Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
21464799
PubMed Central
PMC6260627
DOI
10.3390/molecules16042914
PII: molecules16042914
Knihovny.cz E-zdroje
- MeSH
- elektrochemie MeSH
- fenoly izolace a purifikace MeSH
- limita detekce MeSH
- slivoň chemie MeSH
- spektrofotometrie ultrafialová MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- fenoly MeSH
Phenols are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potential antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. The objective of this study was to investigate a suitable method for determination of protocatechuic acid, 4-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferulic acid, quercetin, resveratrol and quercitrin from apricot samples. A high-performance liquid chromatograph with electrochemical and UV detectors was used. The method was optimized in respect to both the separation selectivity of individual phenolic compounds and the maximum sensitivity with the electrochemical detection. The lowest limits of detection (3 S/N) using UV detection were estimated for ferulic acid (3 µM), quercitrin (4 µM) and quercetin (4 µM). Using electrochemical detection values of 27 nM, 40 nM and 37 nM were achieved for ferulic acid, quercitrin and quercetin, respectively. It follows from the acquired results that the coulometric detection under a universal potential of 600 mV is more suitable and sensitive for polyphenols determination than UV detection at a universal wavelength of 260 nm. Subsequently, we tested the influence of solvent composition, vortexing and sonication on separation efficiency. Our results showed that a combination of water, acetone and methanol in 20:20:60 ratio was the most effective for p-aminobenzoic acid, chlorgenic acid, caffeic acid, protocatechuic acid, ferulic acid, rutin, resveratrol and quercetin, in comparison with other solvents. On the other hand, vortexing at 4 °C produced the highest yield. Moreover, we tested the contents of individual polyphenols in the apricot cultivars Mamaria, Mold and LE-1075. The major phenolic compounds were chlorgenic acid and rutin. Chlorgenic acid was found in amounts of 2,302 mg/100 g in cultivar LE-1075, 546 mg/100 g in cultivar Mamaria and 129 mg/100 g in cultivar Mold. Generally, the cultivar LE-1075 produced the highest polyphenol content values, contrary to Mold, which compared to cultivar LE-1075 was quite poor from the point of view of the phenolics content.
Zobrazit více v PubMed
Bruneton J. Pharmacognosy, Phytochemistry, Medicinal Plants. 2nd ed. Lavoisier; Paris, France: 1999.
Cartea M.E., Francisco M., Soengas P., Velasco P. Phenolic Compounds in Brassica Vegetables. Molecules. 2010;16:251–280. doi: 10.3390/molecules16010251. PubMed DOI PMC
Ferretti G., Bacchetti T., Belleggia A., Neri D. Cherry Antioxidants: From Farm to Table. Molecules. 2010;15:6993–7005. doi: 10.3390/molecules15106993. PubMed DOI PMC
Sochor J., Zitka O., Skutkova H., Pavlik D., Babula P., Krska B., Horna A., Adam V., Provaznik I., Kizek R. Content of Phenolic Compounds and Antioxidant Capacity in Fruits of Apricot Genotypes. Molecules. 2010;15:6285–6305. doi: 10.3390/molecules15096285. PubMed DOI PMC
Sisa M., Bonnet S.L., Ferreira D., Van der Westhuizen J.H. Photochemistry of Flavonoids. Molecules. 2010;15:5196–5245. doi: 10.3390/molecules15085196. PubMed DOI PMC
Ghasemzadeh A., Jaafar H.Z.E., Rahmat A. Elevated Carbon Dioxide Increases Contents of Flavonoids and Phenolic Compounds, and Antioxidant Activities in Malaysian Young Ginger (Zingiber officinale Roscoe.) Varieties. Molecules. 2010;15:7907–7922. doi: 10.3390/molecules15117907. PubMed DOI PMC
Kelsey N.A., Wilkins H.M., Linseman D.A. Nutraceutical Antioxidants as Novel Neuroprotective Agents. Molecules. 2010;15:7792–7814. doi: 10.3390/molecules15117792. PubMed DOI PMC
Rechner A.R., Wagner E., Van Buren L., Van de Put F., Wiseman S., Rice-Evans C.A. Black tea represents a major source of dietary phenolics among regular tea drinkers. Free Radic. Res. 2002;36:1127–1135. doi: 10.1080/1071576021000006707. PubMed DOI
Gonzalez-Gallego J., Garcia-Mediavilla M.V., Sanchez-Campos S., Tunon M.J. Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 2010;104:S15–S27. doi: 10.1017/S0007114510003910. PubMed DOI
Galleano M., Pechanova O., Fraga C.G. Hypertension, Nitric Oxide, Oxidants, and Dietary Plant Polyphenols. Curr. Pharm. Biotechnol. 2010;11:837–848. doi: 10.2174/138920110793262114. PubMed DOI
Fang Z.X., Bhandari B. Encapsulation of polyphenols - a review. Trends Food Sci. Technol. 2010;21:510–523. doi: 10.1016/j.tifs.2010.08.003. DOI
Michalowicz J., Duda W., Pol J. Environ. Stud. Pol. J. Environ. Stud. 2007;16:347–362.
