Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits

. 2008 Nov 14 ; 13 (11) : 2823-36. [epub] 20081114

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19015622

Neurodegenerative disorders (NDD) have become the common global health burden over the last several decades. According to World Health Organization (WHO), a staggering 30 million people will be affected by Alzheimer's disease in Europe and the USA by 2050. Effective therapies in this complex field considering the multitude of symptoms associated with NDD indications, have not been found yet. Based on the results of NDD related studies, prevention appears to be the promise alternative. Antioxidative and anti-inflammatory properties are hypothesized for natural phenolics, a group of plant secondary products that may positively impact neurodegenerative diseases. In these studies, phenolic-rich extracts from less common fruit species: Blue honeysuckle (Lonicera edulis, Turcz. ex. Freyn), Saskatoon berry (Amelanchier alnifolia Nutt.), and Chinese hawthorn (Crateagus pinnatifida Bunge) were obtained and analyzed to detect neuroprotective substances content and establish a potential therapeutic value. High performance liquid chromatography with electrochemical detection was optimized and further applied on analysis of the extracts of less common fruit species. It was observed that Chinese hawthorn and Blue honeysuckle extracts are potent source of neuroprotective phenolic antioxidants. In accordance the results, it appears that the fruit or formulated products may have the potential for the prevention of neurodegenerative diseases.

Zobrazit více v PubMed

WHO . The World Health Report 2002. World Health Organization; Geneva, Switzerland: 2002.

Halliwell B. Reactive Oxygen Species and the Central-Nervous-System. J. Neurochem. 1992;59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. PubMed DOI

Dawson V.L., Dawson T.M. Nitric oxide neurotoxicity. J. Chem. Neuroanat. 1996;10:179–190. doi: 10.1016/0891-0618(96)00148-2. PubMed DOI

Aisen P.S., Davis K.L. The search for disease-modifying treatment for Alzheimer's disease. Neurology. 1997;48:S35–S41. doi: 10.1212/WNL.48.5_Suppl_6.35S. PubMed DOI

Gerlach M., Benshachar D., Riederer P., Youdim M.B.H. Altered Brain Metabolism of Iron as a Cause of Neurodegenerative Diseases. J. Neurochem. 1994;63:793–807. PubMed

Ashok B.T., Ali R. The aging paradox: free radical theory of aging. Exp. Gerontol. 1999;34:293–303. doi: 10.1016/S0531-5565(99)00005-4. PubMed DOI

Hecht S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 1999;91:1194–1210. doi: 10.1093/jnci/91.14.1194. PubMed DOI

Rosenfeld M.E. Inflammation, lipids, and free radicals: Lessons learned from the atherogenic process. Sem. Reprod. Endocrin. 1998;16:249–261. doi: 10.1055/s-2007-1016285. PubMed DOI

Hayes J.D., McLellan L.I. Glutathione and glutathione-dependent enzymes represent a Co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999;31:273–300. doi: 10.1080/10715769900300851. PubMed DOI

Clausen J. Demential Syndromes and the Lipid-Metabolism. Acta Neurol. Scand. 1984;70:345–355. doi: 10.1111/j.1600-0404.1984.tb00835.x. PubMed DOI

Harman D. Aging - Prospects for Further Increases in the Functional Life-Span. Age. 1994;17:119–146. doi: 10.1007/BF02435819. DOI

Hensley K., Butterfield D.A., Hall N., Cole P., Subramaniam R., Mark R., Mattson M.P., Markesbery W.R., Harris M.E., Aksenov M., Aksenova M., Wu J.F., Carney J.M. Pharmacological Intervention in Aging and Age-Associated Disorders. New York Academy of Sciences; New York, USA: 1996. Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer's disease-associated amyloid beta peptide; pp. 120–134. PubMed

Markesbery W.R., Carney J.M. Oxidative alterations in Alzheimer's disease. Brain Pathol. 1999;9:133–146. doi: 10.1111/j.1750-3639.1999.tb00215.x. PubMed DOI PMC

