Direct microwave treatment enhances antioxidant and antibacterial properties of the seed extracts of Kékfrankos grapes

. 2023 Nov ; 9 (11) : e21497. [epub] 20231102

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38027737
Odkazy

PubMed 38027737
PubMed Central PMC10654152
DOI 10.1016/j.heliyon.2023.e21497
PII: S2405-8440(23)08705-4
Knihovny.cz E-zdroje

The Kékfrankos is the most frequently cultivated wine grape in Hungary, with a significant national and regional impact, resulting in considerable amounts of byproducts (e.g. pomace, seeds). To the best of our knowledge no research has been conducted on the antioxidant and antibacterial properties of its seed extracts (GSE). A novel apporach of applying direct microwave treatment on grape seeds was implemented for the first time to enhance antioxidant and antimicrobial properties of GSE. Antioxidant properties were assayed using the DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power) and TPC (Folin-Ciocâlteu's Total Polyphenol Content) methods. Profile and content of polyphenols was studied using high-performance liquid chromatography/tandem mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Antibacterial properties were evaluated using Gram-positive Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (ST239) (MRSA) and Gram-negative Escherichia coli (EC) bacteria strains. Results proved that the mild direct microwave treatment of grape seeds significantly increased total polyphenol, (+)-catechin, (-)-epicatechin as well as antioxidant capacity levels by 20-30 % compared to untreated samples and resulted the best antibacterial properties based on bacterial growth curves (SA and MRSA: 0.015625 mg/mL, EC: 0.25 mg/mL). Results justify the importance of further pharmacological investigations on Kékfrankos grape seed extracts and that the direct microwave treatment of grape seeds is an innovative approach for the fast and cost efficient improvement of the antibacterial properties of grape seed extracts.

Zobrazit více v PubMed

Daler S., Cangi R. Characterization of grapevine (V. Vinifera L.) varieties grown in Yozgat province (Turkey) by simple sequence repeat (SSR) markers. Turk. J. Agric. For. 2022;46:38–48. doi: 10.3906/tar-2104-75. DOI

Tahmaz H., Söylemezoğlu G. Selected phenolics and antioxidant capacities: from Boğazkere (Vitis vinifera L.) grape to pomace and wine. Turk. J. Agric. For. 2022;46:623–631. doi: 10.55730/1300-011X.3031. DOI

Taskesenlioglu M.Y., Ercisli S., Kupe M., Ercisli N. History of grape in Anatolia and historical sustainable grape production in Erzincan agroecological conditions in Turkey. Sustainability. 2022;14:1496. doi: 10.3390/su14031496. DOI

Retrieved 27 January 2023, from FAOSTAT (2020). https://www.fao.org/faostat/en/#data/QCL. (Countries: All, Elements: Production Quantity, Items: Crops primary, Grapes, Years: 2020).

Lucarini M., Durazzo A., Romani A., Campo M., Lombardi-Boccia G., Cecchini F. Bio-based compounds from grape seeds: a biorefinery approach. Molecules. 2018;23(8):1888. doi: 10.3390/molecules23081888. PubMed DOI PMC

Ma Z., Zhang H. Phytochemical constituents, health benefits, and industrial applications of grape seeds: a mini-review. Antioxidants. 2017;6(3):71. doi: 10.3390/antiox6030071. PubMed DOI PMC

Anastasiadi M., Pratsinis H., Kletsas D., Skaltsounis A.-L., Haroutounian S.A. Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010;43(3):805–813. doi: 10.1016/j.foodres.2009.11.017. DOI

Choi Y., Lee J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem. 2009;114(4):1386–1390. doi: 10.1016/j.foodchem.2008.11.018. DOI

Dang Y.-Y., Zhang H., Xiu Z.-L. Microwave-assisted aqueous two-phase extraction of phenolics from grape (Vitis vinifera) seed. J. Chem. Technol. Biot. 2014;89(10):1576–1581. doi: 10.1002/jctb.4241. DOI

Grosu I.A., Pistol G.C., Taranu I., Marin D.E. The impact of dietary grape seed meal on healthy and aflatoxin B1 afflicted microbiota of pigs after weaning. Toxins. 2019;11(1):25. doi: 10.3390/toxins11010025. PubMed DOI PMC

