Nutritional Analysis of Red-Purple and White-Fleshed Pitaya (Hylocereus) Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35164073
PubMed Central
PMC8839306
DOI
10.3390/molecules27030808
PII: molecules27030808
Knihovny.cz E-zdroje
- Klíčová slova
- HS-SPME/GC-MS, phenolic compounds, pitaya (Hylocereus spp.) sugars, volatiles,
- MeSH
- antioxidancia analýza MeSH
- Cactaceae chemie MeSH
- cukry analýza MeSH
- fenoly analýza MeSH
- mikroextrakce na pevné fázi MeSH
- nutriční hodnota MeSH
- ovoce chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- rostlinné extrakty chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- cukry MeSH
- fenoly MeSH
- rostlinné extrakty MeSH
Pitaya is one of the most preferred and produced tropical fruit species recently introduced to the Mediterrranean region in Turkey. Due to its nutritional fruits with high economic value, the popularity of pitaya increases steadily in Turkey as an alternative crop. No detailed nutritional analysis has been undertaken in Turkey so far on fruits of the pitaya species. In this study, we determined and compared some nutritional parameters in fruit flesh of two pitaya (dragon fruit) species (Hylocereus polyrhizus: Siyam and Hylocereus undatus: Vietnam Jaina) grown in the Adana province located in the eastern Mediterranean region in Turkey. The individual sugars, antioxidant activity, total phenolic content, phenolic compounds and volatiles were determined for the first time in Turkey on two pitaya species. The results showed that total phenol content and antioxidant capacity are notably higher in red-fleshed fruits than white-fleshed ones and the predominant phenolic compound in fruits of both species was quercetin. The total sugar content and most of the phenolic compounds in fruits of two pitaya species were similar. A total of 51 volatile compounds were detected by using two Solid Phase Micro Extraction (SPME) fibers, coupled with Gas Chromatography Mass Spectrometry (GC-MS) techniques, and more volatile compounds were presented in the white-fleshed species. Total phenolic content (TPC) of the red-fleshed and white-fleshed pitaya species were 16.66 and 17.11 mg GAE/100 g FW (fresh weight). This study provides a first look at the biochemical comparison of red-fleshed and white-fleshed pitaya species introduced and cultivated in Turkey. The results also showed, for the first time, the biochemical content and the potential health benefit of Hylocereus grown in different agroecological conditions, providing important information for pitaya researchers and application perspective.
Department of Horticulture Agricultural Faculty Ataturk University Erzurum 25240 Turkey
Department of Horticulture Faculty of Agriculture University of Çukurova Balcali Adana 01330 Turkey
Institute of Botany Jiangsu Province and Chinese Academy of Sciences Nanjing 210014 China
Zobrazit více v PubMed
Zainoldin K.H., Baba A.S. The effect of Hylocereus polyrhizus and Hylocereus undatus on physicochemical, proteolysis, and antioxidant activity in yogurt. World Acad. Sci. Eng. Technol. 2009;60:361–366.
Nizamlıoğlu N.M., Ünver A., Kadakal Ç. Mineral content of pitaya (Hylocereus polyrhizus and Hylocereus undatus) seeds grown in Turkey. Erwerbs-Obstbau. 2021;63:209–213. doi: 10.1007/s10341-021-00561-x. DOI
Abirami K., Swain S., Baskaran V., Venkatesan K., Sakthivel K., Bommayasamy N. Distinguishing three Dragon fruit (Hylocereus spp.) species grown in Andaman and Nicobar Islands of India using morphological, biochemical and molecular traits. Sci. Rep. 2021;11:1–14. PubMed PMC
Hoa T., Clark T., Waddell B.C., Woolf A.B. Postharvest quality of Dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biol. Technol. 2006;41:62–69. doi: 10.1016/j.postharvbio.2006.02.010. DOI
Tang W., Li W., Yang Y., Lin X., Wang L., Li C., Yang R. Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus) Foods. 2021;10:1183. doi: 10.3390/foods10061183. PubMed DOI PMC
Wybraniec S., Platzner I., Geresh S., Gottlieb H.E., Haimberg M., Mogilnitzki M., Mizrahi Y. Betacyanins from vine cactus Hylocereus polyrhizus. Phytochemistry. 2001;58:1209–1212. doi: 10.1016/S0031-9422(01)00336-3. PubMed DOI
Wybraniec S., Mizrahi Y. Fruit flesh betacyanin pigments in Hylocereus cacti. J. Agric. Food Chem. 2002;50:6086–6089. doi: 10.1021/jf020145k. PubMed DOI
Chuah A.M., Lee Y.C., Yamaguchi T., Takamura H., Yin L.J., Matoba T. Effect of cooking on the antioxidant properties of coloured peppers. Food Chem. 2008;111:20–28. doi: 10.1016/j.foodchem.2008.03.022. DOI
Al-Alwani M.A.M., Mohamad A., Kadhum A.A.H., Ludin N.A. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015;138:130–137. doi: 10.1016/j.saa.2014.11.018. PubMed DOI
Choo W.S., Yong W.K. Antioxidant properties of two species of Hylocereus fruits. Adv. Appl. Sci. Res. 2011;2:418–425.
