Evaluation of Recombinant Kpkt Cytotoxicity on HaCaT Cells: Further Steps towards the Biotechnological Exploitation Yeast Killer Toxins

. 2021 Mar 08 ; 10 (3) : . [epub] 20210308

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800189

Grantová podpora
Fondo di Ateneo per la Ricerca 2019 Università degli Studi di Sassari
project Nr. FCH-S-20-6316 Brno University of Technology
program PON-RI (2014-2020) Azione I.1 "Dottorati innovativi con caratterizzazione Industriale" Italian Ministry of University and Research

The soil yeast Tetrapisispora phaffii secretes a killer toxin, named Kpkt, that shows β-glucanase activity and is lethal to wine spoilage yeasts belonging to Kloeckera/Hanseniaspora, Saccharomycodes and Zygosaccharomyces. When expressed in Komagataella phaffii, recombinant Kpkt displays a wider spectrum of action as compared to its native counterpart, being active on a vast array of wine yeasts and food-related bacteria. Here, to gather information on recombinant Kpkt cytotoxicity, lyophilized preparations of this toxin (LrKpkt) were obtained and tested on immortalized human keratinocyte HaCaT cells, a model for the stratified squamous epithelium of the oral cavity and esophagus. LrKpkt proved harmless to HaCaT cells at concentrations up to 36 AU/mL, which are largely above those required to kill food-related yeasts and bacteria in vitro (0.25-2 AU/mL). At higher concentrations, it showed a dose dependent effect that was comparable to that of the negative control and therefore could be ascribed to compounds, other than the toxin, occurring in the lyophilized preparations. Considering the dearth of studies regarding the effects of yeast killer toxins on human cell lines, these results represent a first mandatory step towards the evaluation the possible risks associated to human intake. Moreover, in accordance with that observed on Ceratitis capitata and Musca domestica, they support the lack of toxicity of this toxin on non-target eukaryotic models and corroborate the possible exploitation of killer toxins as natural antimicrobials in the food and beverages industries.

Zobrazit více v PubMed

Klassen R., Schaffrath R., Buzzini P., Ganter P.F. Antagonistic interactions and killer yeasts. In: Buzzini P., Lachance M.A., Yurkov A., editors. Yeasts in Natural Ecosystems: Ecology. Springer; Cham, Switzerland: 2017. pp. 229–275.

Van Vuuren H.J.J., Jacobs C.J. Killer yeasts in the wine industry: A review. Am. J. Enol. Vitic. 1992;43:119–128.

Todd B.E.N., Fleet G.H., Henscke P.A. Promotion of autolysis through the interaction of killer and sensitive yeasts: Potential application in sparkling wine production. Am. J. Enol. Vitic. 2000;51:65–72.

Ciani M., Fatichenti F. Killer toxin of Kluyveromyces phaffii DBVPG 6076 as a biopreservative agent to control apiculate wine yeasts. Appl. Environ. Microbiol. 2001;67:3058–3063. doi: 10.1128/AEM.67.7.3058-3063.2001. PubMed DOI PMC

Pérez F., Ramírez M., Regodón J.A. Influence of killer strains of Saccharomyces cerevisiae on wine fermentation. Antonie van Leewen. 2001;79:393–399. doi: 10.1023/A:1012034608908. PubMed DOI

Comitini F., De Ingeniis J., Pepe L., Mannazzu I., Ciani M. Pichia anomala and Kluyveromyces wickeramii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 2004;238:235–240. doi: 10.1111/j.1574-6968.2004.tb09761.x. PubMed DOI

Comitini F., Di Pietro N., Zacchi L., Mannazzu I., Ciani M. Kluyveromyces phaffii killer toxin active against wine spoilage yeasts: Purification and characterization. Microbiology. 2004;150:2535–2541. doi: 10.1099/mic.0.27145-0. PubMed DOI

Velázquez R., Zamora E., Álvarez M.L., Hernández L.M., Ramírez M. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine. Front. Microbiol. 2015;6:1222. doi: 10.3389/fmicb.2015.01222. PubMed DOI PMC

Ramírez M., Velázquez R., Maqueda M., Zamora E., López-Piñeiro A., Hernández L.M. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. Int. J. Food Microbiol. 2016;238:311–319. doi: 10.1016/j.ijfoodmicro.2016.09.029. PubMed DOI