Rockenbach I.I., Jungfer E., Ritter C., Santiago-Schübel B., Thiele B., Fett R., Galensa R. Characterization of flavan-3-ols in seeds of grape pomace by CE, HPLC-DAD-MSn and LC-ESI-FTICR-MS. Food Res. Int. 2012;48(2):848–855. doi: 10.1016/j.foodres.2012.07.001. DOI

Al-Otibi F., Alkhudhair S.K., Alharbi R.I., Al-Askar A.A., Aljowaie R.M., Al-Shehri S. The antimicrobial activities of silver nanoparticles from aqueous extract of grape seeds against pathogenic bacteria and fungi. Molecules. 2021;26(19):6081. doi: 10.3390/molecules26196081. PubMed DOI PMC

Kara Z., Sabır A., Koç F., Sabır F.K., Avcı A., Koplay M., Doğan O. Silver nanoparticles synthesis by grape seeds (Vitis vinifera L.) extract and rooting effect on grape cuttings. Erwerbsobstbau. 2021;63(S1):1–8. doi: 10.1007/s10341-021-00572-8. DOI

Ping Y., Zhang J., Xing T., Chen G., Tao R., Choo K.-H. Green synthesis of silver nanoparticles using grape seed extract and their application for reductive catalysis of Direct Orange 26. J. Ind. Eng. Chem. 2018;58:74–79. doi: 10.1016/j.jiec.2017.09.009. DOI

Lucarini M., Durazzo A., Kiefer J., Santini A., Lombardi-Boccia G., Souto E.B., Romani A., Lampe A., Ferrari Nicoli S., Gabrielli P., Bevilacqua N., Campo M., Morassut M., Cecchini F. Grape seeds: chromatographic profile of fatty acids and phenolic compounds and qualitative analysis by FTIR-ATR Spectroscopy. Foods. 2020;9:10. doi: 10.3390/foods9010010. PubMed DOI PMC

Tóth B.I. Territorial capital in the European Union: measuring the territorial endowments of the EU-28 NUTS 2 regions over the 2010s. Reg. Stat. 2023;13:3–35. doi: 10.15196/RS130101. DOI

Hong N., Yaylayan V.A., Vijaya Raghavan G.S., Paré J.R.J., Bélanger J.M.R. Microwave-assisted extraction of phenolic compounds from grape seed. Nat. Prod. Lett. 2001;15(3):197–204. doi: 10.1080/10575630108041280. PubMed DOI

Jia M.-Z., Fu X.-Q., Deng L., Li Z.-L., Dang Y.-Y. Phenolic extraction from grape (Vitis vinifera) seed via enzyme and microwave co-assisted salting-out extraction. Food Biosci. 2021;40 doi: 10.1016/j.fbio.2021.100919. DOI

Li Y., Skouroumounis G.K., Elsey G.M., Taylor D.K. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem. 2011;129(2):570–576. doi: 10.1016/j.foodchem.2011.04.068. PubMed DOI

Robinson J., Harding J., Vouillamoz J. Allen Lane; London: 2012. Wine Grapes - A Complete Guide to 1,368 Vine Varieties, Including Their Origins and Flavours.

Blaufränkisch . 2023. Wein.Plus.https://glossary.wein.plus/blaufraenkisch Retrieved 27 January 2023, from.

Szőlőültetvények. 2020. https://www.ksh.hu/docs/hun/xftp/idoszaki/szoloultetvenyek/2020/index.html 2020. Retrieved 27 January 2023, from.