Lim H.K., Tan C.P., Karim R., Ariffin A.A., Bakar J. Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chem. 2010;119:1326–1331. doi: 10.1016/j.foodchem.2009.09.002. DOI
Ibrahim S.R.M., Mohamed I., Mohamed Khedr G.A., Khedr A.I.M., Zayed M.F., El-Kholy A.A.S. Genus Hylocereus: Beneficial phytochemicals, nutritional importance, and biological relevance—A review. J. Food Biochem. 2018;42:e12491. doi: 10.1111/jfbc.12491. DOI
Le Bellec F., Vaillant F., Imbert E. Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits. 2006;61:237–250. doi: 10.1051/fruits:2006021. DOI
Siddiq M., Nasir M. Tropical and Subtropical Fruits: Postharvest Physiology, Processing and Packaging. John Wiley & Sons; Hoboken, NJ, USA: 2012. Dragon fruit and durian; pp. 587–596.
Freitas S.T.D., Mitcham E.J. Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci. Agric. 2013;70:257–262. doi: 10.1590/S0103-90162013000400006. DOI
Esquivel P., Stintzing F.C., Carle R. Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Z. Naturforsch. C. 2007;62:636–644. doi: 10.1515/znc-2007-9-1003. PubMed DOI
García-Cruz L., Dueñas M., Santos-Buelgas C., Valle-Guadarrama S., Salinas-Moreno Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. pruinosus and S. stellatus) Food Chem. 2017;234:111–118. doi: 10.1016/j.foodchem.2017.04.174. PubMed DOI
Wu L.C., Hsu H.W., Chen Y.C., Chiu C.C., Lin Y.I., Ho J.A.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006;95:319–327. doi: 10.1016/j.foodchem.2005.01.002. DOI
Trivellini A., Lucchesini M., Ferrante A., Massa D., Orlando M., Incrocci L., Mensuali-Sodi A. Pitaya, an attractive alternative crop for Mediterranean region. Agronomy. 2020;10:1065. doi: 10.3390/agronomy10081065. DOI
Song H., Chu Q., Xu D., Xu Y., Zheng X. Purified betacyanins from Hylocereus undatus peel ameliorate obesity and insulin resistance in high-fat-diet-fed mice. J. Agric. Food Chem. 2016;64:236–244. doi: 10.1021/acs.jafc.5b05177. PubMed DOI
Mizrahi Y., Nerd A., Nobel P.S. Cacti as crops. Hort. Rev. 1997;18:291–320.
Ramli N.S., Brown L., Ismail P., Rahmat A. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats. BMC Complement. Altern. Med. 2014;14:189. doi: 10.1186/1472-6882-14-189. PubMed DOI PMC
Cheok A., George T.W., Rodriguez-Mateos A., Caton P.W. The effects of betalain-rich cacti (dragon fruit and cactus pear) on endothelial and vascular function: A systematic review of animal and human studies. Food Funct. 2020;11:6807–6817. doi: 10.1039/D0FO00537A. PubMed DOI
Holanda M.O., Lira S.M., da Silva J.Y.G., Marques C.G., Coelho L.C., Lima C.L.S., Costa J.T.G., da Silva G.S., Santos G.B.M., Zocolo G.J., et al. Intake of pitaya (Hylocereus polyrhizus (FAC Weber) Britton & Rose) beneficially affects the cholesterolemic profile of dyslipidemic C57BL/6 mice. Food Biosci. 2021;42:101181.
