Privileged multi-target directed propargyl-tacrines combining cholinesterase and monoamine oxidase inhibition activities

. 2022 Dec ; 37 (1) : 2605-2620.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36131624

Twenty-four novel compounds bearing tetrahydroacridine and N-propargyl moieties have been designed, synthesised, and evaluated in vitro for their anti-cholinesterase and anti-monoamine oxidase activities. Propargyltacrine 23 (IC50 = 21 nM) was the most potent acetylcholinesterase (AChE) inhibitor, compound 20 (IC50 = 78 nM) showed the best inhibitory human butyrylcholinesterase (hBChE) profile, and ligand 21 afforded equipotent and significant values on both ChEs (human AChE [hAChE]: IC50 = 0.095 ± 0.001 µM; hBChE: IC50 = 0.093 ± 0.003 µM). Regarding MAO inhibition, compounds 7, 15, and 25 demonstrated the highest inhibitory potential towards hMAO-B (IC50 = 163, 40, and 170 nM, respectively). In all, compounds 7, 15, 20, 21, 23, and 25 exhibiting the most balanced pharmacological profile, were submitted to permeability and cell viability tests. As a result, 7-phenoxy-N-(prop-2-yn-1-yl)-1,2,3,4-tetrahydroacridin-9-amine hydrochloride (15) has been identified as a permeable agent that shows a balanced pharmacological profile [IC50 (hAChE) = 1.472 ± 0.024 µM; IC50 (hBChE) = 0.659 ± 0.077 µM; IC50 (hMAO-B) = 40.39 ± 5.98 nM], and consequently, as a new hit-ligand that deserves further investigation, in particular in vivo analyses, as the preliminary cell viability test results reported here suggest that this is a relatively safe therapeutic agent.

Zobrazit více v PubMed

Prince M, Ali G-C, Guerchet M, et al. . Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther 2016;8:23. 10.1186/s13195-016-0188-8. PubMed DOI PMC

Lane CA, Hardy J, Schott JM.. Alzheimer’s disease. Eur J Neurol 2018;25:59–70. 10.1111/ene.13439. PubMed DOI

Zemek F, Drtinova L, Nepovimova E, et al. . Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin Drug Saf 2014;13:759–74. 10.1517/14740338.2014.914168. PubMed DOI

Grossberg GT, Manes F, Allegri RF, et al. . The safety, tolerability, and efficacy of once-daily memantine (28 mg): a multinational, randomized, double-blind, placebo-controlled trial in patients with moderate-to-severe Alzheimer’s disease taking cholinesterase inhibitors. CNS Drugs 2013;27:469–78. 10.1007/s40263-013-0077-7. PubMed DOI PMC

Weller J, Budson A.. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res 2018;7:1161. 10.12688/f1000research.14506.1. PubMed DOI PMC

Cummings JL. The impact of depressive symptoms on patients with Alzheimer disease. Alzheimer Dis Assoc Disord 2003;17:61–2. 10.1097/00002093-200304000-00001. PubMed DOI

Lyketsos CG, Lopez O, Jones B, et al. . Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA 2002;288:1475–83. 10.1001/jama.288.12.1475. PubMed DOI

Starkstein SE, Mizrahi R.. Depression in Alzheimer’s disease. Expert Rev Neurother 2006;6:887–95. 10.1586/14737175.6.6.887. PubMed DOI

Tipton KF. 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 2018;125:1519–51. 10.1007/s00702-018-1881-5. PubMed DOI

Nicotra A, Pierucci F, Parvez H, Senatori O.. Monoamine oxidase expression during development and aging. Neurotoxicology 2004;25:155–65. 10.1016/S0161-813X(03)00095-0. PubMed DOI

Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016;69:81–9. 10.1016/j.pnpbp.2016.02.005. PubMed DOI

Bautista-Aguilera ÓM, Hagenow S, Palomino-Antolin A, et al. . Multitarget-directed ligands combining cholinesterase and monoamine oxidase inhibition with histamine H3R antagonism for neurodegenerative diseases. Angewandte Chem Int Ed 2017;56:12765–9. 10.1002/anie.201706072. PubMed DOI

Bautista-Aguilera ÓM, Budni J, Mina F, et al. . Contilisant, a tetratarget small molecule for Alzheimer’s disease therapy combining cholinesterase, monoamine oxidase inhibition, and H3R antagonism with S1R agonism profile. J Med Chem 2018;61:6937–43. 10.1021/acs.jmedchem.8b00848. PubMed DOI

