• This record comes from PubMed

Phenolic Composition and Antioxidant Activity of Peel, Pulp and Seed Extracts of Different Clones of the Turkish Grape Cultivar 'Karaerik'

. 2021 Oct 11 ; 10 (10) : . [epub] 20211011

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The Erzincan plain is one of the richest regions in Turkey in terms of plant biodiversity. In this region, the famous grape cultivar 'Karaerik' has always dominated grape production due to its berry characteristics. The cultivar shows great morphological variation at clonal level. In this study, the total phenolic content and antioxidant activity of peel, pulp and seed extracts of nine 'Karaerik' clones sampled from same location were investigated. The Folin-Ciocalteu method was used to determine the total phenolic content of peel, pulp and seed extracts of nine clones. To determine antioxidant activity, three well known assays such as DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate), FRAP (Ferric Reducing Antioxidant Power) and TEAC (Trolox Equivalent Antioxidant Capacity) were used. In addition, the correlation between total phenol content and DPPH, FRAP and TEAC was determined. Results showed that among the tissues, seed samples in berries of all clones had the highest total phenol content and antioxidant activity determined by three assays. Seed samples were followed by peel and pulp for total phenolic content and antioxidant activity. Among the nine 'Karaerik' clones, Clone 8 had the highest total phenolic content (149 mg GAE/100 g FW) while Clone 3 had the lowest (111 mg GAE/100 g FW). Peel, pulp and seed samples of nine 'Karaerik' clones showed strong antioxidant activity in DPPH, FRAP and TEAC assays. In particular, grape seeds were found rich for better in phenolic compounds including gallic acid, quercetin, catechin, chlorogenic acid, caffeic acid and p-coumaric acid. Clones such as 7, 8 and 9 higher antioxidant activity may present great potential for grape breeders and the food industry as well as health-conscious consumers.

See more in PubMed

Çelik H., Köse B., Cangi R. Determination of Fox grape genotypes (Vitis labrusca L.) grown in Northeastern Anatolia. Hort. Sci. 2008;35:162–170.

Engin S.P., Mert C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020;44:361–370. doi: 10.3906/tar-1903-130. DOI

Eyduran S.P., Akin M., Ercisli S., Eyduran E., Maghradze D. Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from lgdir province of Eastern Turkey. Biol. Res. 2015;48:2. doi: 10.1186/0717-6287-48-2. PubMed DOI PMC

Ozdemir A.E., Didin O., Candir E., Kaplankiran M., Yildiz E. Effects of rootstocks on storage performance of Nova mandarins. Turk. J. Agric. For. 2019;43:307–317. doi: 10.3906/tar-1711-17. DOI

Tangolar S., Tangolar S., Turan M., Ateş F. Determination of phytochemical and mineral contents of seeds from ‘Semillon’and ‘Carignane’ wine grape cultivars grown under different irrigation conditions. Erwerbs-Obstbau. 2020;62:115–123. doi: 10.1007/s10341-020-00516-8. DOI

Randhir R., Lin Y.T., Shetty K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004;39:637–646. doi: 10.1016/S0032-9592(03)00197-3. PubMed DOI

Velderrain-Rodríguez G.R., Palafox-Carlos H., Wall-Medrano A., AyalaZavala J.F., Chen C.-Y.O., Robles-Sanchez M., Astiazaran-García H., Alvarez-Parrilla E., González-Aguilar G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014;5:189–197. doi: 10.1039/C3FO60361J. PubMed DOI

Babbar N., Oberoi H.S., Sandhu S.K., Bhargav V.K. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J. Food Sci. Technol. 2014;51:2568–2575. doi: 10.1007/s13197-012-0754-4. PubMed DOI PMC

Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99:191–203. doi: 10.1016/j.foodchem.2005.07.042. DOI

Lin D., Xiao M., Zhao J., Li Z., Xing B., Li X., Kong M., Li L., Zhang Q., Liu Y., et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;15:1374. doi: 10.3390/molecules21101374. PubMed DOI PMC

Shahidi F. In: Natural Antioxidants: An Overview, In Natural Antioxidants, Chemistry, Health Effects and Applications. Shahidi F., editor. AOCS Press; Champaign, IL, USA: 1997. pp. 1–10.