Nurul S.R., Asmah R. Variability in nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) from Malaysia and Australia. Int. Food Res. J. 2014;21:4.
Jerônimo M.C., Orsine J.V.C., Borges K.K., Novaes M.R.C.G. Chemical and physical-chemical properties, antioxidant activity and fatty acids profile of red pitaya [H. undatus (Haw.) Britton & Rose] grown in Brazil. J. Drug Metabol. Toxicol. 2015;6:1–6.
Halimoon N., Abdul Hasan M.H. Determination and evaluation of antioxidative activity in red dragon fruit (Hylocereus undatus) and green kiwi fruit (Actinidia deliciosa) Amer. J. Appl. Sci. 2010;7:1432–1438.
Ruzainah A.J., Ahmad R., Nor Z., Vasudevan R. Proximate analysis of dragon fruit (Hylecereus polyhizus) Am. J. Appl. Sci. 2009;6:1341–1346.
El Hadi M.A., Zhang F.J., Wu F.F., Zhou C.H., Tao J. Advances in fruit volatile volatile research. Molecules. 2013;18:8200–8229. doi: 10.3390/molecules18078200. PubMed DOI PMC
VH E.S., Utomo S.B., Syukri Y., Redjeki T. Phytochemical screening and analysis polyphenolic antioxidant activity of methanolic extract of white dragon fruit (Hylocereus undatus) Indones. J. Pharm. 2012;23:60–64.
Ruzlan N., Kamarudin K.R., Idid S.O., Idid S.Z., Mohamed Rehan A., Koya M.S. Antioxidant study of pulp and peel of dragon fruits: A comparative study; Proceedings of the 2nd International Conference on Advancement of Science and Technology (iCAST); Kuala Lumpur, Malaysia. 13–15 June 2008; pp. 230–232.
Huang Y., Brennan M.A., Kasapis S., Richardson S.J., Brennan C.S. Maturation process, nutritional profile, bioactivities and utilisation in food products of red pitaya fruits: A Review. Foods. 2021;10:2862. doi: 10.3390/foods10112862. PubMed DOI PMC
Gutiérrez S.P., Sánchez M.A.Z., González C.P., García L.A. Antidiarrhoeal activity of different plants used in traditional medicine. Afr. J. Biotechnol. 2007;6:25.
Song H., Zheng Z., Wu J., Lai J., Chu Q., Zheng X. White pitaya (Hylocereus undatus) juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. PLoS ONE. 2016;11:e0149670. doi: 10.1371/journal.pone.0149670. PubMed DOI PMC
Muhammad K., Izalin N., Zahari M., Gannasin S.P., Adzahan N.M., Bakar J. Food hydrocolloids high methoxyl pectin from dragon fruit (Hylocereus polyrhizus) peel. Food Hydrocoll. 2014;42:289–297. doi: 10.1016/j.foodhyd.2014.03.021. DOI
Zaid R.M., Mishra P., Tabassum S., Ab Wahid Z., Sakinah A.M.M. High methoxyl pectin extracts from Hylocereus polyrhizus peels: Extraction kinetics and thermodynamic studies. Int. J. Biol. Macromol. 2019;141:1147–1157. doi: 10.1016/j.ijbiomac.2019.09.017. PubMed DOI
Jiang Y.L., Chen L.Y., Lee T.C., Chang P.T. Improving postharvest storage of fresh red-fleshed pitaya (Hylocereus polyrhizus sp.) fruit by pre-harvest application of CPPU. Sci. Hortic. 2020;273:109646. doi: 10.1016/j.scienta.2020.109646. DOI
Nurliyana R., Syed Zahir I., Mustapha Suleiman K., Aisyah M.R., Kamarul Rahim K. Antioxidant study of pulps and peels of dragon fruits: A comparative study. Int. Food Res. J. 2010;17:2.