Weinreb O, Amit T, Bar-Am O, Youdim MBH.. Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 2012;13:483–94. 10.2174/138945012799499794. PubMed DOI

Weinstock M, Bejar C, Wang RH, et al. . TV3326, a novel neuroprotective drug with cholinesterase and monoamine oxidase inhibitory activities for the treatment of Alzheimer’s disease. J Neural Transm Suppl 2000;60:157–69. 10.1007/978-3-7091-6301-6_10. PubMed DOI

Weinstock M, Gorodetsky E, Poltyrev T, et al. . A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:555–61. 10.1016/S0278-5846(03)00053-8. PubMed DOI

Weinreb O, Amit T, Bar-Am O, Youdim MBH.. A novel anti-Alzheimer’s disease drug, ladostigil neuroprotective, multimodal brain-selective monoamine oxidase and cholinesterase inhibitor. Int Rev Neurobiol 2011;100:191–215. 10.1016/B978-0-12-386467-3.00010-8. PubMed DOI

Sagi Y, Weinstock M, Youdim MBH.. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J Neurochem 2003;86:290–7. 10.1046/j.1471-4159.2003.01801.x. PubMed DOI

Korábečný J, Nepovimová E, Cikánková T, et al. . Newly developed drugs for Alzheimer’s disease in relation to energy metabolism, cholinergic and monoaminergic neurotransmission. Neuroscience 2018;370:191–206. 10.1016/j.neuroscience.2017.06.034. PubMed DOI

León R, Garcia AG, Marco-Contelles J.. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med Res Rev 2013;33:139–89. 10.1002/med.20248. PubMed DOI

Gallagher DA, Schrag, A.. Impact of newer pharmacological treatments on quality of life in patients with Parkinson’s disease. CNS Drugs 2008;22:563–86. 10.2165/00023210-200822070-00003. PubMed DOI

do Carmo Carreiras M, Ismaili L, Marco-Contelles J.. Propargylamine-derived multi-target directed ligands for Alzheimer’s disease therapy. Bioorg Med Chem Lett 2020;30:126880. 10.1016/j.bmcl.2019.126880. PubMed DOI

Youdim MB, Gross A, Finberg JP.. Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 2001;132:500–6. 10.1038/sj.bjp.0703826. PubMed DOI PMC

Weinreb O, Amit T, Bar-Am O, et al. . Involvement of multiple survival signal transduction pathways in the neuroprotective, neurorescue and APP processing activity of rasagiline and its propargyl moiety. J Neural Transm Suppl 2006;70:457–65. PubMed

Horak M, Holubova K, Nepovimova E, et al. . The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017;75:54–62. 10.1016/j.pnpbp.2017.01.003. PubMed DOI

Recanatini M, Cavalli A, Belluti F, et al. . SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J Med Chem 2000;43:2007–18. 10.1021/jm990971t. PubMed DOI

Kaniakova M, Korabecny J, Holubova K, et al. . 7-phenoxytacrine is a dually acting drug with neuroprotective efficacy in vivo. Biochem Pharmacol 2021;186:114460. 10.1016/j.bcp.2021.114460. PubMed DOI

Soukup O, Jun D, Zdarova-Karasova J, et al. . A resurrection of 7-MEOTA: a comparison with tacrine. Curr Alzheimer Res 2013;10:893–906. PubMed

Mao F, Li J, Wei H, et al. . Tacrine-propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem 2015;30:995–1001. 10.3109/14756366.2014.1003212. PubMed DOI

Tang J, Li J, Zhang L, et al. . The divergent transformations of aromatic o-aminonitrile with carbonyl compound. J Heterocyclic Chem 2012;49:533–42. 10.1002/jhet.804. DOI

Del Giudice MR, Borioni A, Mustazza C, et al. . Synthesis and cholinesterase inhibitory activity of 6-, 7-methoxy-(and hydroxy-) tacrine derivatives. Farmaco 1996;51:693–8. PubMed

Szymanski P, Karpiński A, Mikiciuk-Olasik E.. Synthesis, biological activity and HPLC validation of 1,2,3,4-tetrahydroacridine derivatives as acetylcholinesterase inhibitors. Eur J Med Chem 2011;46:3250–7. 10.1016/j.ejmech.2011.04.038. PubMed DOI