Gairola S., Shariff N., Bhate A., Prakashkola C. Influence of climate change on production of secondary chemicals in high altitude medicinal plants. J. Med. Plant. Res. 2010;4:1825–1829.

Mikeš O., Vrchotová N., Tříska J., Kyseláková M., Šmidrkal J. Distribution of major polyphenolic compounds in vine grapes of different cultivars growing in south Moravian vineyards. Czech J. Food Sci. 2008;26:182–189. doi: 10.17221/1591-CJFS. DOI

Hassan H.A., Al-Rawi M.M. Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations. Cytotechnology. 2013;65:567–576. doi: 10.1007/s10616-012-9506-6. PubMed DOI PMC

Teixeira A., Baenas N., Dominguez-Perles R., Barros A., Rosa E., Moreno D.A., Garcia-Viguera C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014;15:15638–15678. doi: 10.3390/ijms150915638. PubMed DOI PMC

García-Lomillo J., González-SanJosé M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017;16:3–22. doi: 10.1111/1541-4337.12238. PubMed DOI

Yousef M.I., Mahdy M.A., Abdou H.M. The potential protective role of grape seed proanthocyanidin extract against the mixture of carboplatin and thalidomide induced hepatotoxicity and cardiotoxicity in male rats. Prev. Med. Commun. Health. 2020;2:1–7.

Gokturk-Baydar N. Organic acid, tocopherol and phenolic compositions of some Turkish grape cultivars. Chem. Nat. Compd. 2006;42:56–59. doi: 10.1007/s10600-006-0066-x. DOI

Xu C., Zhang Y., Cao L., Lu J. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chem. 2010;119:1557–1565. doi: 10.1016/j.foodchem.2009.09.042. DOI

Garcia-Jares C., Vazquez A., Lamas J.P., Pajaro M., Alvarez-Casas M., Lores M. Antioxidant white grape seed phenolics: Pres-surized liquid extracts from different varieties. Antioxidants. 2015;4:737–749. doi: 10.3390/antiox4040737. PubMed DOI PMC

Arboleda Mejia J.A., Ricci A., Figueiredo A.S., Versari A., Cassano A., Parpinello G.P., De Pinho M.N. Recovery of phenolic compounds from red grape pomace extract through nanofiltration membranes. Foods. 2020;9:1649. doi: 10.3390/foods9111649. PubMed DOI PMC

Kök D., Bal E., Bahar E. Physical and biochemical traits of selected grape varieties cultivated in Tekirdağ, Turkey. Int. J. Sustain. Agric. Manag. Inform. 2017;3:215–223. doi: 10.1504/IJSAMI.2017.090300. DOI

Allegro G., Pastore C., Valentini G., Filippetti I. The evolution of phenolic compounds in Vitis vinifera L. red berries during ripening: Analysis and role on wine sensory—A review. Agronomy. 2021;11:999. doi: 10.3390/agronomy11050999. DOI

Rombaldi C.V., Bergamasqui M., Lucchetta L., Zanuzo M., Silva J.A. Vineyard yield and grape quality in two different cultivation systems. Rev. Bras. Frutic. 2004;26:89–91. doi: 10.1590/S0100-29452004000100024. DOI

Dani C., Oliboni L.S., Vanderlinde R., Bonatto D., Salvador M., Henriques J.A.P. Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. Food Chem. Toxicol. 2007;45:2574–2580. doi: 10.1016/j.fct.2007.06.022. PubMed DOI

Iyer M.M., Sacks G.L., Padilla-Zakour O.I. Impact of harvesting and processing conditions on green leaf volatile development and phenolics in concord grape juice. J. Food Sci. 2010;75:297–304. doi: 10.1111/j.1750-3841.2010.01559.x. PubMed DOI