Oomah B.D., Liang J., Godfrey D., Mazza G. Microwave heating of grapeseed: effect on oil quality. J. Agr. Food Chem. 1998;46(10):4017–4021. doi: 10.1021/jf980412f. DOI

Pérez-Porras P., Gómez-Plaza E., Muñoz García R., Díaz-Maroto M.C., Moreno-Olivares J.D., Bautista-Ortín A.B. Prefermentative grape microwave treatment as a tool for increasing red wine phenolic content and reduce maceration time. Appl. Sci. 2022;12(16) doi: 10.3390/app12168164. Article 16. DOI

Baydar N.G., Sagdic O., Ozkan G., Cetin S. Determination of antibacterial effects and total phenolic contents of grape (Vitis vinifera L.) seed extracts. Int. J. Food Sci. Technol. 2006;41(7):799–804. doi: 10.1111/j.1365-2621.2005.01095.x. DOI

McClure P. The impact of E. coli O157 on the food industry. World J. Microbiol. Biotechnol. 2000;16(8):749–755. doi: 10.1023/A:1008997310966. DOI

Ortega E., Abriouel H., Lucas R., Gálvez A. Multiple roles of staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins. 2010;2(8):2117–2131. doi: 10.3390/toxins2082117. PubMed DOI PMC

Sergelidis D., Angelidis A.S. Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Lett. Appl. Microbiol. 2017;64(6):409–418. doi: 10.1111/lam.12735. PubMed DOI

Al-Mousawi A.H., Al-kaabi S.J., Albaghdadi A.J.H., Almulla A.F., Raheem A., Algon A.A.A. Effect of black grape seed extract (Vitis vinifera) on biofilm formation of methicillin-resistant Staphylococcus aureus and Staphylococcus haemolyticus. Curr. Microbiol. 2020;77(2):238–245. doi: 10.1007/s00284-019-01827-0. PubMed DOI

Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16(3):144–158.

Benzie I.F.F., Strain J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 1996;239(1):70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Hofmann T., Guran R., Zitka O., Visi-Rajczi E., Albert L. Liquid chromatographic/mass spectrometric study on the role of beech (Fagus sylvatica L.) wood polyphenols in red heartwood formation. Forests. 2021;13(1):10. doi: 10.3390/f13010010. DOI

Eucast 2019. https://eucast.org/fileadmin/src/media/PDFs/EUCAST_files/RAST/EUCAST_RAST_methodology_v1.1_Final.pdf Retrieved 27 January 2023, from.

Eucast 2020. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2020_manuals/Reading_guide_BMD_v_2.0_2020.pdf Retrieved 27 January 2023, from.

Allcca-Alca E.E., León-Calvo N.C., Luque-Vilca O.M., Martínez-Cifuentes M., Pérez-Correa J.R., Mariotti-Celis M.S., Huamán-Castilla N.L. Hot pressurized liquid extraction of polyphenols from the skin and seeds of Vitis vinifera L. cv. Negra criolla pomace a Peruvian native pisco industry waste. Agronomy. 2021;11(5):866. doi: 10.3390/agronomy11050866. DOI

Casazza A.A., Aliakbarian B., Mantegna S., Cravotto G., Perego P. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J. Food Eng. 2010;100(1):50–55. doi: 10.1016/j.jfoodeng.2010.03.026. DOI

Kupe M., Karatas N., Unal M.S., Ercisli S., Baron M., Sochor J. Nutraceutical and functional properties of peel, pulp, and seed extracts of six ‘Köhnü’ grape clones. Horticulturae. 2021;7(10):346. doi: 10.3390/horticulturae7100346. PubMed DOI PMC

Yilmaz Y., Göksel Z., Erdoğan S.S., Öztürk A., Atak A., Özer C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera L.) cultivars (4 common and 18 registered or candidate for registration): antioxidant activity of grapes. J. Food Process. Preserv. 2015;39(6):1682–1691. doi: 10.1111/jfpp.12399. DOI

Magnus S., Gazdik F., Anjum N.A., Kadlecova E., Lackova Z., Cernei N., Brtnicky M., Kynicky J., Klejdus B., Necas T., Zitka O. Assessment of antioxidants in selected plant rootstocks. Antioxidants. 2020;9(3) doi: 10.3390/antiox9030209. Article 3. PubMed DOI PMC

Zitka O., Sochor J., Rop O., Skalickova S., Sobrova P., Zehnalek J., Beklova M., Krska B., Adam V., Kizek R. Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. Molecules. 2011;16(4) doi: 10.3390/molecules16042914. Article 4. PubMed DOI PMC

