Assessment of Antioxidants in Selected Plant Rootstocks
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA - ZF/2018 - DP006
IGA ZF MENDELU
CEITEC 2020 (LQ1601)
Central European Institute of Technology
PubMed
32138258
PubMed Central
PMC7139285
DOI
10.3390/antiox9030209
PII: antiox9030209
Knihovny.cz E-zdroje
- Klíčová slova
- LC/MS, Sorbus domestica, catechin compounds, flavonoid compounds, phenolic compounds, procyanidin compounds, rootstocks of plants,
- Publikační typ
- časopisecké články MeSH
The service tree (Sorbus domestica) is a wild fruit tree with immense medicinal and industrial value. This study aimed at determining the four major groups of antioxidants (flavonoids, phenolic acids and aldehydes, catechin and procyanidin) in rootstocks of Crataegus laevigata (genotypes O-LE-14 and O-LE-21), Aronia melanocarpa (genotypes O-LE-14 and O-LE-21), Chaenomeles japonica (genotype O-LE-9) and Cydonia oblonga (BA 29) (genotypes O-LE-14 and O-LE-21). Hyperoside (Quercetin 3-D-galactoside) was the most abundant flavonoid compound, since its average content in the rootstocks of Crataegus laevigata (O-LE-21) was 180.68 ± 0.04 μg·g-1. Dihydrokaempherol was the least frequently found flavonoid compound, with an average concentration of 0.43 ± 0.01 μg·g-1 in all the rootstocks of plants considered in this study. Among the phenolic compounds, the most represented one was protocatechuic acid, with 955.92 ± 10.25 μg·g-1 in the rootstocks of Aronia melanocarpa (O-LE-14). On the other hand, the least represented p-Coumaric acid exhibited the average concentration of 0.34 ± 0.01 μg·g-1 in the plant rootstocks. Epicatechin was the most abundant catechin compound, with a content of 3196.37 ± 50.10 μg·g-1 in the rootstocks of Aronia melanocarpa (O-LE-14). The lowest represented catechin compound was epigallocatechin, with the average concentration of 0.95 ± 0.08 μg·g-1 in the screened plant rootstocks. From the procyanidin compounds, the most abundant one was procyanidin b2 in the rootstocks of Crataegus laevigata (O-LE-14), with a concentration of 5550.40 ± 99.56 μg·g-1. On the contrary, procyanidin a2, with an average concentration of 40.35 ± 1.61 μg·g-1, represented the least frequent procyanidin compound in all the plant rootstocks screened herein.
BIC Brno Technology Innovation Transfer Chamber 612 00 Brno Czech Republic
Department of Botany Aligarh Muslim University Aligarh 202 002 U P India
Mendeleum Institute of Genetics Mendel University in Brno Valticka 334 691 44 Lednice Czech Republic
Zobrazit více v PubMed
Shalaby S., Horwitz B.A. Plant phenolic compounds and oxidative stress: Integrated signals in fungal-plant interactions. Curr. Genet. 2015;61:347–357. doi: 10.1007/s00294-014-0458-6. PubMed DOI
McKeen L.W. The Effect of Long Term Thermal Exposure on Plastics and Elastomers, Chapter Introduction to the Effect of Heat Aging on Plastics. Elsevier; Amsterdam, The Netherlands: 2014. pp. 17–42.
Miltonprabu S. Quercetin: A Flavonol with Versatile Therapeutic Applications and Its Interactions with Other Drugs. Academic Press Ltd-Elsevier Science Ltd.; London, UK: 2019. pp. 75–83.
Esselen M., Barth S. Food-borne topoisomerase inhibitors: Risk or benefit. Adv. Mol. Toxicol. 2014;8:123–171.
Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 2005;26:343–356. doi: 10.1016/j.ijantimicag.2005.09.002. PubMed DOI PMC
Peralta M.A., da Silva M.A., Ortega M.G., Cabrera J.L., Paraje M.G. Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine. 2015;22:975–980. doi: 10.1016/j.phymed.2015.07.003. PubMed DOI
Jin Y.-S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett. 2019;29:126589. doi: 10.1016/j.bmcl.2019.07.048. PubMed DOI
McKeen L.W. The Effect of Long Term Thermal Exposure on Plastics and Elastomers, Chapter Introduction to the Physical, Mechanical, and Thermal Properties of Plastics and Elastomers. Elsevier; Amsterdam, The Netherlands: 2014. pp. 43–71.
Aron P.M., Kennedy J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008;52:79–104. doi: 10.1002/mnfr.200700137. PubMed DOI
Kruger M.J., Davies N., Myburgh K.H., Lecour S. Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res. Int. 2014;59:41–52. doi: 10.1016/j.foodres.2014.01.046. DOI
Shao Y.F., Bao J.S. Rice Phenolics and Other Natural Products. Woodhead Publ Ltd.; Cambridge, UK: 2019. pp. 221–271.