Villalba M.L., Sàez J.S., del Monaco S., Lopes C.A., Sangorrín M.P. TdKT, a new killer toxin produced by Torulaspora delbrueckii effective against wine spoilage yeasts. Int. J. Food Microbiol. 2016;217:94–100. doi: 10.1016/j.ijfoodmicro.2015.10.006. PubMed DOI

Velázquez R., Zamora E., Álvarez M.L., Ramírez M. Using killer yeasts in the Torulaspora delbrueckii elaboration of base wine and traditional sparkling wine. Int. J. Food Microbiol. 2019;289:134–144. doi: 10.1016/j.ijfoodmicro.2018.09.010. PubMed DOI

Villalba M.L., Mazzucco M.B., Lopes C.A., Ganga M.A., Sangorrín M.P. Purification and characterization of Saccharomyces eubayanus killer toxin: Biocontrol effectiveness against wine spoilage yeasts. Int. J. Food Microbiol. 2020:108714. doi: 10.1016/j.ijfoodmicro.2020.108714. PubMed DOI

Palpacelli V., Ciani M., Rosini G. Activity of different ‘killer’ yeasts on strains of yeast species undesirable in the food industry. FEMS Microbiol. Lett. 1991;68:75–78. doi: 10.1111/j.1574-6968.1991.tb04572.x. PubMed DOI

Lowes K.F., Shearman C.A., Payne J., MacKenzie D., Archer D.B., Merry R.J., Gasson M.J. Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl. Environ. Microbiol. 2000;66:1066–1076. doi: 10.1128/AEM.66.3.1066-1076.2000. PubMed DOI PMC

Seguy N., Cailliez J., Polonelli L., Dei-Cas E., Camus D. Inhibitory effect of a Pichia anomala killer toxin on Pneumocystis carinii infectivity to the SCID mouse. Parasitol. Res. 1996;82:114–116. doi: 10.1007/s004360050080. PubMed DOI

Izgü F., Altinby D. Killer toxins of certain yeast strains have potential growth inhibitory activity on gram-positive pathogenic bacteria. Microbios. 1997;89:15–22. PubMed

Theisen S., Molkenau E., Schmitt M.J. Wicaltin, a new protein toxin secreted by the yeast Williopsis californica and its broad-spectrum antimycotic potential. J. Microbiol. Biotechnol. 2000;10:547–550.

Carboni G., Fancello F., Zara G., Zara S., Ruiu L., Marova I., Pinna G., Budroni M., Mannazzu I. Production of a lyophilized ready-to-use yeast killer toxin with possible applications in the wine and food industries. Int. J. Food Microbiol. 2020;335:108883. doi: 10.1016/j.ijfoodmicro.2020.108883. PubMed DOI

Weiler F., Schmitt M.J. Zygocin a secreted antifungal toxin of the yeast Zygosaccharomyces bailii and its effect on sensitive fungal cells. FEMS Yeast Res. 2003;3:69–76. doi: 10.1111/j.1567-1364.2003.tb00140.x. PubMed DOI

Santos A., Sanchez A., Marquina D. Yeasts as biological agents to control Botrytis cinerea. Microbiol. Res. 2004;159:331–338. doi: 10.1016/j.micres.2004.07.001. PubMed DOI

Pérez M.F., Contreras L., Garnica N.M., Fernandez-Zenoff F.V., Farías M.E., Sepulveda M., Ramallo J., Dib J.R. Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS ONE. 2016;11:e0165590. doi: 10.1371/journal.pone.0165590. PubMed DOI PMC

Rosa-Magri M.M., Tauk-Tornisielo S.M., Ceccato-Antonini S.R. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Braz. Arch. Biol. Technol. 2011;54:1–5. doi: 10.1590/S1516-89132011000100001. DOI

Shaffrath R., Meinhardt F., Klassen R. Yeast Killer toxins: Fundamentals and Applications. In: Anke T., Schüffler A., editors. Physiology and Genetics. The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. Springer; Cham, Switzerland: 2018. pp. 87–118.