Krueger C.G., Dopke N.C., Treichel P.M., Folts J., Reed J.D. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of polygalloyl polyflavan-3-ols in grape seed extract. J. Agric. Food Chem. 2000;48(5):1663–1667. doi: 10.1021/jf990534n. PubMed DOI

Muñoz-Labrador A., Prodanov M., Villamiel M. Effects of high intensity ultrasound on disaggregation of a macromolecular procyanidin-rich fraction from Vitis vinifera L. seed extract and evaluation of its antioxidant activity. Ultrason. Sonochem. 2019;50:74–81. doi: 10.1016/j.ultsonch.2018.08.030. PubMed DOI

Agarwal C., Hofmann T., Vršanská M., Schlosserová N., Visi-Rajczi E., Voběrková S., Pásztory Z. In vitro antioxidant and antibacterial activities with polyphenolic profiling of wild cherry, the European larch and sweet chestnut tree bark. Eur. Food Res. Technol. 2021;247(9):2355–2370. doi: 10.1007/s00217-021-03796-w. DOI

Hofmann T., Visi-Rajczi E., Albert L. Antioxidant properties and polyphenol screening of the leaves of native Hungarian oak (Quercus) species. Curr. Bioact. Compd. 2022;18(1) doi: 10.2174/1573407217666210215090330. DOI

Davidov-Pardo G., Arozarena I., Marín-Arroyo M.R. Kinetics of thermal modifications in a grape seed extract. J. Agric. Food Chem. 2011;59(13):7211–7217. doi: 10.1021/jf200833a. PubMed DOI

Kim S., Jeong S., Park W., Nam K., Ahn D., Lee S. Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chem. 2006;97(3):472–479. doi: 10.1016/j.foodchem.2005.05.027. DOI

Marchi F.D., Seraglia R., Molin L., Traldi P., Rosso M.D., Panighel A., Vedova A.D., Gardiman M., Giust M., Carraro R., Flamini R. Characterization of seed proanthocyanidins of thirty-two red and white hybrid grape varieties. Vitis. 2015;54:121–128.

De Marchi F., Seraglia R., Molin L., Traldi P., Dalla Vedova A., Gardiman M., De Rosso M., Flamini R. Study of isobaric grape seed proanthocyanidins by MALDI-TOF MS: isobaric grape proanthocyanidins by MALDI-TOF MS. J. Mass Spectrom. 2014;49(9):826–830. doi: 10.1002/jms.3422. PubMed DOI

Fathima A., Rao J.R. Selective toxicity of Catechin—a natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 2016;100(14):6395–6402. doi: 10.1007/s00253-016-7492-x. PubMed DOI

Ma Y., Ding S., Fei Y., Liu G., Jang H., Fang J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control. 2019;106 doi: 10.1016/j.foodcont.2019.106712. DOI

Mayer R., Stecher G., Wuerzner R., Silva R.C., Sultana T., Trojer L., Feuerstein I., Krieg C., Abel G., Popp M., Bobleter O., Bonn G.K. Proanthocyanidins: target compounds as antibacterial agents. J. Agric. Food Chem. 2008;56(16):6959–6966. doi: 10.1021/jf800832r. PubMed DOI

Cosansu S., Juneja V.K., Osoria M., Mukhopadhyay S. Effect of grape seed extract on heat resistance of Clostridium perfringens vegetative cells in sous vide processed ground beef. Food Res. Int. 2019;120:33–37. doi: 10.1016/j.foodres.2019.02.014. PubMed DOI

Delgado Adámez J., Gamero Samino E., Valdés Sánchez E., González-Gómez D. In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.) Food Control. 2012;24(1):136–141. doi: 10.1016/j.foodcont.2011.09.016. DOI

Jayaprakasha G.K., Selvi T., Sakariah K.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 2003;36(2):117–122. doi: 10.1016/S0963-9969(02)00116-3. DOI