Spilovska K, Korabecny J, Kral J, et al. . 7-Methoxytacrine-adamantylamine heterodimers as cholinesterase inhibitors in Alzheimer’s disease treatment–synthesis, biological evaluation and molecular modeling studies. Molecules 2013;18:2397–418. 10.3390/molecules18022397. PubMed DOI PMC

Spilovska K, Korabecny J, Sepsova V, et al. . Novel tacrine-scutellarin hybrids as multipotent anti-alzheimer’s agents: design, synthesis and biological evaluation. Molecules 2017;22:1006. 10.3390/molecules22061006. PubMed DOI PMC

Ellman GL, Courtney KD, Andres V, Feather-Stone RM.. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol 1961;7:88–95. 10.1016/0006-2952(61)90145-9. PubMed DOI

Lockridge O. Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 2015;148:34–46. 10.1016/j.pharmthera.2014.11.011. PubMed DOI

Greig NH, Lahiri DK, Sambamurti K.. Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 2002;14:77–91. 10.1017/s1041610203008676. PubMed DOI

Nordberg A, Ballard C, Bullock R, et al. . A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease. Prim Care Companion CNS Disord 2013;15:PCC.12r01412. 10.4088/PCC.12r01412. PubMed DOI PMC

Inestrosa NC, Alvarez A, Pérez CA, et al. . Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 1996;16:881–91. 10.1016/s0896-6273(00)80108-7. PubMed DOI

Barak D, Ordentlich A, Kaplan D, et al. . Lessons from functional analysis of AChE covalent and noncovalent inhibitors for design of AD therapeutic agents. Chem Biol Interact 2005;157–158:219–26. 10.1016/j.cbi.2005.10.030. PubMed DOI

Zhang C, Lv Y, Bai R, Xie Y.. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer’s disease. Bioorg Chem 2021;114:105070. 10.1016/j.bioorg.2021.105070. PubMed DOI

Verma P, Truhlar DG.. Status and challenges of density functional theory. Trends Chem 2020;2:302–18. 10.1016/j.trechm.2020.02.005. DOI

Borštnar R, Repič M, Kržan M, et al. . Irreversible inhibition of monoamine oxidase B by the antiparkinsonian medicines rasagiline and selegiline: a computational study. Eur J Organic Chem 2011;2011:6419–33. 10.1002/ejoc.201100873. DOI

Di L, Kerns EH, Fan K, et al. . High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 2003;38:223–32. PubMed

Wang Q, Rager JD, Weinstein K, et al. . Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 2005;288:349–59. 10.1016/j.ijpharm.2004.10.007. PubMed DOI

Parepally JMR, Mandula H, Smith QR.. Brain uptake of nonsteroidal anti-inflammatory drugs: ibuprofen, flurbiprofen, and indomethacin. Pharm Res 2006;23:873–81. 10.1007/s11095-006-9905-5. PubMed DOI

Romero A, Cacabelos R, Oset-Gasque MJ, et al. . Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2013;23:1916–22. 10.1016/j.bmcl.2013.02.017. PubMed DOI

Gracon SI, Knapp MJ, Berghoff WG, et al. . Safety of tacrine: clinical trials, treatment IND, and postmarketing experience. Alzheimer Dis Assoc Disord 1998;12:93–101. 10.1097/00002093-199806000-00007. PubMed DOI

Watkins PB, Zimmerman HJ, Knapp MJ, et al. . Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994;271:992–8. PubMed

Nepovimova E, Korabecny J, Dolezal R, et al. . Tacrine-trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 2015;58:8985–9003. 10.1021/acs.jmedchem.5b01325. PubMed DOI

Lineweaver H, Burk D.. The determination of enzyme dissociation constants. J Am Chem Soc 1934;56:658–66. 10.1021/ja01318a036 (last accessed 9 Mar 2022]. DOI

Carpenter TS, Kirshner DA, Lau EY, et al. . A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys J 2014;107:630–41. 10.1016/j.bpj.2014.06.024. PubMed DOI PMC

Muckova L, Pejchal J, Jost P, et al. . Cytotoxicity of acetylcholinesterase reactivators evaluated in vitro and its relation to their structure. Drug Chem Toxicol 2019;42:252–6. 10.1080/01480545.2018.1432641. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace