubMed PMC
Inoue N., Hagihara Y., Wada I., Evolutionarily conserved sperm factors, DCST1 and DCST2, are required for gamete fusion. eLife 10, e66313 (2021). PubMed PMC
Fujihara Y., Lu Y., Noda T., Oji A., Larasati T., Kojima-Kita K., Yu Z., Matzuk R. M., Matzuk M. M., Ikawa M., Spermatozoa lacking fertilization influencing membrane protein (FIMP) fail to fuse with oocytes in mice. Proc. Natl. Acad. Sci. U.S.A. 117, 9393–9400 (2020). PubMed PMC
Barbaux S., Ialy-Radio C., Chalbi M., Dybal E., Homps-Legrand M., Do Cruzeiro M., Vaiman D., Wolf J.-P., Ziyyat A., Sperm SPACA6 protein is required for mammalian sperm-egg adhesion/fusion. Sci. Rep. 10, 5335 (2020). PubMed PMC
Noda T., Lu Y., Fujihara Y., Oura S., Koyano T., Kobayashi S., Matzuk M. M., Ikawa M., Sperm proteins SOF1, TMEM95, and SPACA6 are required for sperm−oocyte fusion in mice. Proc. Natl. Acad. Sci. U.S.A. 117, 11493–11502 (2020). PubMed PMC
Leu C.-M., Davis R. S., Gartland L. A., Fine W. D., Cooper M. D., FcRH1: An activation coreceptor on human B cells. Blood 105, 1121–1126 (2005). PubMed
Kato K., Satouh Y., Nishimasu H., Kurabayashi A., Morita J., Fujihara Y., Oji A., Ishitani R., Ikawa M., Nureki O., Structural and functional insights into IZUMO1 recognition by JUNO in mammalian fertilization. Nat. Commun. 7, 12198 (2016). PubMed PMC
Ashida E., Scofield V., Lymphocyte major histocompatibility complex-encoded class II structures may act as sperm receptors. Proc. Natl. Acad. Sci. U.S.A. 84, 3395–3399 (1987). PubMed PMC
Fayngerts S., Najakshin A., Taranin A., Species-specific evolution of the FcR family in endothermic vertebrates. Immunogenetics 59, 493–506 (2007). PubMed
Liu Y., Wang D.-K., Chen L.-M., The physiology of bicarbonate transporters in mammalian reproduction. Biol. Reprod. 86, 99 (2012). PubMed
Guselnikov S. V., Ershova S. A., Mechetina L. V., Najakshin A. M., Volkova O. Y., Alabyev B. Y., Taranin A. V., A family of highly diverse human and mouse genes structurally links leukocyte FcR, gp42 and PECAM-1. Immunogenetics 54, 87–95 (2002). PubMed
Davis R. S., Stephan R. P., Chen C.-C., Dennis G. Jr., Cooper M. D., Differential B cell expression of mouse Fc receptor homologs. Int. Immunol. 16, 1343–1353 (2004). PubMed
Bianchi E., Wright G. J., Find and fuse: Unsolved mysteries in sperm-egg recognition. PLOS Biol. 18, e3000953 (2020). PubMed PMC
Oliver S. L., Brady J. J., Sommer M. H., Reichelt M., Sung P., Blau H. M., Arvin A. M., An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, 1911–1916 (2013). PubMed PMC
Tregenza T., Wedell N., Genetic compatibility, mate choice and patterns of parentage: Invited review. Mol. Ecol. 9, 1013–1027 (2000). PubMed
Wedekind C., Mate choice and maternal selection for specific parasite resistances before; during and after fertilization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 303–311 (1994). PubMed
Yao N., Xiao W., Wang X., Marik J., Park S. H., Takada Y., Lam K. S., Discovery of targeting ligands for breast cancer cells using the one-bead one-compound combinatorial method. J. Med. Chem. 52, 126–133 (2009). PubMed PMC
Brewis I., Clayton R., Barratt C. L., Hornby D. P., Moore H. D., Recombinant human zona pellucida glycoprotein 3 induces calcium influx and acrosome reaction in human spermatozoa. Mol. Hum. Reprod. 2, 583–589 (1996). PubMed
Clayton R., Cooke D., Partridge L., Moore H., A combinatorial phage display library for the generation of specific Fab fragments recognizing human spermatozoa and inhibiting fertilizing capacity in vitro. Biol. Reprod. 59, 1180–1186 (1998). PubMed