Ariffin A.A., Bakar J., Tan C.P., Rahman R.A., Karim R., Loi C.C. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 2009;114:561–564. doi: 10.1016/j.foodchem.2008.09.108. DOI
Beynen A.C., Katan M.B. Rapid sampling and long-term storage of subcutaneous adipose-tissue biopsies for determination of fatty acid composition. Am. J. Clin. Nutr. 1985;42:317–322. doi: 10.1093/ajcn/42.2.317. PubMed DOI
Jenkins D.J., Kendall C.W., Marchie A., Parker T.L., Connelly P.W., Qian W., Spiller G.A. Dose response of almonds on coronary heart disease risk factors: Blood lipids, oxidized low-density lipoproteins, lipoprotein (a), homocysteine, and pulmonary nitric oxide: A randomized, controlled, crossover trial. Circulation. 2002;106:1327–1332. doi: 10.1161/01.CIR.0000028421.91733.20. PubMed DOI
Glick N.R., Fischer M.H. The role of essential fatty acids in human health. Evid.-Based Complement. Alternat. Med. 2013;18:268–289. doi: 10.1177/2156587213488788. DOI
Wang A., Ma C., Ma H., Qiu Z., Wen X. Physiological and proteomic responses of pitaya to PEG-induced drought stress. Agriculture. 2021;11:632. doi: 10.3390/agriculture11070632. DOI
Zou Z., Xi W., Hu Y., Nie C., Zhou Z. Antioxidant activity of citrus fruits. Food Chem. 2016;196:885–896. doi: 10.1016/j.foodchem.2015.09.072. PubMed DOI
Som A.M., Ahmat N., Abdul Hamid H.A., Azizuddin N. A comparative study on foliage and peels of Hylocereus undatus (white dragon fruit) regarding their antioxidant activity and phenolic content. Heliyon. 2019;5:e01244. doi: 10.1016/j.heliyon.2019.e01244. PubMed DOI PMC
Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI
Spanos G.A., Wrolstad R.E. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J. Agric. Food Chem. 1990;38:1565–1571. doi: 10.1021/jf00097a030. DOI
Crisosto C.H. Developing Maturity Indices for Full Red Plum Cultivars. Calif. Tree Fruit Agreement. 1997:34–48.
Maas J.L., Wang S.Y., Galletta G.J. Evaluation of strawberry cultivars for ellagic acid content. HortScience. 1991;26:66–68. doi: 10.21273/HORTSCI.26.1.66. DOI
Kohler U., Luniak M. Data inspection using biplots. Stata J. 2005;5:208–223. doi: 10.1177/1536867X0500500206. DOI
Jiang H., Zhang W., Li X., Shu C., Jiang W., Cao J. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends Food Sci. Technol. 2021;116:199–217. doi: 10.1016/j.tifs.2021.06.040. DOI
Paśko P., Galanty A., Zagrodzki P., Ku Y.G., Luksirikul P., Weisz M., Gorinstein S. Bioactivity and cytotoxicity of different species of pitaya fruits–A comparative study with advanced chemometric analysis. Food Biosci. 2021;40:100888. doi: 10.1016/j.fbio.2021.100888. DOI
Pérez-Loredo M.G., García-Ochoa F., Barragán-Huert B.E. Comparative Analysis of Betalain Content in StenocereusStellatus Fruits and OtherCactus Fruits Using Principal Component Analysis. Int. J. Food Proper. 2016;19:326–338. doi: 10.1080/10942912.2015.1022259. DOI
García-Cruz L., Valle-Guadarrama S., Salinas-Moreno Y., Joaquín-Cruz E. Physical, chemical, and antioxidant activity characterization of pitaya (Stenocereus pruinosus) Fruits. Plant Foods Hum. Nutr. 2013;68:403–410. doi: 10.1007/s11130-013-0391-8. PubMed DOI
De Mello F.R., Bernardo C., Dias C.O., Gonzaga L., Amante E.R., Fett R., Candido L.M.B. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Ciênc. Rural. 2014;45:323–328. doi: 10.1590/0103-8478cr20140548. DOI
Suleria H.A.R., Barrow C.J., Dunshea F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods. 2020;9:1206. doi: 10.3390/foods9091206. PubMed DOI PMC
Hua Q.Z., Chen C.B., Tel Zur N., Wang H.C., Wu J.Y., Chen J.Y., Zhang Z.K., Zhao J.T., Hu G.B., Qin Y.H. Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors. Plant Physiol. Bioch. 2018;126:117–125. doi: 10.1016/j.plaphy.2018.02.027. PubMed DOI
Nomura K., Ide M., Yonemoto Y. Changes in sugars and acids in pitaya (Hylocereus undatus) fruit during development. J. Hortic. Sci. Biotechnol. 2005;80:711–715. doi: 10.1080/14620316.2005.11512003. DOI
To L.V., Ngu N., Duc N.D., Trinh D.T.K., Thanh N.C., Mien D.V.H., Hai C.N., Long T.N. Quality Assurance System for Dragon Fruit. Quality Assurance in Agricultural Produce. 1999. [(accessed on 12 January 2022)]. pp. 101–114. ACIAR Proc. No. 100. Available online: https://moam.info/quality-assurance-system-for-dragon-fruit-aciar_59a143541723dd0d4058f971.html.