Vilela A., Cosme F. Drink Red: Phenolic composition of red fruit juices and their sensorial acceptance. Beverages. 2016;2:29. doi: 10.3390/beverages2040029. DOI

Pantelić M., Dabić Zagorac D., Natić M., Gasić U., Jović S., Vujović D., Djordjevic J.P. Impact of clonal variability on phenolics and radical scavenging activity of grapes and wines: A study on the recently developed Merlot and Cabernet Franc clones (Vitis vinifera L.) PLoS ONE. 2016;11:e0163823. doi: 10.1371/journal.pone.0163823. PubMed DOI PMC

Kose C. Ph.D. Thesis. Ataturk University Institute of Science; Erzurum, Turkey: 2002. An Investigation on Clonal Selection of Grapevine cv. Karaerik.

Kupe M. Master’s Thesis. Ataturk University Institute of Science; Erzurum, Turkey: 2013. Determining Suitable Pruning Level After Winter Frost Damage in Karaerik Grape Cultivar Grown in Uzumlu District of Erzincan.

Van Leeuwen C., Roby J.-P., Alonso-Villaverde V., Gindro K. Impact of clonal variability in Vitis vinifera Cabernet Franc on grape composition, wine quality, leaf blade stilbene content, and downy mildew resistance. J. Agric. Food Chem. 2013;61:19–24. doi: 10.1021/jf304687c. PubMed DOI

Karadogan B., Keskin N., Kunter B., Oguz D., Kalkan N.N. Comparison of Karaerik (Cimin) clones for total phenolic and antioxidant contents. Bahce. 2018;1:117–120.

Organisation Internationale de la Vigne et du Vin (OIV) 2nd Edition of the OIV Descriptor List for Grape Varieties and Vitis Species, 2nd Ed.; Organization Intergouvernementale crée par l’Accord International. Paris. 2001. [(accessed on 25 July 2021)]. Available online: https://www.oiv.int/public/medias/2274/code-2e-edition-finale.pdf.

Contreras-Calderόn J., Calderόn-Jaimes L., Guerra-Hernández E., García-Villanova B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from colombia. Food Res. Int. 2011;44:2047–2053. doi: 10.1016/j.foodres.2010.11.003. DOI

Krawitzky M., Arias E., Peiro J.M., Negueruela A.I., Val J., Oria R. Determination of color, antioxidant activity, and phenolic profile of different fruit tissue of Spanish ‘Verde Doncella’ apple cultivar. Int. J. Food Prop. 2014;17:1532–2386. doi: 10.1080/10942912.2013.792829. DOI

Brand-Williams W., Cuvelier M., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI

Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Rodriguez-Delgado A., Malovana S., Perez J.P., Borges T., Garcia-Montelongo F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. 2001;912:249–257. doi: 10.1016/S0021-9673(01)00598-2. PubMed DOI

Dilli Y., Kader S. Table, wine and dried grape cultivars. [(accessed on 25 July 2021)];2020 Available online: https://arastirma.tarimorman.gov.tr/manisabagcilik/Belgeler/genelbagcilik/UZUM%20CESITLERI%20YILDIZ%20DILLI.pdf.

Dardeniz A. Effects of cluster tipping on yield and quality of Uslu and Cardinal table grape cultivars. COMU J. Agric. Fac. 2014;2:21–26.

Hizarci Y. Ph.D. Thesis. Graduate School of Natural and Applied Sciences, Ataturk University; Erzurum, Turkey: 2010. Description of Ampelographic Characteristics and Determine Genetic Relationships by Using SSR Markers Among Grapevine Cultivars Grown in Yusufeli District.

Korkutal I., Bahar E., Ozge K. The effect of altitude on grape quality. Trakya Univ. J. Eng. Sci. 2012;13:17–29.

Pehlivan E.C., Uzun H.I. Effects of cluster thinning on yield and quality characteristics in Shiraz grape cultivar. J. Agric. Sci. Yuzuncu Yil. Univ. 2015;25:119–126.