Levy J., Boyer R.R., Neilson A.P., O'Keefe S.F., Chu H.S.S., Williams R.C., Dorenkott M.R., Goodrich K.M. Evaluation of peanut skin and grape seed extracts to inhibit growth of foodborne pathogens. Food Sci. Nutr. 2017;5(6):1130–1138. doi: 10.1002/fsn3.503. PubMed DOI PMC

Poveda J.M., Loarce L., Alarcón M., Díaz-Maroto M.C., Alañón M.E. Revalorization of winery by-products as source of natural preservatives obtained by means of green extraction techniques. Ind. Crops Prod. 2018;112:617–625. doi: 10.1016/j.indcrop.2017.12.063. DOI

Yoshida T., Hatano T., Ito H. In: Romeo J.T., editor. vol. 39. Elsevier; 2005. Chapter Seven - high molecular weight plant polyphenols (tannins): prospective functions; pp. 163–190. (Recent Adv. Phytochem). DOI

Silvan J.M., Gutiérrez-Docio A., Moreno-Fernandez S., Alarcón-Cavero T., Prodanov M., Martinez-Rodriguez A.J. Procyanidin-rich extract from grape seeds as a putative tool against Helicobacter pylori. Foods. 2020;9(10):1370. doi: 10.3390/foods9101370. PubMed DOI PMC

Silva V., Igrejas G., Falco V., Santos T.P., Torres C., Oliveira A.M.P., Pereira J.E., Amaral J.S., Poeta P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control. 2018;92:516–522. doi: 10.1016/j.foodcont.2018.05.031. DOI

Shrestha B., Theerathavaj M.L.S., Thaweboon S., Thaweboon B. In vitro antimicrobial effects of grape seed extract on peri-implantitis microflora in craniofacial implants. Asian Pac. J. Trop. Biomed. 2012;2(10):822–825. doi: 10.1016/S2221-1691(12)60236-6. PubMed DOI PMC

Sheng L., Olsen S.A., Hu J., Yue W., Means W.J., Zhu M.J. Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC “top-six” non-O157 Shiga toxin producing E. coli. Int. J. Food Microbiol. 2016;229:24–32. doi: 10.1016/j.ijfoodmicro.2016.04.001. PubMed DOI

Furiga A., Lonvaud-Funel A., Badet C. In vitro study of antioxidant capacity and antibacterial activity on oral anaerobes of a grape seed extract. Food Chem. 2009;113(4):1037–1040. doi: 10.1016/j.foodchem.2008.08.059. DOI

Ahn J., Grün I.U., Mustapha A. Antimicrobial and antioxidant activities of natural extracts in vitro and in ground beef. J. Food Prot. 2004;67(1):148–155. doi: 10.4315/0362-028x-67.1.148. PubMed DOI

Memar M.Y., Adibkia K., Farajnia S., Kafil H.S., Yekani M., Alizadeh N., Ghotaslou R. The grape seed extract: a natural antimicrobial agent against different pathogens. Rev. Res. Med. Microbiol. 2019;30(3):173. doi: 10.1097/MRM.0000000000000174. DOI

Yu J., Ahmedna M., Goktepe I. Potential of peanut skin phenolic extract as antioxidative and antibacterial agent in cooked and raw ground beef. Int. J. Food Sci. Technol. 2010;45(7):1337–1344. doi: 10.1111/j.1365-2621.2010.02241.x. DOI

Chedea V., Braicu C., Chirilǎ F., Ober C., Socaciu C. Antibacterial action of an aqueous grape seed polyphenolic extract. Afr. J. Biotechnol. 2011;10:6276–6280.

Zillich O.V., Schweiggert-Weisz U., Eisner P., Kerscher M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015;37:455–464. doi: 10.1111/ics.12218. PubMed DOI

Zillich O.V., Schweiggert-Weisz U., Hasenkopf K., Eisner P., Kerscher M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int. J. Cosmet. Sci. 2013;35:491–501. doi: 10.1111/ics.12072. PubMed DOI

Al-Nimer M.S.M., Rasheed R.A.-K., Saadaldin S.M.J. Grape seed extract exerts abhesive effect against Staphylococcus aureus: In vitro study. Res. J. Microbiol. 2012;7(3):199–204. doi: 10.17311/jm.2012.199.204. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...