Smith M.A., Perry G. Free radical damage, iron, and Alzheimer's disease. J. Neurol. Sci. 1995;134:92–94. doi: 10.1016/0022-510X(95)00213-L. PubMed DOI

Wang C.N., Chi C.W., Lin Y.L., Chen C.F., Shiao Y.J. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J. Biol. Chem. 2001;276:5287–5295. PubMed

Ebadi M., Srinivasan S.K., Baxi M.D. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog. Neurobiol. 1996;48:1–19. doi: 10.1016/0301-0082(95)00029-1. PubMed DOI

Olanow C.W., Arendash G.W. Metals and Free-Radicals in Neurodegeneration. Curr. Opin. Neurol. 1994;7:548–558. doi: 10.1097/00019052-199412000-00013. PubMed DOI

Cacabelos R. Influence of pharmacogenetic factors on Alzheimer's disease therapeutics. Neurodegener. Dis. 2008;5:176–178. doi: 10.1159/000113695. PubMed DOI

Muthuswamy A., Tangpong J., Keller J.N., Markesbery W.R., Kiningham K.K., Murphy M.P., Flood D.G., St Clair D.K. Beta-amyloid mediated nitration of MnSOD: Implication for oxidative stress in a APP NLh/NLh X PS-1P264L/PS-1P264L double knock-in mouse model of Alzheimer's disease. Free Radic. Biol. Med. 2005;39:S62–S62.

Oliver C.N., Starkereed P.E., Stadtman E.R., Liu G.J., Carney J.M., Floyd R.A. Oxidative Damage to Brain Proteins, Loss of Glutamine-Synthetase Activity, and Production of Free-Radicals During Ischemia Reperfusion-Induced Injury to Gerbil Brain. Proc. Natl. Acad. Sci. U. S. A. 1990;87:5144–5147. doi: 10.1073/pnas.87.13.5144. PubMed DOI PMC

Sakamoto A., Ohnishi S.T., Ohnishi T., Ogawa R. Protective Effect of a New Antioxidant on the Rat-Brain Exposed to Ischemia-Reperfusion Injury - Inhibition of Free-Radical Formation and Lipid-Peroxidation. Free Radic. Biol. Med. 1991;11:385–391. doi: 10.1016/0891-5849(91)90155-V. PubMed DOI

Emilien G., Maloteaux J.M., Beyreuther K., Masters C.L. Alzheimer disease - Mouse models pave the way for therapeutic opportunities. Arch. Neurol. 2000;57:176–181. doi: 10.1001/archneur.57.2.176. PubMed DOI

Selkoe D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999;399:A23–A31. doi: 10.1038/399a023. PubMed DOI

Noguchi N., Watanabe A., Shi H.L. Diverse functions of antioxidants. Free Radic. Res. 2000;33:809–817. doi: 10.1080/10715760000301331. PubMed DOI

Kerry N.L., Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis. 1997;135:93–102. doi: 10.1016/S0021-9150(97)00156-1. PubMed DOI

Wagner C., Fachinetto R., Corte C.L.D., Brito V.B., Severo D., Dias G., Morel A.F., Nogueira C.W., Rocha J.B.T. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 2006;1107:192–198. doi: 10.1016/j.brainres.2006.05.084. PubMed DOI

Copp R.P., Wisniewski T., Hentati F., Larnaout A., Ben Hamida M., Kayden H.J. Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res. 1999;822:80–87. doi: 10.1016/S0006-8993(99)01090-2. PubMed DOI

Tagami M., Yamagata K., Ikeda K., Nara Y., Fujino H., Kubota A., Numano F., Yamori Y. Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab. Invest. 1998;78:1415–1429. PubMed

Yu Z.F., Bruce-Keller A.J., Goodman Y., Mattson M.P. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J. Neurosci. Res. 1998;53:613–625. doi: 10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>3.0.CO;2-1. PubMed DOI

Finch C.E., Cohen D.M. Aging, metabolism, and Alzheimer disease: Review and hypotheses. Exp. Neurol. 1997;143:82–102. doi: 10.1006/exnr.1996.6339. PubMed DOI