Chaves M.D., Gouveia J.P.D., Almeida F.A.C., Leite J.C.A., Silva F.D. Caracterização físico-química do suco da acerola. Rev. Biol. Ciênc. Terra. 2004;4:1–10.
Beltrán-Orozco M.C., Oliva-Coba T.G., Gallardo-Velázquez T., Osorio-Revilla G. Ascorbic acid, phenolic content, and antioxidant capacity of red, cherry, yellow and white types of pitaya cactus fruit (Stenocereus stellatus Riccobono) Agrociencia. 2009;43:153–162.
Wojdylo A., Oszmiański J., Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007;105:940–949. doi: 10.1016/j.foodchem.2007.04.038. DOI
Joshi M., Prabhakar B. Phytoconstituents and pharmaco-therapeutic benefits of pitaya: A wonder fruit. J. Food Biochem. 2020;44:e13260. doi: 10.1111/jfbc.13260. PubMed DOI
Jamilah B., Shu C.E., Kharidah M., Dzulkily M.A., Noranizan A. Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. Int. Food Res. J. 2011;18:1.
Haminiuk C.W.I., Maciel G.M., Plata-Oviedo M.S.V., Peralta R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012;47:2023–2044. doi: 10.1111/j.1365-2621.2012.03067.x. DOI
Kupe M., Karatas N., Unal M.S., Ercisli S., Baron M., Sochor J. Phenolic composition and antioxidant activity of peel, pulp and seed extracts of different clones of the Turkish grape cultivar ‘Karaerik’. Plants. 2021;10:2154. doi: 10.3390/plants10102154. PubMed DOI PMC
Luu T.T.H., Le T.L., Huynh N., Quintela-Alonso P. Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech J. Food Sci. 2021;39:71–94. doi: 10.17221/139/2020-CJFS. DOI
Sudha K., Baskaran D., Ramasamy D., Siddharth M. Evaluation of functional properties of Hylocereus undatus (White dragon fruit) Int. J. Agric. Sci. Res. 2017;7:451–456.
Adnan L., Osman A., Abdul Hamid A. Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. Int. J. Food Prop. 2011;14:1171–1181. doi: 10.1080/10942911003592787. DOI
Tenore G.C., Novellino E., Basile A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods. 2012;4:129–136. doi: 10.1016/j.jff.2011.09.003. DOI
Kim H., Choi H.-K., Moon J.Y., Kim Y.S., Mosaddik A., Cho S.K. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J. Food Sci. 2010;76:C38–C45. doi: 10.1111/j.1750-3841.2010.01908.x. PubMed DOI
Zain N.M., Nazeri M.A., Azman N.A. Assessment on bioactive compounds and the effect of microwave on pitaya peel. J. Teknol. 2019;81:11–19.