Chen H.L., Yao J., Wang F., Zhou Y., Chen K., Zhuang R.S., Choi M.M.F., Zaray G. Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment. Sci. Total Environ. 2010;408:1043–1049. doi: 10.1016/j.scitotenv.2009.11.051. PubMed DOI
Shadnia H., Wright J.S. Understanding the toxicity of phenols: Using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms. Chem. Res. Toxicol. 2008;21:1197–1204. doi: 10.1021/tx800058r. PubMed DOI
Lepoittevin J.P., Benezra C. Allergic contact-dermatitis caused by naturally-occurring quinones. Pharm. Weekblad-Sci. Ed. 1991;13:119–122. doi: 10.1007/BF01981527. PubMed DOI
Saito S., Kawabata J. Effects of electron-withdrawing substituents on DPPH radical scavenging reactions of protocatechuic acid and its analogues in alcoholic solvents. Tetrahedron. 2005;61:8101–8108. doi: 10.1016/j.tet.2005.06.040. DOI
Hatzipanayioti D., Karaliota A., Kamariotaki M., Aletras V., Petropouleas P. Theoretical and spectroscopic investigation of the oxidation and degradation of protocatechuic acid. Chem. Phys. 2006;325:341–350. doi: 10.1016/j.chemphys.2005.12.029. DOI
Kampa M., Alexaki V.I., Notas G., Nifli A.P., Nistikaki A., Hatzoglou A., Bakogeorgou E., Kouimtzoglou E., Blekas G., Boskou D., Gravanis A., Castanas E. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 2004;6:R63–R74. doi: 10.1186/bcr752. PubMed DOI PMC
Ueda J.I., Saito N., Shimazu Y., Ozawa T. A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch. Biochem. Biophys. 1996;333:377–384. doi: 10.1006/abbi.1996.0404. PubMed DOI
An L.J., Guan S., Shi G.F., Bao Y.M., Duan Y.L., Jiang B. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells. Food Chem. Toxicol. 2006;44:436–443. doi: 10.1016/j.fct.2005.08.017. PubMed DOI
Akberova S.I. New biological properties of p-aminobenzoic acid. Biol. Bull. 2002;29:390–393. doi: 10.1023/A:1016871219882. PubMed DOI
Shuang S.M., Yang Y., Pan J.H. Study on molecular recognition of para-aminobenzoic acid species by alpha-, beta- and hydroxypropyl-beta-cyclodextrin. Anal. Chim. Acta. 2002;458:305–310.
