(PVA/Chitosan/Fucoidan)-Ampicillin: A Bioartificial Polymeric Material with Combined Properties in Cell Regeneration and Potential Antibacterial Features
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31395803
PubMed Central
PMC6724007
DOI
10.3390/polym11081325
PII: polym11081325
Knihovny.cz E-zdroje
- Klíčová slova
- ampicillin, bioartificial polymeric material, cell proliferation, chitosan, fucoidan, polyvinyl alcohol,
- Publikační typ
- časopisecké články MeSH
Chitosan, fucoidan, and polyvinyl alcohol are categorized as polymers with biomedical applications. Ampicillin, on the other hand, is considered as an important antibiotic that has shown effectivity in both gram-positive and gram-negative micro-organisms. The aforementioned polymers possess unique properties that are considered desirable for cell regeneration although they exhibit drawbacks that can affect their final application. Therefore, films of these biomaterials were prepared and they were characterized using FTIR, SEM, XRD, degree of swelling and solubility, and MTT assay. The statistical significance of the experiments was determined using a two-way analysis of variance (ANOVA) with p < 0.05. The characterization techniques demonstrated that the obtained material exhibits properties suitable for cell regeneration, and that a higher concentration of natural polymers promotes cells proliferation to a greater extent. The presence of PVA, on the other hand, is responsible for matrix stability and dictates the degree of swelling and solubility. The SEM images demonstrated that neither aggregations nor clusters were formed, which is favorable for the biological properties without detrimental to the morphological and physical features. Cell viability was comparatively similar in samples with and without antibiotic, and the physical and biological properties were not negatively affected. Indeed, the inherent bactericidal effect of chitosan was reinforced by the presence of ampicillin. The new material is an outstanding candidate for cell regeneration as a consequence of the synergic effect that each component provides to the blend.
Zobrazit více v PubMed
Repanas A., Andriopoulou S., Glasmacher B. The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J. Drug Deliv. Sci. Technol. 2016;31:137–146. doi: 10.1016/j.jddst.2015.12.007. DOI
Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI
Bernal-Ballen A., Lopez-Garcia J., Merchan-Merchan M.-A., Lehocky M. Synthesis and Characterization of a Bioartificial Polymeric System with Potential Antibacterial Activity: Chitosan-Polyvinyl Alcohol-Ampicillin. Molecules. 2018;23:3109. doi: 10.3390/molecules23123109. PubMed DOI PMC
Cascone M.G., Barbani N., P. Giusti C.C., Ciardelli G., Lazzeri L. Bioartificial polymeric materials based on polysaccharides. J. Biomater. Sci. Polym. Ed. 2001;12:267–281. doi: 10.1163/156856201750180807. PubMed DOI
Pineda-Castillo S., Bernal-Ballén A., Bernal-López C., Segura-Puello H., Nieto-Mosquera D., Villamil-Ballesteros A., Muñoz-Forero D., Munster L. Synthesis and Characterization of Poly (Vinyl Alcohol)-Chitosan-Hydroxyapatite Scaffolds: A Promising Alternative for Bone Tissue Regeneration. Molecules. 2018;23:2414. doi: 10.3390/molecules23102414. PubMed DOI PMC
Bernal A., Balkova R., Kuritka I., Saha P. Preparation and characterisation of a new double-sided bio-artificial material prepared by casting of poly(vinyl alcohol) on collagen. Polym. Bull. 2013;70:431–453. doi: 10.1007/s00289-012-0802-2. DOI