Sieniawska E., Baj T. Tannins. Academic Press Ltd-Elsevier Science Ltd.; London, UK: 2017. pp. 199–232.
Qi Y.J., Zhang H., Wu G.C., Gu L.W., Wang L., Qian H.F., Qi X.G. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chem. 2018;250:98–104. doi: 10.1016/j.foodchem.2018.01.012. PubMed DOI
Xu C.M., Yagiz Y., Marshall S., Li Z., Simonne A., Lu J., Marshall M.R. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chem. 2015;182:200–208. PubMed
Prabpree A., Sangsil P., Nualsri C., Nakkanong K. Expression profile of phenylalanine ammonia-lyase (pal) and phenolic content during early stages of graft development in bud grafted Hevea brasiliensis. Biocatal. Agric. Biotechnol. 2018;14:88–95. doi: 10.1016/j.bcab.2018.02.010. DOI
Santos-Sánchez N.F., Salas-Coronado R., Hernández-Carlos B., Villanueva-Cañongo C. Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. IntechOpen; London, UK: 2019. pp. 1–16.
Sengupta G., Gaurav A., Tiwari S. Substituting Medicinal Plants through Drug Synthesis. Elsevier Science Bv; Amsterdam, The Netherlands: 2018. pp. 47–74.
Close D.C., McArthur C. Rethinking the role of many plant phenolics—Protection from photodamage not herbivores? Oikos. 2002;99:166–172. doi: 10.1034/j.1600-0706.2002.990117.x. DOI
Liang Y., Wen Z. 18—Bio-based nutraceuticals from biorefining. In: Waldron K., editor. Advances in Biorefineries. Woodhead Publishing; Cambridge, UK: 2014. pp. 596–623.
Sapienza C., Issa J.-P. Diet, nutrition, and cancer epigenetics. Annu. Rev. Nutr. 2016;36:665–681. doi: 10.1146/annurev-nutr-121415-112634. PubMed DOI
Liu-Smith F., Meyskens F.L. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol. Nutr. Food Res. 2016;60:1264–1274. doi: 10.1002/mnfr.201500822. PubMed DOI PMC
Benavente-Garcia O., Castillo J. Update on uses and properties of citrus flavonolds: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008;56:6185–6205. doi: 10.1021/jf8006568. PubMed DOI
Hong G.J., Wang J., Hochstetter D., Gao Y.Y., Xu P., Wang Y.F. Epigallocatechin-3-gallate functions as a physiological regulator by modulating the jasmonic acid pathway. Physiol. Plant. 2015;153:432–439. doi: 10.1111/ppl.12256. PubMed DOI
Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012;196:67–76. doi: 10.1016/j.plantsci.2012.07.014. PubMed DOI
Buer C.S., Imin N., Djordjevic M.A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 2010;52:98–111. doi: 10.1111/j.1744-7909.2010.00905.x. PubMed DOI
Koes R., Verweij W., Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005;10:236–242. doi: 10.1016/j.tplants.2005.03.002. PubMed DOI
Hudina M., Orazem P., Jakopic J., Stampar F. The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.) J. Plant Physiol. 2014;171:76–84. doi: 10.1016/j.jplph.2013.10.022. PubMed DOI
Musacchi S., Pagliuca G., Kindt M., Piretti M.V., Sansavini S. Flavonoids as markers for pear-quince graft incompatibility. J. Appl. Bot.-Angew. Bot. 2000;74:206–211.
Hakmaoui A., Perez-Bueno M.L., Garcia-Fontana B., Camejo D., Jimenez A., Sevilla F., Baron M. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of pepper mild mottle virus. J. Exp. Bot. 2012;63:5487–5496. doi: 10.1093/jxb/ers212. PubMed DOI PMC
Preedy V.R. Tea in Health and Disease Prevention. Elsevier Academic Press Inc.; San Diego, CA, USA: 2013. pp. 1–1573.