Schmidt T.C., Petersmann M., Kaminski L., vonLow E., Stork G. Analysis of aminobenzoic acids in waste water from a former ammunition plant with HPLC and combined diode array and fluorescence detection. Fres. J. Anal. Chem. 1997;357:121–126. doi: 10.1007/s002160050124. DOI
Clifford M.N. Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden. J. Sci. Food Agric. 1999;79:362–372. doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D. DOI
Boerjan W., Ralph J., Baucher M. Lignin biosynthesis. Annu. Rev. Plant Biol. 2003;54:519–546. doi: 10.1146/annurev.arplant.54.031902.134938. PubMed DOI
Kono Y., Kashine S., Yoneyama T., Sakamoto Y., Matsui Y., Shibata H. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem. 1998;62:22–27. doi: 10.1271/bbb.62.22. PubMed DOI
Halliwell B., Gutteridge J.M.C. Role of free-radicals and catalytic metal-ions in human-disease - an overview. Methods Enzymol. 1990;186:1–85. PubMed
Mori H., Tanaka T., Shima H., Asu T.K., Takahashi M. Inhibitory effect of chlorogenic acid on methylazoxymethanol acetate-induced carcinogenesis in large-intestine and liver of hamsters. Cancer Lett. 1986;30:49–54. doi: 10.1016/0304-3835(86)90131-X. PubMed DOI
Tsuchiya T., Suzuki O., Igarashi K. Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci. Biotechnol. Biochem. 1996;60:765–768. doi: 10.1271/bbb.60.765. PubMed DOI
Zhao Z.H., Moghadasian M.H. Bioavailability of hydroxycinnamates: a brief review of in vivo and in vitro studies. Phytochem. Rev. 2010;9:133–145. doi: 10.1007/s11101-009-9145-5. DOI
Maurya D.K., Devasagayam T.P.A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol. 2010;48:3369–3373. doi: 10.1016/j.fct.2010.09.006. PubMed DOI
Kono Y., Shibata H., Kodama Y., Sawa Y. The suppression of the N-nitrosating reaction by chlorogenic acid. Biochem. J. 1995;312:947–953. doi: 10.1042/bj3120947. PubMed DOI PMC
Kasai H., Fukada S., Yamaizumi Z., Sugie S., Mori H. Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem. Toxicol. 2000;38:467–471. doi: 10.1016/S0278-6915(00)00014-4. PubMed DOI
Shibata H., Sakamoto Y., Oka M., Kono Y. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci. Biotechnol. Biochem. 1999;63:1295–1297. doi: 10.1271/bbb.63.1295. PubMed DOI
Akagi K., Hirose M., Hoshiya T., Mizoguchi Y., Ito N., Shirai T. Modulating effects of ellagic acid, vanillin and quercetin in a rat medium-term multiorgan carcinogenesis model. Cancer Lett. 1995;94:113–121. doi: 10.1016/0304-3835(95)03833-I. PubMed DOI
Kappachery S., Paul D., Yoon J., Kweon J.H. Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane. Biofouling. 2010;26:667–672. doi: 10.1080/08927014.2010.506573. PubMed DOI
Kumar S.S., Ghosh A., Devasagayam T.P.A., Chauhan P.S. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2000;469:207–214. doi: 10.1016/S1383-5718(00)00074-7. PubMed DOI
Aruoma O.I., Evans P.J., Kaur H., Sutcliffe L., Halliwell B. An evaluation of the antioxidant and potential pro-oxidant properties of food-additives and of trolox-c, vitamin-e and probucol. Free Rad. Res. Commun. 1990;10:143–157. doi: 10.3109/10715769009149883. PubMed DOI
Utsumi H., Fujii K., Irie H., Furusaki A., Nitta I. Crystal structure of p-coumaric acid. Bull. Chem. Soc. Jpn. 1967;40:426–426. doi: 10.1246/bcsj.40.426. DOI
Castelluccio C., Paganga G., Melikian N., Bolwell G.P., Pridham J., Sampson J., Riceevans C. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher-plants. FEBS Lett. 1995;368:188–192. doi: 10.1016/0014-5793(95)00639-Q. PubMed DOI
Sharma R.D. Isoflavones and hypercholesterolemia in rats. Lipids. 1979;14:535–540. doi: 10.1007/BF02533528. PubMed DOI
Gaberscik A., Voncina M., Trost T., Germ M., Bjorn L.O. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. J. Photochem. Photobiol. B-Biol. 2002;66:30–36. doi: 10.1016/S1011-1344(01)00272-X. PubMed DOI
Rozema J., Bjorn L.O., Bornman J.F., Gaberscik A., Hader D.P., Trost T., Germ M., Klisch M., Groniger A., Sinha R.P., Lebert M., He Y.Y., Buffoni-Hall R., de Bakker N.V.J., van de Staaij J., Meijkamp B.B. The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol. B-Biol. 2002;66:2–12. doi: 10.1016/S1011-1344(01)00269-X. PubMed DOI
Korkmaz A., Kolankaya D. Protective Effect of Rutin on the Ischemia/Reperfusion Induced Damage in Rat Kidney. J. Surg. Res. 2010;164:309–315. doi: 10.1016/j.jss.2009.03.022. PubMed DOI
Abeywardena M.Y., Head R.J. Dietary polyunsaturated fatty acid and antioxidant modulation of vascular dysfunction in the spontaneously hypertensive rat. Prostagland. Leuk. Essent. Fatty Acids. 2001;65:91–97. doi: 10.1054/plef.2001.0294. PubMed DOI
Wojcicki J., Barcewwiszniewska B., Samochowiec L., Rozewicka L. Extractum-fagopyri reduces atherosclerosis in high-fat diet fed rabbits. Pharmazie. 1995;50:560–562. PubMed
Bingjiang L., Wei M., Dan L. Photoprotective effects of ferulic on human keratinocyte HaCaT cells: Proteomic identification of proteins associated with cutaneous cancer. J. Invest. Dermatol. 2010;130:796.