Bernal A., Kuritka I., Saha P. Preparation and characterization of poly(vinyl alcohol)-poly(vinyl pyrrolidone) blend: A biomaterial with latent medical applications. J. Appl. Polym. Sci. 2013;127:3560–3568. doi: 10.1002/app.37723. DOI
Bernal-Ballén A., Kuritka I., Saha P. Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetate-PVA. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/3172545. DOI
Giusti P., Lazzeri L., De Petris S., Palla M., Cascone M.G. Collagen-based new bioartificial polymeric materials. Biomaterials. 1994;15:1229–1233. doi: 10.1016/0142-9612(94)90274-7. PubMed DOI
Scotchford C.A., Cascone M.G., Downes S., Giusti P. Osteoblast responses to collagen-PVA bioartificial polymers in vitro: The effects of cross-linking method and collagen content. Biomaterials. 1998;19:1–11. doi: 10.1016/S0142-9612(97)00236-6. PubMed DOI
Ahmad S.I., Hasan N., Zainul Abid C.K.V., Mazumdar N. Preparation and characterization of films based on crosslinked blends of gum acacia, polyvinylalcohol, and polyvinylpyrrolidone-iodine complex. J. Appl. Polym. Sci. 2008;109:775–781. doi: 10.1002/app.28140. DOI
Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011;36:1254–1276. doi: 10.1016/j.progpolymsci.2011.05.003. DOI
Kumar M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000;46:1–27. doi: 10.1016/S1381-5148(00)00038-9. DOI
Jayakumar R., Prabaharan M., Kumar P.T.S., Nair S.V., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011;29:322–337. doi: 10.1016/j.biotechadv.2011.01.005. PubMed DOI
Miguel S.P., Moreira A.F., Correia I.J. Chitosan based-asymmetric membranes for wound healing: A review. Int. J. Biol. Macromol. 2019 doi: 10.1016/j.ijbiomac.2019.01.072. PubMed DOI
Lowe B., Venkatesan J., Anil S., Shim M.S., Kim S.-K. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 2016;93:1479–1487. doi: 10.1016/j.ijbiomac.2016.02.054. PubMed DOI
Saravanan S., Vimalraj S., Thanikaivelan P., Banudevi S., Manivasagam G. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. Int. J. Biol. Macromol. 2019;121:38–54. doi: 10.1016/j.ijbiomac.2018.10.014. PubMed DOI
Shelke N.B., James R., Laurencin C.T., Kumbar S.G. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym. Adv. Technol. 2014;25:448–460. doi: 10.1002/pat.3266. DOI
LogithKumar R., KeshavNarayan A., Dhivya S., Chawla A., Saravanan S., Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016;151:172–188. doi: 10.1016/j.carbpol.2016.05.049. PubMed DOI
Ozaltin K., Lehocky M., Humpolicek P., Pelkova J., Di Martino A., Karakurt I., Saha P. Anticoagulant Polyethylene Terephthalate Surface by Plasma-Mediated Fucoidan Immobilization. Polymers (Basel) 2019;11:750. doi: 10.3390/polym11050750. PubMed DOI PMC
Venkatesan J., Singh S., Anil S., Kim S.-K., Shim M. Preparation, characterization and biological applications of biosynthesized silver nanoparticles with chitosan-fucoidan coating. Molecules. 2018;23:1429. doi: 10.3390/molecules23061429. PubMed DOI PMC
Manivasagan P., Hoang G., Moorthy M.S., Mondal S., Doan V.H.M., Kim H., Phan T.T.V., Nguyen T.P., Oh J. Chitosan/fucoidan multilayer coating of gold nanorods as highly efficient near-infrared photothermal agents for cancer therapy. Carbohydr. Polym. 2019;211:360–369. doi: 10.1016/j.carbpol.2019.01.010. PubMed DOI
Li B., Lu F., Wei X., Zhao R. Fucoidan: Structure and bioactivity. Molecules. 2008;13:1671–1695. doi: 10.3390/molecules13081671. PubMed DOI PMC
Bhatia S. Natural Polymer Drug Delivery Systems. Springer; Berlin, Germany: 2016. Natural polymers vs. synthetic polymer; pp. 95–118.