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.-Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). PubMed PMC
Sable R., Jambunathan N., Singh S., Pallerla S., Kousoulas K. G., Jois S., Proximity ligation assay to study protein–protein interactions of proteins on two different cells. Biotechniques 65, 149–157 (2018). PubMed PMC
Lamas-Toranzo I., Hamze J. G., Bianchi E., Fernández-Fuertes B., Pérez-Cerezales S., Laguna-Barraza R., Fernández-González R., Lonergan P., Gutiérrez-Adán A., Wright G. J., Jiménez-Movilla M., Bermejo-Álvarez P., TMEM95 is a sperm membrane protein essential for mammalian fertilization. eLife 2, e53913 (2020). PubMed PMC
Findlay G. D., Sitnik J. L., Wang W., Aquadro C. F., Clark N. L., Wolfner M. F., Evolutionary rate covariation identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLOS Genet. 10, e1004108 (2014). PubMed PMC
Yang Z., PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed
Partha R., Kowalczyk A., Clark N. L., Chikina M., Robust method for detecting convergent shifts in evolutionary rates. Mol. Biol. Evol. 36, 1817–1830 (2019). PubMed PMC
R. Partha, Evolutionary-Based Methods for Predicting Genotype-Phenotype Associations in the Mammalian Genome, thesis, University of Pittsburgh, 2019; http://d-scholarship.pitt.edu/37231/.
Talavera G., Castresana J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007). PubMed
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O., New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010). PubMed
The UniProt Consortium , UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). PubMed PMC
Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y., The I-TASSER suite: Protein structure and function prediction. Nat. Methods 12, 7–8 (2015). PubMed PMC
Zimmerman B., Kelly B., McMillan B. J., Seegar T. C., Dror R. O., Kruse A. C., Blacklow S. C., Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051.e11 (2016). PubMed PMC
Webb B., Sali A., Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 47, 5.6.1–5.6.32 (2014). PubMed
Kozakov D., Hall D. R., Xia B., Porter K. A., Padhorny D., Yueh C., Beglov D., Vajda S., The ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017). PubMed PMC
Lazaridis T., Effective energy function for proteins in lipid membranes. Proteins 52, 176–192 (2003). PubMed
Jo S., Kim T., Iyer V. G., Im W., CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008). PubMed
Brooks B. R., Brooks C. L. III, Mackerell A. D. Jr., Nilsson L., Petrella R. J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., Caflisch A., Caves L., Cui Q., Dinner A. R., Feig M., Fischer S., Gao J., Hodoscek M., Im W., Kuczera K., Lazaridis T., Ma J., Ovchinnikov V., Paci E., Pastor R. W., Post C. B., Pu J. Z., Schaefer M., Tidor B., Venable R. M., Woodcock H. L., Wu X., Yang W., York D. M., Karplus M., CHARMM: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009). PubMed PMC
Dolinsky T. J., Czodrowski P., Li H., Nielsen J. E., Jensen J. H., Klebe G., Baker N. A., PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525 (2007). PubMed PMC
Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A., Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U.S.A. 98, 10037–10041 (2001). PubMed PMC
Schrodinger LLC, The PyMOL Molecular Graphics System, Version 1.8 (2015).
NIS-Elements imaging software. www.microscope.healthcare.nikon.com/products/software/nis-elements.
Juno and CD9 protein network organization in oolemma of mouse oocyte