Zhang L.W., Al-Suwayeh S.A., Hsieh P.W., Fang J.Y. A comparison of skin delivery of ferulic acid and its derivatives: Evaluation of their efficacy and safety. Int. J. Pharm. 2010;399:44–51. doi: 10.1016/j.ijpharm.2010.07.054. PubMed DOI
Yabe T., Hirahara H., Harada N., Ito N., Nagai T., Sanagi T., Yamada H. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience. 2010;165:515–524. doi: 10.1016/j.neuroscience.2009.10.023. PubMed DOI
de Boer V.C.J., Dihal A.A., van der Woude H., Arts I.C.W., Wolffram S., Alink G.M., Rietjens I., Keijer J., Hollman P.C.H. Tissue distribution of quercetin in rats and pigs. J. Nutr. 2005;135:1718–1725. doi: 10.1093/jn/135.7.1718. PubMed DOI
Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Seufi A.M., Ibrahim S.S., Elmaghraby T.K., Hafez E.E. Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: Molecular and histological evidences. J. Exp. Clin. Cancer Res. 2009;28:1–8. doi: 10.1186/1756-9966-28-80. PubMed DOI PMC
Kaindl U., Eyberg I., Rohr-Udilova N., Heinzle C., Marian B. The dietary antioxidants resveratrol and quercetin protect cells from exogenous pro-oxidative damage. Food Chem. Toxicol. 2008;46:1320–1326. doi: 10.1016/j.fct.2007.09.002. PubMed DOI
Orsolic N., Knezevic A.H., Sver L., Terzic S., Basic I. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. J. Ethnopharmacol. 2004;94:307–315. doi: 10.1016/j.jep.2004.06.006. PubMed DOI
Arts I.C.W., Hollman P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005;81:317S–325S. doi: 10.1093/ajcn/81.1.317S. PubMed DOI
Knekt P., Kumpulainen J., Jarvinen R., Rissanen H., Heliovaara M., Reunanen A., Hakulinen T., Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002;76:560–568. doi: 10.1093/ajcn/76.3.560. PubMed DOI
Benkovic V., Kopjar N., Knezevic A.H., Dikic D., Basic I., Ramic S., Viculin T., Knezevic F., Orsolic N. Evaluation of radioprotective effects of propolis and quercetin on human white blood cells in vitro. Biol. Pharm. Bull. 2008;31:1778–1785. doi: 10.1248/bpb.31.1778. PubMed DOI
Rahman M.M., Bak I., Das D.K. Effectiveness of Resveratrol Against Cardiovascular Disease. Mini-Rev. Org. Chem. 2010;7:256–261. doi: 10.2174/157019310792246418. DOI
Toklu H.Z., Sehirli O., Ersahin M., Suleymanoglu S., Yiginer O., Emekli-Alturfan E., Yarat A., Yegen B.C., Senser G. Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J. Pharm. Pharmacol. 2010;62:1784–1793. doi: 10.1111/j.2042-7158.2010.01197.x. PubMed DOI
Chicoine L.G., Stewart J.A., Lucchesi P.A. Is Resveratrol the Magic Bullet for Pulmonary Hypertension? Hypertension. 2009;54:473–474. doi: 10.1161/HYPERTENSIONAHA.109.135251. PubMed DOI PMC
Tiwari V., Sharma S., Kulkarni S.K., Chopra K. Amelioration of oxidative stress and renal dysfunction by insulin and its combination with curcumin or resveratrol: Role of TGF-beta. Indian J. Pharmacol. 2008;40:90–90.