Tian H., Tang Z., Zhuang X., Chen X., Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012;37:237–280. doi: 10.1016/j.progpolymsci.2011.06.004. DOI
Karimi A., Navidbakhsh M. Mechanical properties of PVA material for tissue engineering applications. Mater. Technol. 2014;29:90–100. doi: 10.1179/1753555713Y.0000000115. DOI
Paradossi G., Cavalieri F., Chiessi E., Spagnoli C., Cowman M.K. Poly (vinyl alcohol) as versatile biomaterial for potential biomedical applications. J. Mater. Sci. Mater. Med. 2003;14:687–691. doi: 10.1023/A:1024907615244. PubMed DOI
Kumar A., Han S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017;66:159–182. doi: 10.1080/00914037.2016.1190930. DOI
Goodship V., Jacobs D.K. Polyvinyl Alcohol: Materials, Processing and Applications. Volume 16 Smithers Rapra Technology; Shrewsbury, Shropshire, UK: 2009.
Stammen J.A., Williams S., Ku D.N., Guldberg R.E. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials. 2001;22:799–806. doi: 10.1016/S0142-9612(00)00242-8. PubMed DOI
Yang J.M., Su W.Y., Leu T.L., Yang M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci. 2004;236:39–51. doi: 10.1016/j.memsci.2004.02.005. DOI
Sudhamani S.R., Prasad M.S., Sankar K.U. DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocoll. 2003;17:245–250. doi: 10.1016/S0268-005X(02)00057-7. DOI
Santos C., Silva C.J., Buttel Z., Guimaraes R., Pereira S.B., Tamagnini P., Zille A. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydr. Polym. 2014;99:584–592. doi: 10.1016/j.carbpol.2013.09.008. PubMed DOI
Degirmenbasi N., Kalyon D.M., Birinci E. Biocomposites of nanohydroxyapatite with collagen and poly (vinyl alcohol) Colloids Surf. B Biointerfaces. 2006;48:42–49. doi: 10.1016/j.colsurfb.2006.01.002. PubMed DOI
Jayasekara R., Harding I., Bowater I., Christie G.B.Y., Lonergan G.T. Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polym. Test. 2004;23:17–27. doi: 10.1016/S0142-9418(03)00049-7. DOI
Zhang W., Zhao L., Ma J., Wang X., Wang Y., Ran F., Wang Y., Ma H., Yu S. Electrospinning of fucoidan/chitosan/poly (vinyl alcohol) scaffolds for vascular tissue engineering. Fibers Polym. 2017;18:922–932. doi: 10.1007/s12221-017-1197-3. DOI
Priya B., Gupta V.K., Pathania D., Singha A.S. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr. Polym. 2014;109:171–179. doi: 10.1016/j.carbpol.2014.03.044. PubMed DOI
Kamoun E.A., Chen X., Eldin M.S.M., Kenawy E.-R.S. Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab. J. Chem. 2015;8:1–14. doi: 10.1016/j.arabjc.2014.07.005. DOI
Abbasian M., Massoumi B., Mohammad-Rezaei R., Samadian H., Jaymand M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 2019 doi: 10.1016/j.ijbiomac.2019.04.197. PubMed DOI
Williams D.F. On the nature of biomaterials. Biomaterials. 2009;30:5897–5909. doi: 10.1016/j.biomaterials.2009.07.027. PubMed DOI
Ratner B.D., Bryant S.J. Biomaterials: Where we have been and where we are going. Annu. Rev. Biomed. Eng. 2004;6:41–75. doi: 10.1146/annurev.bioeng.6.040803.140027. PubMed DOI
Islam A., Yasin T., Gull N., Khan S.M., Munawar M.A., Shafiq M., Sabir A., Jamil T. Evaluation of selected properties of biocompatible chitosan/poly (vinyl alcohol) blends. Int. J. Biol. Macromol. 2016;82:551–556. doi: 10.1016/j.ijbiomac.2015.09.073. PubMed DOI
