bio-artificial polymeric system
Dotaz
Zobrazit nápovědu
Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
- MeSH
- ampicilin * chemie farmakologie MeSH
- antibakteriální látky * chemická syntéza chemie farmakologie MeSH
- chitosan * chemie farmakologie MeSH
- Escherichia coli růst a vývoj MeSH
- polyvinylalkohol * chemie farmakologie MeSH
- Staphylococcus aureus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
Self-assembled bilayer structures such as those produced from amphiphilic block copolymers (polymersomes) are potentially useful in a wide array of applications including the production of artificial cells and organelles, nanoreactors, and delivery systems. These constructs are of important fundamental interest, and they are also frequently considered toward advances in bionanotechnology and nanomedicine. In this framework, membrane permeability is perhaps the most important property of such functional materials. Having in mind these considerations, we herein report the manufacturing of intrinsically permeable polymersomes produced using block copolymers comprising poly[2-(diisopropylamino)-ethyl methacrylate] (PDPA) as the hydrophobic segment. Although being water insoluble at pH 7.4, its pKa(PDPA) ∼ 6.8 leads to the presence of a fraction of protonated amino groups close to the physiological pH, thus conducting the formation of relatively swollen hydrophobic segments. Rhodamine B-loaded vesicles demonstrated that this feature confers inherent permeability to the polymeric membrane, which can still be modulated to some extent by the solution pH. Indeed, even at higher pH values where the PDPA chains are fully deprotonated, the experiments demonstrate that the membranes remain permeable. While membrane permeability can be, for instance, regulated by introducing membrane proteins and DNA nanopores, examples of membrane-forming polymers with intrinsic permeability have been seldom reported so far, and the possibility to regulate the flow of chemicals in these compartments by tuning block copolymer features and ambient conditions is of due relevance. The permeable nature of PDPA membranes possibly applies to a wide array of small molecules, and these findings can in principle be translocated to a variety of disparate bio-related applications.