Obenland D., Cantwell M., Lobo R., Collin S., Sievert J., Arpaia M.L. Impact of storage conditions and variety on quality attributes and aroma volatiles of pitahaya (Hylocereus spp.) Sci. Hortic. 2016;199:15–22. doi: 10.1016/j.scienta.2015.12.021. DOI
Wu Q., Zhou Y., Zhang Z., Li T., Jiang Y., Gao H., Yun Z. Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya. Postharvest Biol. Tec. 2020;160:111059. doi: 10.1016/j.postharvbio.2019.111059. DOI
Gundesli M.A., Kafkas N.E., Okatan V., Usanmaz S. Identification and characterisation of volatile compounds determined By Hs/Gc-Ms technique in pulp of ‘Abbas’ Fig (Ficus carica L.) variety. Pak. J. Agric. Sci. 2020;57:623–629.
Wu Q., Zhang Z., Zhu H., Li T., Zhu X., Gao H., Jiang Y. Comparative volatile compounds and primary metabolites profiling of pitaya fruit peel after ozone treatment. J. Sci. Food Agric. 2019;99:2610–2621. doi: 10.1002/jsfa.9479. PubMed DOI
Garcia-Esteban M., Ansorena D., Astiasaran I., Martin D., Ruiz J. Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J. Sci. Food Agric. 2004;84:1364–1370. doi: 10.1002/jsfa.1826. DOI
Carasek E., Pawliszyn J. Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber. J. Agric. Food Chem. 2006;54:8688–8696. doi: 10.1021/jf0613942. PubMed DOI
Quijano-Célis C., Echeverri-Gil D., Pino J.A. Characterization of odor-active compounds in yellow pitaya (Hylocereus megalanthus (Haw.) Britton et Rose). Rev. CENIC Cienc. Quím. 2012;43:1–7.
Sengul M., Ercisli S., Yildiz H., Gungor N., Kavaz A., Cetin B. Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. 2011;10:49–55. PubMed PMC
Zia-Ul-Haq M., Ahmad S., Qayum M., Ercisli S. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds. Turk. J. Biol. 2013;37:25–32.
Bolat I., Dikilitas M., Ercisli S., Ikinci A., Tonkaz T. The effect of water stress on some morphological, physiological, and biochemical characteristics and bud success on apple and quince rootstocks. Sci. World J. 2014;2014:1–8. doi: 10.1155/2014/769732. PubMed DOI PMC
Dogan H., Ercisli S., Jurikova T., Temim E., Leto A., Hadziabulic A., Tosun M., Narmanlioglu H.K., Zia-Ul-Haq M. Physicochemical and antioxidant characteristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxid. Commun. 2014;37:1005–1014.
Dogan H., Ercisli S., Temim E., Hadziabulic A., Tosun M., Yilmaz S.O., Zia-Ul-Haq M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. C R Acad Bulg Sci. 2014;67:1593–1600.
Gundogdu M., Ozrenk K., Ercisli S., Kan T., Kodad O., Hegedus A. Organic acids, sugars, vitamin C content and some pomological characteristics of eleven hawthorn species (Crataegus spp.) from Turkey. Biol. Res. 2014;47:21. doi: 10.1186/0717-6287-47-21. PubMed DOI PMC
Ersoy N., Kupe M., Sagbas H.I., Ercisli S. Phytochemical diversity among barberry (Berberis vulgaris L.) Not. Bot. Horti Agrobot. Cluj-Napoca. 2018;46:198–204.
Ersoy N., Kupe M., Gundogdu M., Gulce I., Ercisli S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.) cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca. 2018;46:381–387. doi: 10.15835/nbha46211103. DOI
Gecer M.K., Kan T., Gundogdu M., Ercisli S., Ilhan G., Sagbas H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020;67:935–945. doi: 10.1007/s10722-020-00893-9. DOI
Incedayi B. Assessment of pretreatments on drying kinetics and quality characteristics of thin-layer dried red pepper. Turk. J. Agric. For. 2020;44:543–556. doi: 10.3906/tar-2001-62. DOI
Kiran S., Kusvuran S., Ozkay F., Ellialtioglu S. Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes. Turk. J. Agric. For. 2020;43:593–602. doi: 10.3906/tar-1808-1. DOI
Kupe M. Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genetika. 2020;52:513–525. doi: 10.2298/GENSR2002513K. DOI
Ozkan G. Phenolic compounds, organic acids, vitamin C and antioxidant capacity in Prunus spinosa. C. R. Acad. Bulg. Sci. 2019;72:267–273.