Baldwin A.D., Kiick K.L. Polysaccharide-modified synthetic polymeric biomaterials. Pept. Sci. Orig. Res. Biomol. 2010;94:128–140. doi: 10.1002/bip.21334. PubMed DOI PMC
Ozaltin K., Lehocky M., Humpolicek P., Vesela D., Mozetic M., Novak I., Saha P. Preparation of active antibacterial biomaterials based on sparfloxacin, enrofloxacin, and lomefloxacin deposited on polyethylene. J. Appl. Polym. Sci. 2018;135:46174. doi: 10.1002/app.46174. DOI
Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C. 2008;28:539–548. doi: 10.1016/j.msec.2007.10.088. DOI
Kumar G.N.H., Rao J.L., Gopal N.O., Narasimhulu K.V., Chakradhar R.P.S., Rajulu A.V. Spectroscopic investigations of Mn 2+ ions doped polyvinylalcohol films. Polym. (Guildf.) 2004;45:5407–5415. doi: 10.1016/j.polymer.2004.05.068. DOI
Bernal A., Kuritka I., Kasparkova V., Saha P. The effect of microwave irradiation on poly(vinyl alcohol) dissolved in ethylene glycol. J. Appl. Polym. Sci. 2013;128:175–180. doi: 10.1002/app.38133. DOI
Hema M., Selvasekarapandian S., Arunkumar D., Sakunthala A., Nithya H. FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X = Cl, Br, I) J. Non. Cryst. Solids. 2009;355:84–90. doi: 10.1016/j.jnoncrysol.2008.10.009. DOI
Pielesz A., Biniaś W. Cellulose acetate membrane electrophoresis and FTIR spectroscopy as methods of identifying a fucoidan in Fucusvesiculosus Linnaeus. Carbohydr. Res. 2010;345:2676–2682. doi: 10.1016/j.carres.2010.09.027. PubMed DOI
Perumal R.K., Perumal S., Thangam R., Gopinath A., Ramadass S.K., Madhan B., Sivasubramanian S. Collagen-fucoidan blend film with the potential to induce fibroblast proliferation for regenerative applications. Int. J. Biol. Macromol. 2018;106:1032–1040. doi: 10.1016/j.ijbiomac.2017.08.111. PubMed DOI
Ho T.T.M., Bremmell K.E., Krasowska M., MacWilliams S.V., Richard C.J.E., Stringer D.N., Beattie D.A. In situ ATR FTIR spectroscopic study of the formation and hydration of a fucoidan/chitosan polyelectrolyte multilayer. Langmuir. 2015;31:11249–11259. doi: 10.1021/acs.langmuir.5b01812. PubMed DOI
Rodriguez-Jasso R.M., Mussatto S.I., Pastrana L., Aguilar C.N., Teixeira J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011;86:1137–1144. doi: 10.1016/j.carbpol.2011.06.006. DOI
Lim S.J., Aida W.M.W., Maskat M.Y., Mamot S., Ropien J., Mohd D.M. Isolation and antioxidant capacity of fucoidan from selected Malaysian seaweeds. Food Hydrocoll. 2014;42:280–288. doi: 10.1016/j.foodhyd.2014.03.007. DOI
Hussein-Al-Ali S.H., El Zowalaty M.E., Hussein M.Z., Geilich B.M., Webster T.J. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int. J. Nanomed. 2014;9:3801. doi: 10.2147/IJN.S61143. PubMed DOI PMC
Huang Y.-C., Chen J.-K., Lam U.-I., Chen S.-Y. Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers. J. Polym. Res. 2014;21:415. doi: 10.1007/s10965-014-0415-6. DOI
Yu S.-H., Wu S.-J., Wu J.-Y., Wen D.-Y., Mi F.-L. Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application. Carbohydr. Polym. 2015;126:97–107. doi: 10.1016/j.carbpol.2015.02.068. PubMed DOI
Pawlak A., Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta. 2003;396:153–166. doi: 10.1016/S0040-6031(02)00523-3. DOI