Jama J.W., Launer L.J., Witteman J.C.M., denBreeijen J.H., Breteler M.M.B., Grobbee D.E., Hofman A. Dietary antioxidants and cognitive function in a population-based sample of older persons - The Rotterdam study. Am. J. Epidemiol. 1996;144:275–280. doi: 10.1093/oxfordjournals.aje.a008922. PubMed DOI

RiceEvans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI

Rosch D., Bergmann M., Knorr D., Kroh L.W. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J. Agric. Food Chem. 2003;51:4233–4239. doi: 10.1021/jf0300339. PubMed DOI

Sapers G.M., Jones S.B., Maher G.T. Factors Affecting the Recovery of Juice and Anthocyanin from Cranberries. J. Am. Soc. Hortic. Sci. 1983;108:246–249.

Zatylny A.M., Ziehl W.D., St-Pierre R.G. Physicochemical properties of fruit of chokecherry (Prunus virginiana L.), highbush cranberry (Viburnum trilobum Marsh.), and black currant (Ribes nigrum L.) cultivars grown in Saskatchewan. Can. J. Plant Sci. 2005;85:425–429. doi: 10.4141/P04-060. DOI

Zatylny A.M., Ziehl W.D., St-Pierre R.G. Physicochemical properties of fruit of 16 saskatoon (Amelanchier alnifolia Nutt.) cultivars. Can. J. Plant Sci. 2005;85:933–938. doi: 10.4141/P04-065. DOI

Valentova K., Sersen F., Ulrichova J. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts. J. Agric. Food Chem. 2005;53:5577–5582. doi: 10.1021/jf050403o. PubMed DOI

Psotova J., Kolar M., Sousek J., Svagera Z., Vicar J., Ulrichova J. Biological activities of Prunella vulgaris extract. Phytother. Res. 2003;17:1082–1087. doi: 10.1002/ptr.1324. PubMed DOI

George S., Brat P., Alter P., Amiot M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005;53:1370–1373. doi: 10.1021/jf048396b. PubMed DOI

Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. doi: 10.3390/s7102402. PubMed DOI PMC

Klejdus B., Vacek J., Adam V., Zehnalek J., Kizek R., Trnkova L., Kuban V. Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. J. Chromatogr. B. 2004;806:101–111. doi: 10.1016/j.jchromb.2004.03.044. PubMed DOI

Mikelova R., Hodek P., Hanustiak P., Adam V., Krizkova S., Havel L., Stiborova M., Horna A., Beklova M., Trnkova L., Kizek R. Determination of isoflavones using liquid chromatography with electrochemical detection. Acta Chim. Slov. 2007;54:92–97.

Klejdus B., Mikelova R., Petrlova J., Potesil D., Adam V., Stiborova M., Hodek P., Vacek J., Kizek R., Kuban V. Determination of isoflavones in soy bits by fast column high-performance liquid chromatography coupled with UV-visible diode-array detection. J. Chromatogr. A. 2005;1084:71–79. PubMed

Klejdus B., Mikelova R., Petrlova J., Potesil D., Adam V., Stiborova M., Hodek P., Vacek J., Kizek R., Kuban V. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J. Agric. Food Chem. 2005;53:5848–5852. doi: 10.1021/jf0502754. PubMed DOI

Klejdus B., Mikelova R., Adam V., Zehnalek J., Vacek J., Kizek R., Kuban V. Liquid chromatographic-mass spectrometric determination of genistin and daidzin in soybean food samples after accelerated solvent extraction with modified content of extraction cell. Anal. Chim. Acta. 2004;517:1–11.