Yi O.S., Meyer A.S., Frankel E.N. Antioxidant activity of grape extracts in a lecithin liposome system. J. Am. Oil Chem. Soc. 1997;74:1301–1307. doi: 10.1007/s11746-997-0061-9. DOI

Ruiz-Torralba A., Guerra-Hernández E.J., García-Villanova B. Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA J. Food. 2018;16:1131–1138. doi: 10.1080/19476337.2018.1517828. DOI

Revilla E., Carrasco D., Benito A., Arroyo-Garcia R. Anthocyanin composition of several wild grape accessions. Am. J. Enol. Vitic. 2010;61:536–543. doi: 10.5344/ajev.2010.09134. DOI

Gundesli M., Attar S.H., Degirmenci I., Nogay G., Kafkas N.E. Total phenol and antioxidant activity of Kabarcık’ grape (Vitis vinifera L.) variety. J. Sci. Eng. Res. 2018;5:222–227.

Liu Q., Tang G.-Y., Zhao C.-N., Feng X.-L., Xu X.-Y., Cao S.-Y., Meng X., Li S., Gan R.-Y., Li H.-B. Comparison of antioxidant activities of different grape varieties. Molecules. 2018;23:2432. doi: 10.3390/molecules23102432. PubMed DOI PMC

Shen Y., Cheng X., Gu H., Zhou G., Xia H., Liang D. Determination of antioxidant compounds and antioxidant activity of six table grapes with red skin. E3S Web Conf. 2020;145:01004. doi: 10.1051/e3sconf/202014501004. DOI

Yilmaz Y., Goksel Z., Erdogan S.S., Ozturk A., Atak A., Ozer C. Antioxidant activity and phenolic content of seed, skin and pulp parts of 22 grape (Vitis vinifera l.) cultivars (4 common and 18 registered or candidate for registration) J. Food Process. Preserv. 2015;39:1682–1691. doi: 10.1111/jfpp.12399. DOI

Marinova D., Ribarova F., Atanassova M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metal. 2005;40:255–260.

Gokturk-Baydar N., Babalik Z., Turk F.H., Cetin E.S. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J. Agric. Sci. 2011;17:67–76.

Cetin E.S., Babalik Z., Gokturk Baydar N. Determination of Total Carbohydrates, Phenolic Substance, Anthocyanin, β-Caroten and Vitamine C Content in Berries of Grape Cultivars; Proceedings of the IV National Small Fruit Symposium; Antalya, Turkey. 3–5 October 2012; pp. 151–159.

Shiraishi M., Shinomiya R., Chijiwa H. Varietal differences in polyphenol contents, antioxidant activities and their correlations in table grape cultivars bred in Japan. Sci. Hortic. 2018;227:272–277. doi: 10.1016/j.scienta.2017.09.032. DOI

Sridhari K., Charles A.L. In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chem. 2019;275:41–49. doi: 10.1016/j.foodchem.2018.09.040. PubMed DOI

Singleton V.L. Grape and Wine Centennial: Symposium Proceedings. University of California; Davis, CA, USA: 1982. Grape and Wine Phenolics; Background and Prospects.398p

Karaman H.T., Kusku D.Y., Soylemezoglu G. Phenolic compounds and antioxidant capacities in grape berry skin, seed and stems of six wine grape varieties grown in Turkey. Acta Sci. Pol. Hortorum Cultus. 2021;20:15–25. doi: 10.24326/asphc.2021.1.2. DOI

Zhou K., Yu Y. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT Food Sci.Technol. 2004;37:717–721. doi: 10.1016/j.lwt.2004.02.008. DOI

Choi S.-Y., Lee Y.-M., Lee P.-J., Kim K.-T. Comparison of the antioxidative effects and content of anthocyanin and phenolic compounds in different varieties of Vitis vinifera ethanol extract. Prev. Nutr. Food Sci. 2011;16:24–28. doi: 10.3746/jfn.2011.16.1.024. DOI

Fahmi A.I., Nagaty M.A., El-Shehawi A.M. Fruit quality of Taif grape (Vitis vinifera L.) cultivars. Am. J. Sci. 2012;8:590–599.