Marsano E., Vicini S., Skopińska J., Wisniewski M., Sionkowska A. Chitosan and poly(vinyl pyrrolidone): Compatibility and miscibility of blends. Macromol. Symp. 2004;218:251–260. doi: 10.1002/masy.200451426. DOI
Oliveira J.M., Rodrigues M.T., Silva S.S., Malafaya P.B., Gomes M.E., Viegas C.A., Dias I.R., Azevedo J.T., Mano J.F., Reis R.L. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–6137. doi: 10.1016/j.biomaterials.2006.07.034. PubMed DOI
Li M., Cheng S., Yan H. Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength. Green Chem. 2007;9:894. doi: 10.1039/b618045k. DOI
Garcia-Cruz L., Casado-Coterillo C., Iniesta J., Montiel V., Irabien A. Chitosan: Poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. J. Membr. Sci. 2016;498:395–407. doi: 10.1016/j.memsci.2015.08.040. DOI
Awada H., Daneault C. Chemical Modification of Poly (vinyl alcohol) in Water. Appl. Sci. 2015;5:840–850. doi: 10.3390/app5040840. DOI
Jin L., Bai R. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir. 2002;18:9765–9770. doi: 10.1021/la025917l. DOI
Maachou H., Genet M.J., Aliouche D., Dupont-Gillain C.C., Rouxhet P.G. XPS analysis of chitosan--hydroxyapatite biomaterials: From elements to compounds. Surf. Interface Anal. 2013;45:1088–1097. doi: 10.1002/sia.5229. DOI
Padavan D.T., Hamilton A.M., Millon L.E., Boughner D.R., Wan W. Synthesis, characterization and in vitro cell compatibility study of a poly (amic acid) graft/cross-linked poly (vinyl alcohol) hydrogel. Acta Biomater. 2011;7:258–267. doi: 10.1016/j.actbio.2010.07.038. PubMed DOI
Puvaneswary S., Talebian S., Raghavendran H.B., Murali M.R., Mehrali M., Afifi A.M., Kasim N.H.B.A., Kamarul T. Fabrication and in vitro biological activity of β-TCP-Chitosan-Fucoidan composite for bone tissue engineering. Carbohydr. Polym. 2015;134:799–807. doi: 10.1016/j.carbpol.2015.07.098. PubMed DOI
Mi Zo S., Singh D., Kumar A., Cho Y.W., Oh T.H., Han S.S. Chitosan-hydroxyapatite macroporous matrix for bone tissue engineering. Curr. Sci. 2012:1438–1446.
Berger J., Reist M., Mayer J.M., Felt O., Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm. 2004;57:35–52. doi: 10.1016/S0939-6411(03)00160-7. PubMed DOI
Kim J.H., Kim J.Y., Lee Y.M., Kim K.Y. Properties and swelling characteristics of cross-linked poly (vinyl alcohol)/chitosan blend membrane. J. Appl. Polym. Sci. 1992;45:1711–1717. doi: 10.1002/app.1992.070451004. DOI
Venkatesan J., Bhatnagar I., Kim S.-K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs. 2014;12:300–316. doi: 10.3390/md12010300. PubMed DOI PMC
Sezer A.D., Hatipoglu F., Cevher E., Oğurtan Z., Bas A.L., Akbuğa J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: Preparation and in vitro/in vivo evaluation. Aaps Pharmscitech. 2007;8:E94–E101. doi: 10.1208/pt0802039. PubMed DOI PMC
Chung I.-C., Li C.-W., Wang G.-J. The influence of different nanostructured scaffolds on fibroblast growth. Sci. Technol. Adv. Mater. 2013;14:44401. doi: 10.1088/1468-6996/14/4/044401. PubMed DOI PMC
López-Garcia J., Lehocky M., Humpoliček P., Sáha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014;5:43–57. doi: 10.3390/jfb5020043. PubMed DOI PMC