Vacek J., Klejdus B., Lojkova L., Kuban V. Current trends in isolation, separation, determination and identification of isoflavones: A review. J. Sep. Sci. 2008;31:2054–2067. doi: 10.1002/jssc.200700569. PubMed DOI

Klejdus B., Vacek J., Lojkova L., Benesova L., Kuban V. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases. J. Chromatogr. A. 2008;1195:52–59. PubMed

Mimica-Dukic N., Simin N., Cvejic J., Jovin E., Orcic D., Bozin B. Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules. 2008;13:1455–1464. doi: 10.3390/molecules13071455. PubMed DOI PMC

De Marino S., Gala F., Zollo F., Vitalini S., Fico G., Visioli F., Iorizzi M. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity. Molecules. 2008;13:1219–1229. doi: 10.3390/molecules13061219. PubMed DOI PMC

Lamien-Meda A., Lamien C.E., Compaore M.M.Y., Meda R.N.T., Kiendrebeogo M., Zeba B., Millogo J.F., Nacoulma O.G. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules. 2008;13:581–594. doi: 10.3390/molecules13030581. PubMed DOI PMC

Simic A., Manojlovic D., Segan D., Todorovic M. Electrochemical Behavior and antioxidant and prooxidant activity of natural phenolics. Molecules. 2007;12:2327–2340. doi: 10.3390/12102327. PubMed DOI PMC

Bendini A., Cerretani L., Carrasco-Pancorbo A., Gomez-Caravaca A.M., Segura-Carretero A., Fernandez-Gutierrez A., Lercker G. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical method. An overview of the last decade. Molecules. 2007;12:1679–1719. doi: 10.3390/12081679. PubMed DOI PMC

Koblovska R., Mackova Z., Vitkova M., Kokoska L., Klejdus B., Lapcik O. Isoflavones in the Rutaceae family: Twenty selected representatives of the genera Citrus, Fortunella, Poncirus, Ruta and Severinia. Phytochem. Anal. 2008;19:64–70. doi: 10.1002/pca.1016. PubMed DOI

Hakkinen S., Auriola S. High-performance liquid chromatography with electrospray ionization mass spectrometry and diode array ultraviolet detection in the identification of flavonol aglycones and glycosides in berries. J. Chromatogr. A. 1998;829:91–100. doi: 10.1016/S0021-9673(98)00756-0. PubMed DOI

Hong V., Wrolstad R.E. Use of Hplc Separation Photodiode Array Detection for Characterization of Anthocyanins. J. Agric. Food Chem. 1990;38:708–715. doi: 10.1021/jf00093a026. DOI

Stefova M., Kulevanova S., Stafilov T. Assay of flavonols and quantification of quercetin in medicinal plants by HPLC with UV-diode array detection. J. Liq. Chromatogr. Relat. Technol. 2001;24:2283–2292. doi: 10.1081/JLC-100105140. DOI

Gitz D.C., Liu-Gitz L., McClure J.W., Huerta A.J. Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.) J. Exp. Bot. 2004;55:919–927. doi: 10.1093/jxb/erh092. PubMed DOI

Janeiro P., Corduneanu O., Brett A.M.O. Chrysin and (+/-)-taxifolin electrochemical oxidation mechanisms. Electroanalysis. 2005;17:1059–1064. doi: 10.1002/elan.200403216. DOI

Klejdus B., Sterbova D., Stratil P., Kuban V. Identification and characterization of isoflavones in plant material by HPLC-DAD-MS tandem. Chem. Listy. 2003;97:530–539.

Oliveira-Brett A.M., Diculescu V.C. Electrochemical study of quercetin-DNA interactions: Part I. Analysis in incubated solutions. Bioelectrochemistry. 2004;64:133–141. doi: 10.1016/j.bioelechem.2004.05.003. PubMed DOI

Oliveira-Brett A.M., Diculescu V.C. Electrochemical study of quercetin-DNA interactions - Part II. In situ sensing with DNA biosensors. Bioelectrochemistry. 2004;64:143–150. doi: 10.1016/j.bioelechem.2004.05.002. PubMed DOI

Isuzugawa K., Inoue M., Ogihara Y. Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol. Pharmacol. Bull. 2001;24:1022–1026. doi: 10.1248/bpb.24.1022. PubMed DOI

Lecanu L., Greeson J., Papadopoulos V. Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology. 2006;76:19–33. doi: 10.1159/000088929. PubMed DOI