Farhadi K., Esmaeilzadeh F., Hatami M., Forough M., Molaie R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016;199:847–855. doi: 10.1016/j.foodchem.2015.12.083. PubMed DOI

Mandić A.I., Đilas S.M., Canadanović-Brunet J.M., Ćetković G.S., Vulić J.J. Antioxidant activity of white grape seed extracts on DPPH radicals. Acta Period. Technol. 2009;40:53–61. doi: 10.2298/APT0940053M. DOI

Anastasiadi M., Pratsinis H., Kletsas D., Skaltsounis A., Haroutounian S.A. Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010;43:805–813. doi: 10.1016/j.foodres.2009.11.017. DOI

Fu L., Xu B.T., Xu X.R., Gan R.Y., Zhang Y., Xia E.Q., Li H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. PubMed DOI

Fu L., Xu B.T., Xu X.R., Qin X.S., Gan R.Y., Li H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from south China. Molecules. 2010;15:8602–8617. doi: 10.3390/molecules15128602. PubMed DOI PMC

Sochorova L., Prusova B., Jurikova T., Mlcek J., Adamkova A., Baron M., Sochor J. The Study of Antioxidant Components in Grape Seeds. Molecules. 2020;25:3736. doi: 10.3390/molecules25163736. PubMed DOI PMC

Yegin A.B., Uzun H.I. Some chemical phenolic content and antioxidant activity variations in different parts of grape berry. Derim. 2018;35:1–10.

Gokturk Baydar N., Ozkan G., Yasar S. Evaluation of the antiradical and antioxidant potential of grape extracts. Food Control. 2007;18:1131–1136. doi: 10.1016/j.foodcont.2006.06.011. DOI

Costa E., Cosme F., Jordão A.M., Mendes-Faia A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. J. Int. Sci. Vigne Vin. 2014;48:51–62. doi: 10.20870/oeno-one.2014.48.1.1661. DOI

Weidner S., Rybarczyk A., Karamac M., Krol A., Mostek A., Grebosz J., Amarowicz E. Differences in the phenolic composition and antioxidant properties between Vitis coignetiae and Vitis vinifera seeds extracts. Molecules. 2013;18:3410–3426. doi: 10.3390/molecules18033410. PubMed DOI PMC

Dudonné S., Vitrac X., Coutière P., Woillez M., Mérillon J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009;57:1768–1774. doi: 10.1021/jf803011r. PubMed DOI

Qader S.W., Abdulla M.A., Chua L.S., Najim N., Zain M.M., Hamdan S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules. 2011;16:3433–3443. doi: 10.3390/molecules16043433. PubMed DOI PMC

Xu H.-X., Chen J.-W. Commercial quality, major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eriobotrya japonica Lindl.) fruits. J. Sci. Food Agric. 2011;91:1057–1063. doi: 10.1002/jsfa.4282. PubMed DOI

Clarke G., Ting K.N., Wiart C., Fry J. High Correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants. 2013;2:1–10. PubMed PMC

Pantelic M., Dabic Zagorac D., Davidovic S., Todic S., Bešlic Z., Gašic U., Tešic Ž., Natic M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016;211:243–252. doi: 10.1016/j.foodchem.2016.05.051. PubMed DOI

Rusjan D., Veberic R., Mikulic-Petkovšek M. The response of phenolic compounds in grapes of the variety ‘Chardonnay’ (Vitis vinifera L.) to the infection by phytoplasma Bois noir. Eur. J. Plant Pathol. 2012;133:965–974. doi: 10.1007/s10658-012-9967-7. DOI

Gokcen I.S., Keskin N., Kunter B., Canturk S., Karadogan B. Grape phytochemicals and researches on grape cultivars grown in Turkey. Turk. J. For. Sci. 2017;1:93–111.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...