Xu Z., Wei L.H., Ge Z.Z., Zhu W., Li C.M. Comparison of the degradation kinetics of a-type and b-type proanthocyanidins dimers as a function of pH and temperature. Eur. Food Res. Technol. 2015;240:707–717. doi: 10.1007/s00217-014-2375-9. DOI
Thomas H.R., Frank M.H. Connecting the pieces: Uncovering the molecular basis for long-distance communication through plant grafting. New Phytol. 2019;223:582–589. doi: 10.1111/nph.15772. PubMed DOI
Irisarri P., Zhebentyayeva T.N., Errea P., Pina A. Inheritance of self- and graft-incompatibility traits in an f1 apricot progeny. PLoS ONE. 2019;14:e0216371. doi: 10.1371/journal.pone.0216371. PubMed DOI PMC
Rutkowska M., Olszewska M.A., Kolodziejczyk-Czepas J., Nowak P., Owczarek A. Sorbus domestica leaf extracts and their activity markers: Antioxidant potential and synergy effects in scavenging assays of multiple oxidants. Molecules. 2019;24:2289. doi: 10.3390/molecules24122289. PubMed DOI PMC
Mohtia H., Taviano M.F., Cacciola F., Dugo P., Mondello L., Zaid A., Cavo E., Miceli N. Silene vulgaris subsp. macrocarpa leaves and roots from morocco: Assessment of the efficiency of different extraction techniques and solvents on their antioxidant capacity, brine shrimp toxicity and phenolic characterization. Plant Biosyst. 2019:1–8. doi: 10.1080/11263504.2019.1674404. DOI
Berezina E.V., Brilkina A.A., Veselov A.P. Content of phenolic compounds, ascorbic acid, and photosynthetic pigments in Vaccinium macrocarpon Ait. dependent on seasonal plant development stages and age (the example of introduction in Russia) Sci. Hortic. 2017;218:139–146. doi: 10.1016/j.scienta.2017.01.020. DOI
Coelho E.M., De Azevedo L.C., Correa L.C., Bordignon-Luiz M.T., Lima M.D. Phenolic profile, organic acids and antioxidant activity of frozen pulp and juice of the jambolan (Syzygium cumini) J. Food Biochem. 2016;40:211–219. doi: 10.1111/jfbc.12209. DOI
Grases F., Prieto R.M., Fernandez-Cabot R.A., Costa-Bauza A., Sanchez A.M., Prodanov M. Effect of consuming a grape seed supplement with abundant phenolic compounds on the oxidative status of healthy human volunteers. Nutr. J. 2015;14:94. doi: 10.1186/s12937-015-0083-3. PubMed DOI PMC
Errea P., Garay L., Marin J.A. Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques. Physiol. Plant. 2001;112:135–141. doi: 10.1034/j.1399-3054.2001.1120118.x. PubMed DOI
Zarrouk O., Testillano P.S., Risueno M.C., Moreno M.A., Gogorcena Y. Changes in cell/tissue organization and peroxidase activity as markers for early detection of graft incompatibility in peach/plum combinations. J. Am. Soc. Hortic. Sci. 2010;135:9–17. doi: 10.21273/JASHS.135.1.9. DOI
Errea P., Treutter D., Feucht W. Scion-rootstock effects on the content of flavan-3-ols in the union of heterografts consisting of apricots and diverse prunus rootstocks. Gartenbauwissenschaft. 1992;57:134–138.
Assuncao M., Pinheiro J., Cruz S., Brazao J., Queiroz J., Dias J.E.E., Canas S. Gallic acid, sinapic acid and catechin as potential chemical markers of vitis graft success. Sci. Hortic. 2019;246:129–135. doi: 10.1016/j.scienta.2018.10.056. DOI
Prodhomme D., Fonayet J.V., Hevin C., Franc C., Hilbert G., de Revel G., Richard T., Ollat N., Cookson S.J. Metabolite profiling during graft union formation reveals the reprogramming of primary metabolism and the induction of stilbene synthesis at the graft interface in grapevine. BMC Plant Biol. 2019;19:599. doi: 10.1186/s12870-019-2055-9. PubMed DOI PMC
Canas S., Assuncao M., Brazao J., Zanol G., Eiras-Dias J.E. Phenolic compounds involved in grafting incompatibility of vitis spp: Development and validation of an analytical method for their quantification. Phytochem. Anal. 2015;26:1–7. doi: 10.1002/pca.2526. PubMed DOI
Soltana H., De Rosso M., Lazreg H., Dalla Vedova A., Hammami M., Flamini R. Lc-qtof characterization of non-anthocyanic flavonoids in four Tunisian fig varieties. J. Mass Spectrom. 2018;53:817–823. doi: 10.1002/jms.4209. PubMed DOI
Zhang M., Swarts S.G., Yin L.J., Liu C.M., Tian Y.P., Cao Y.B., Swarts M., Yang S.M., Zhang S.B., Zhang K.Z., et al. Antioxidant properties of quercetin. In: LaManna J.C., Puchowicz M.A., Xu K., Harrison D.K., Bruley D.F., editors. Oxygen Transport to Tissue XXXII. Volume 701. Springer; Berlin, Germany: 2011. pp. 283–289. PubMed
Geissman T.A. The isolation of eriodictyol and homoeriodictyol. An improved procedure. J. Am. Chem. Soc. 1940;62:3258–3259. doi: 10.1021/ja01868a506. DOI
Usenik V., Krska B., Vican M., Stampar F. Early detection of graft incompatibility in apricot (Prunus armeniaca L.) using phenol analyses. Sci. Hortic. 2006;109:332–338. doi: 10.1016/j.scienta.2006.06.011. DOI