Thandapilly S.J., Wojciechowski P., Behbahani J., Louis X.L., Yu L.P., Juric D., Kopilas M.A., Anderson H.D., Netticadan T. Resveratrol Prevents the Development of Pathological Cardiac Hypertrophy and Contractile Dysfunction in the SHR Without Lowering Blood Pressure. Am. J. Hypertens. 2010;23:192–196. doi: 10.1038/ajh.2009.228. PubMed DOI
Khalil A., Berrougui H. Mechanism of action of resveratrol in lipid metabolism and atherosclerosis. Clin. Lipidol. 2009;4:527–531. doi: 10.2217/clp.09.53. DOI
Kaeberlein M. Resveratrol and rapamycin: are they anti-aging drugs? Bioessays. 2010;32:96–99. doi: 10.1002/bies.200900171. PubMed DOI
Wagner C., Fachinetto R., Corte C.L.D., Brito V.B., Severo D., Dias G., Morel A.F., Nogueira C.W., Rocha J.B.T. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 2006;1107:192–198. doi: 10.1016/j.brainres.2006.05.084. PubMed DOI
Jung M., Park M. Acetylcholinesterase inhibition by flavonoids from agrimonia pilosa. Molecules. 2007;12:2130–2139. doi: 10.3390/12092130. PubMed DOI PMC
Materska M., Perucka I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.) J. Agric. Food Chem. 2005;53:1750–1756. doi: 10.1021/jf035331k. PubMed DOI
Davis R.A., Simpson M.M., Nugent R.B., Carroll A.R., Avery V.M., Rali T., Chen H., Qurallo B., Quinn R.J. Pim2 inhibitors from the Papua New Guinean plant Cupaniopsis macropetala. J. Nat. Prod. 2008;71:451–452. doi: 10.1021/np070431w. PubMed DOI
Ibrahim N.A., El-Seedi H.R., Mohammed M.M.D. Phytochemical investigation and hepatoprotective activity of Cupressus sempervirens L. leaves growing in Egypt. Nat. Prod. Res. 2007;21:857–866. doi: 10.1080/14786410601132477. PubMed DOI
Liu Y., Murakami N., Ji H., Abreu P., Zhang S. Antimalarial flavonol glycosides from Euphorbia hirta. Pharm. Biol. 2007;45:278–281. doi: 10.1080/13880200701214748. DOI
Fukai T., Sakagami H., Toguchi M., Takayama F., Iwakura I., Atsumi T., Ueha T., Nakashima H., Nomura T. Cytotoxic activity of low molecular weight polyphenols against human oral tumor cell lines. Anticancer Res. 2000;20:2525–2536. PubMed
Dai J., Mumper R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC
Naczk M., Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111. doi: 10.1016/S0021-9673(04)01409-8. PubMed DOI
Stalikas C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007;30:3268–3295. doi: 10.1002/jssc.200700261. PubMed DOI
Kartsova L.A., Alekseeva A.V. Chromatographic and Electrophoretic Methods for Determining Polyphenol Compounds. J. Anal. Chem. 2008;63:1024–1033. doi: 10.1134/S1061934808110026. DOI
Yang L., Jiang J.G., Li W.F., Chen J., Wang D.Y., Zhu L. Optimum extraction Process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 2009;32:1437–1444. doi: 10.1002/jssc.200800744. PubMed DOI
Cork S.J., Krockenberger A.K. Methods and pitfalls of extracting condensed tannins and other phenolics from plants - insights from investigations on eucalyptus leaves. J. Chem. Ecol. 1991;17:123–134. doi: 10.1007/BF00994426. PubMed DOI
Khanna S.K., Viswanat P.N., Krishnan P.S., Sanwal G.G. Extraction of total phenolics in presence of reducing agents. Phytochemistry. 1968;7:1513–1517. doi: 10.1016/S0031-9422(00)88598-2. DOI
Ragazzi E., Veronese G. Quantitative-analysis of phenolic compounds after thin-layer chromatographic separation. J. Chromatogr. 1973;77:369–375. doi: 10.1016/S0021-9673(00)92204-0. PubMed DOI
Rodriguez-Arcos R.C., Smith A.C., Waldron K.W. Effect of storage on wall-bound phenolics in green asparagus. J. Agric. Food Chem. 2002;50:3197–3203. doi: 10.1021/jf011687p. PubMed DOI