Mannazzu I., Domizio P., Carboni G., Zara S., Zara G., Comitini F., Budroni M., Ciani M. Yeast killer toxins: From ecological significance to application. Crit. Rev. Biotechnol. 2019;39:603–617. doi: 10.1080/07388551.2019.1601679. PubMed DOI

Mehlomakulu N.N., Setati M.E., Divol B. Non-Saccharomyces killer toxins: Possible biocontrol agents against Brettanomyces in wine? S. Afr. J. Enol. Vitic. 2015;36:94–104. doi: 10.21548/36-1-939. DOI

Comitini F., Mannazzu I., Ciani M. Tetrapisispora phaffii killer toxin is a highly specific β-glucanase that disrupts the integrity of the yeast cell wall. Microb. Cell Factories. 2009;8:55. doi: 10.1186/1475-2859-8-55. PubMed DOI PMC

Oro L., Zara S., Fancellu F., Mannazzu I., Budroni M., Ciani M., Comitini F. TpBGL2 codes for a Tetrapisispora phaffii killer toxin active against wine spoilage yeasts. FEMS Yeast Res. 2014;14:464–471. doi: 10.1111/1567-1364.12126. PubMed DOI

Comitini F., Ciani M. The zymocidial activity of Tetrapisispora phaffii in the control of Hanseniaspora uvarum during the early stages of winemaking. Lett. Appl. Microbiol. 2010;50:50–56. doi: 10.1111/j.1472-765X.2009.02754.x. PubMed DOI

Chessa R., Landolfo S., Ciani M., Budroni M., Zara S., Ustun M., Çakar Z.P., Mannazzu I. Biotechnological exploitation of Tetrapisispora phaffii killer toxin: Heterologous production in Komagataella phaffii (Pichia pastoris) Appl. Microbiol. Biotechnol. 2017;101:2931–2942. doi: 10.1007/s00253-016-8050-2. PubMed DOI

Ahmad M., Hirz M., Pichler H., Schwab H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014;98:5301–5317. doi: 10.1007/s00253-014-5732-5. PubMed DOI PMC

Pfeiffer P.F., Radler G., Caspritz H.H. Effect of a killer toxin of yeast on eukaryotic systems. Appl. Environ. Microbiol. 1988;54:1068–1069. doi: 10.1128/AEM.54.4.1068-1069.1988. PubMed DOI PMC

Pettoello-Mantovani M., Nocerino A., Polonelli L., Morace G., Conti S., Di Martino L., De Ritis G., Iafusco M., Guandalini S. Hansenula anomala killer toxin induces secretion and severe acute injury in the rat intestine. Gastroenterology. 1995;109:1900–1906. doi: 10.1016/0016-5085(95)90757-2. PubMed DOI

Ross M.H., Pawlina W. Histology: A Test and Atlas with Correlated. Cell and Molecular Biology. 7th ed. Lippincott Williams & Wilkins; Baltimore, MD, USA: 2015.

Kitagawa N., Otani T., Inai T. Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells. Anat. Sci. Int. 2019;94:163–171. doi: 10.1007/s12565-018-0462-x. PubMed DOI

López-García J., Lehocký M., Humpolíček P., Sáha P. HaCaT keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014;5:43–57. doi: 10.3390/jfb5020043. PubMed DOI PMC

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Notario V. β-glucanases from Candida albicans: Purification, characterization and the nature of their attachment to cell wall components. Microbiology. 1982;128:747–759. doi: 10.1099/00221287-128-4-747. PubMed DOI

Zhang W., Inan M., Meagher M.M. Fermentation strategies for recombinant protein expression in the methylotrophic yeast Pichia pastoris. Biotechnol. Bioprocess Eng. 2000;5:275–287. doi: 10.1007/BF02942184. DOI

Inan M., Meagher M.M. Non-repressing carbon sources for alcohol oxidase (AOX1) promoter of Pichia pastoris. J. Biosci. Bioeng. 2001;92:585–589. doi: 10.1016/S1389-1723(01)80321-2. PubMed DOI

Juturu V., Wu J.C. Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Biotechnol. Appl. Biochem. 2018;65:145–149. doi: 10.1002/bab.1567. PubMed DOI

Liu W.-C., Inwood S., Gong T., Sharma A., Yu L.-Y., Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit. Rev. Biotechnol. 2019;39:258–271. doi: 10.1080/07388551.2018.1554620. PubMed DOI

Sun Q., Chen F., Geng F., Luo Y., Gong S., Jiang Z. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem. 2018;245:570–577. doi: 10.1016/j.foodchem.2017.10.113. PubMed DOI

Vina-Gonzalez J., Elbl K., Ponte X., Valero F., Alcalde M. Functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae and Pichia pastoris by directed evolution. Biotechnol. Bioeng. 2018;115:1666–1674. doi: 10.1002/bit.26585. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...