• This record comes from PubMed

Organized Neurogenic-Niche-Like Pinwheel Structures Discovered in Spinal Cord Tissue-Derived Neurospheres

. 2019 ; 7 () : 334. [epub] 20191220

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The neurogenic niche of the subventricular zone (SVZ) in adult brain tissue takes the form of a pinwheel-like cytoarchitectural structure, with mono-ciliated astrocytes displaying neural stem cell (NSC) characteristics present in the core surrounded by ciliated ependymal cells. For the first time, we have demonstrated the formation of similar pinwheel structures in spinal cord and SVZ tissue-derived neurospheres cultured in vitro. To investigate whether the organization and integrity of these pinwheel structures depends on the appropriate organization of ciliated astrocytes and ependymal cells, we modified neurosphere cell arrangements via the application of the methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dc) or the antiviral drug ganciclovir (GCV) in transgenic mice expressing herpes simplex virus thymidine kinase from the GFAP promoter (GFAP-TK). Treatment of neurospheres with 5-aza-dc increased FoxJ1 expression, a crucial factor for ciliogenesis, by reducing methylation of the FoxJ1 CpG island. 5-aza-dc also increased the expression of the astrocyte marker GFAP and caused aberrant accumulation of ciliated astrocytes. However, the ablation of dividing astrocytes within neurospheres by GCV treatment led to an increase in the accumulation of ciliated ependymal cells, as evidenced by the increased expression of the ependymal cell markers Vimentin or CD24. While 5-aza-dc and GCV treatment differentially affected cell arrangement, both compounds significantly diminished the number of pinwheel structures present in neurospheres. Thus, we suggest that the ratio of ciliated astrocytes to ependymal cells plays a crucial role in the correct formation of the pinwheel structures in spinal cord tissue-derived neurospheres in vitro.

See more in PubMed

Alfaro-Cervello C., Soriano-Navarro M., Mirzadeh Z., Alvarez-Buylla A., Garcia-Verdugo J. M. (2012). Biciliated ependymal cell proliferation contributes to spinal cord growth. J. Comp. Neurol. 520 3528–3552. 10.1002/cne.23104 PubMed DOI PMC

Barnabe-Heider F., Goritz C., Sabelstrom H., Takebayashi H., Pfrieger F. W., Meletis K., et al. (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7 470–482. 10.1016/j.stem.2010.07.014 PubMed DOI

Bush T. G., Savidge T. C., Freeman T. C., Cox H. J., Campbell E. A., Mucke L., et al. (1998). Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93 189–201. 10.1016/s0092-8674(00)81571-8 PubMed DOI

Cui G., Yu Z., Li Z., Wang W., Lu T., Qian C., et al. (2011). Increased expression of Foxj1 after traumatic brain injury. J. Mol. Neurosci. 45 145–153. 10.1007/s12031-011-9504-8 PubMed DOI PMC

Didon L., Zwick R. K., Chao I. W., Walters M. S., Wang R., Hackett N. R., et al. (2013). RFX3 modulation of FOXJ1 regulation of cilia genes in the human airway epithelium. Respir. Res. 14:70. 10.1186/1465-9921-14-70 PubMed DOI PMC

Gonzalez-Cano L., Fuertes-Alvarez S., Robledinos-Anton N., Bizy A., Villena-Cortes A., Farinas I., et al. (2016). p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture. Dev. Neurobiol. 76 730–747. 10.1002/dneu.22356 PubMed DOI PMC

Hamilton L. K., Truong M. K., Bednarczyk M. R., Aumont A., Fernandes K. J. (2009). Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 164 1044–1056. 10.1016/j.neuroscience.2009.09.006 PubMed DOI

Imura T., Kornblum H. I., Sofroniew M. V. (2003). The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci. 23 2824–2832. 10.1523/jneurosci.23-07-02824.2003 PubMed DOI PMC

Jacquet B. V., Salinas-Mondragon R., Liang H., Therit B., Buie J. D., Dykstra M., et al. (2009). FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136 4021–4031. 10.1242/dev.041129 PubMed DOI PMC

Landgren H., Carlsson P. (2004). FoxJ3, a novel mammalian forkhead gene expressed in neuroectoderm, neural crest, and myotome. Dev. Dyn. 231 396–401. 10.1002/dvdy.20131 PubMed DOI

Liu J. Q., Carl J. W., Jr., Joshi P. S., RayChaudhury A., Pu X. A., Shi F. D., et al. (2007). CD24 on the resident cells of the central nervous system enhances experimental autoimmune encephalomyelitis. J. Immunol. 178 6227–6235. 10.4049/jimmunol.178.10.6227 PubMed DOI

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 402–408. 10.1006/meth.2001.1262 PubMed DOI

Mirzadeh Z., Merkle F. T., Soriano-Navarro M., Garcia-Verdugo J. M., Alvarez-Buylla A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3 265–278. 10.1016/j.stem.2008.07.004 PubMed DOI PMC

Moreno-Manzano V., Rodriguez-Jimenez F. J., Garcia-Rosello M., Lainez S., Erceg S., Calvo M. T., et al. (2009). Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells 27 733–743. 10.1002/stem.24 PubMed DOI

Oakley B. R. (1992). Gamma-tubulin: the microtubule organizer? Trends Cell Biol. 2 1–5. 10.1016/0962-8924(92)90125-7 PubMed DOI

Paez-Gonzalez P., Abdi K., Luciano D., Liu Y., Soriano-Navarro M., Rawlins E., et al. (2011). Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71 61–75. 10.1016/j.neuron.2011.05.029 PubMed DOI PMC

Redmond S. A., Figueres-Onate M., Obernier K., Nascimento M. A., Parraguez J. I., Lopez-Mascaraque L., et al. (2019). Development of ependymal and postnatal neural stem cells and their origin from a common embryonic progenitor. Cell Rep. 27:429–441.e3. 10.1016/j.celrep.2019.01.088 PubMed DOI PMC

Restrepo A., Smith C. A., Agnihotri S., Shekarforoush M., Kongkham P. N., Seol H. J., et al. (2011). Epigenetic regulation of glial fibrillary acidic protein by DNA methylation in human malignant gliomas. Neuro Oncol. 13 42–50. 10.1093/neuonc/noq145 PubMed DOI PMC

Reynolds B. A., Rietze R. L. (2005). Neural stem cells and neurospheres–re-evaluating the relationship. Nat. Methods 2 333–336. 10.1038/nmeth758 PubMed DOI

Rodriguez-Jimenez F. J., Alastrue-Agudo A., Stojkovic M., Erceg S., Moreno-Manzano V. (2015). Connexin 50 expression in ependymal stem progenitor cells after spinal cord injury activation. Int. J. Mol. Sci. 16 26608–26618. 10.3390/ijms161125981 PubMed DOI PMC

Spassky N., Merkle F. T., Flames N., Tramontin A. D., Garcia-Verdugo J. M., Alvarez-Buylla A. (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25 10–18. 10.1523/jneurosci.1108-04.2005 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

The activation of dormant ependymal cells following spinal cord injury

. 2023 Jul 05 ; 14 (1) : 175. [epub] 20230705

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...