Barroso C.G., Rodriguez M.C., Guillen D.A., PerezBustamante J.A. Analysis of low molecular mass phenolic compounds, furfural and 5-hydroxymethylfurfural in Brandy de Jerez by high-performance liquid chromatography diode array detection with direct injection. J. Chromatogr. A. 1996;724:125–129. doi: 10.1016/0021-9673(95)00985-X. DOI
Dekic S., Milosavljevic S., Vajs V., Jovic S., Petrovic A., Nikicevic N., Manojlovic V., Nedovic V., Tesevic V. Trans- and cis-resveratrol concentration in wines produced in Serbia. J. Serb. Chem. Soc. 2008;73:1027–1037. doi: 10.2298/JSC0811027D. DOI
Kivilompolo M., Oburka V., Hyotylainen T. Comprehensive two-dimensional liquid chromatography in the analysis of antioxidant phenolic compounds in wines and juices. Anal. Bioanal. Chem. 2008;391:373–380. doi: 10.1007/s00216-008-1997-9. PubMed DOI
Benova B., Hajek T. Utilization of coulometric array detection in analysis of beverages and plant extracts. In: Kaljurand M., editor. 5th Symposium by Nordic Separation Science Society. Volume 2. Elsevier Science Bv; Amsterdam, The Netherlands: 2010. pp. 92–100.
Krafczyk N., Glomb M.A. Characterization of phenolic compounds in rooibos tea. J. Agric. Food Chem. 2008;56:3368–3376. doi: 10.1021/jf703701n. PubMed DOI
Kahoun D., Rezkova S., Veskrnova K., Kralovsky J., Holcapek M. Determination of phenolic compounds and hydroxymethylfurfural in meads using high performance liquid chromatography with coulometric-array and UV detection. J. Chromatogr. A. 2008;1202:19–33. doi: 10.1016/j.chroma.2008.06.016. PubMed DOI
Jouki M., Khazaei N. Compare of extraction of phenolic compounds from Pistacia atlantica in different solvents. In: Anninos P., Rossi M., Pham T.D., Falugi C., Bussing A., Koukkou M., editors. Advances in Biomedical Research, Proceedings. World Scientific and Engineering Acad and Soc; Athens, Greece: 2010. pp. 361–365.
Turkmen N., Velioglu Y.S., Sari F., Polat G. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules. 2007;12:484–496. doi: 10.3390/12030484. PubMed DOI PMC
Krygier K., Sosulski F., Hogge L. Free, esterified, and insoluble-bound phenolic-acids.1. Extraction and purification procedure. J. Agric. Food Chem. 1982;30:330–334. doi: 10.1021/jf00110a028. DOI
Rababah T.M., Banat F., Rababah A., Ereifej K., Yang W. Optimization of Extraction Conditions of Total Phenolics, Antioxidant Activities, and Anthocyanin of Oregano, Thyme, Terebinth, and Pomegranate. J. Food Sci. 2010;75:C626–C632. doi: 10.1111/j.1750-3841.2010.01756.x. PubMed DOI
Rodrigues S., Pinto G.A.S., Fernandes F.A.N. Optimization of ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder by response surface methodology. Ultrason. Sonochem. 2008;15:95–100. doi: 10.1016/j.ultsonch.2007.01.006. PubMed DOI
Gribova N.Y., Filippenko T.A., Nikolaevskii A.N., Belaya N.I., Tsybulenko A.A. Optimization of Conditions for the Extraction of Antioxidants from Solid Parts of Medicinal Plants. J. Anal. Chem. 2008;63:1034–1037. doi: 10.1134/S1061934808110038. DOI
Bors W., Michel C. Chemistry of the antioxidant effect of polyphenols. In: Das D.K., Ursini F., editors. Alcohol and Wine Health and Disease. Volume 957. New York Acad Sciences; New York, NY, USA: 2002. pp. 57–69. PubMed
Dragovic-Uzelac V., Levaj B., Mrkic V., Bursac D., Boras M. The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chem. 2007;102:966–975. doi: 10.1016/j.foodchem.2006.04.001. DOI
Long G.L., Winefordner J.D. Limit of Detection. Anal. Chem. 1983;55:A712–A724.