Zhao B., Lu Z., Nie G., Tang H., Belton P. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Free Radic. Res. 2006;40:S134–S134. PubMed

Nash J.F. Human safety and efficacy of ultraviolet filters and sunscreen products. Dermatol. Clin. 2006;24:35–51. doi: 10.1016/j.det.2005.09.006. PubMed DOI

Sayre R.M., Dowdy J.C., Gerwig A.J., Shields W.J., Lloyd R.V. Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone. Photochem. Photobiol. 2005;81:452–456. doi: 10.1562/2004-02-12-RA-083.1. PubMed DOI

Kluczyk A., Popek T., Kiyota T., de Macedo P., Stefanowicz P., Lazar C., Konishi Y. Drug evolution: p-aminobenzoic acid as a building block. Curr. Med. Chem. 2002;9:1871–1892. doi: 10.2174/0929867023368872. PubMed DOI

Hu M.L., Chen Y.K., Chen L.C., Sano M. Para-Aminobenzoic Acid Scavenges Reactive Oxygen Species and Protects DNA against Uv and Free-Radical Damage. J. Nutr. Biochem. 1995;6:504–508. doi: 10.1016/0955-2863(95)00082-B. DOI

Beecher G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003;133:3248S–3254S. PubMed

Patterson C., Madamanchi N.R., Runge M.S. The oxidative paradox - Another piece in the puzzle. Circ. Res. 2000;87:1074–1076. doi: 10.1161/01.RES.87.12.1074. PubMed DOI

Grace P.A. Ischemia - Reperfusion Injury. Br. J. Surg. 1994;81:637–647. doi: 10.1002/bjs.1800810504. PubMed DOI

Halliwell B. Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives. Portland Press Ltd; London, UK: 1995. How to characterize an antioxidant: An update; pp. 73–101.

Singh A., Naidu P.S., Kulkarni S.K. Quercetin potentiates L-dopa reversal of drug-induced catalepsy in rats: Possible COMT/MAO inhibition. Pharmacology. 2003;68:81–88. doi: 10.1159/000069533. PubMed DOI

Primiano T., Yu R., Kong A.N.T. Signal transduction events elicited by natural products that function as cancer chemopreventive agents. Pharm. Biol. 2001;39:83–107. doi: 10.1076/phbi.39.2.83.6256. DOI

Ren W.Y., Qiao Z.H., Wang H.W., Zhu L., Zhang L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003;23:519–534. doi: 10.1002/med.10033. PubMed DOI

Yao L.H., Jiang Y.M., Shi J., Tomas-Barberan F.A., Datta N., Singanusong R., Chen S.S. Flavonoids in food and their health benefits. Plant Food Hum. Nutr. 2004;59:113–122. doi: 10.1007/s11130-004-0049-7. PubMed DOI

Zand R.S.R., Jenkins D.J.A., Diamandis E.P. Flavonoids and steroid hormone-dependent cancers. J. Chromatogr. B. 2002;777:219–232. doi: 10.1016/S1570-0232(02)00213-1. PubMed DOI

Holden J.M., Bhagwat S.A., Haytowitz D.B., Gebhardt S.E., Dwyer J.T., Peterson J., Beecher G.R., Eldridge A.L., Balentine D. Development of a database of critically evaluated flavonoids data: application of USDA's data quality evaluation system. J. Food Compos. Anal. 2005;18:829–844. doi: 10.1016/j.jfca.2004.07.002. DOI

Suntornsuk L. Capillary electrophoresis of phytochemical substances. J. Pharm. Biomed. Anal. 2002;27:679–698. doi: 10.1016/S0731-7085(01)00531-3. PubMed DOI

Collins A.R. Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am. J. Clin. Nutr. 2005;81:261S–267S. PubMed

Manach C., Williamson G., Morand C., Scalbert A., Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S. PubMed

Zheng W., Wang S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001;49:5165–5170. doi: 10.1021/jf010697n. PubMed DOI

Hamilton R.D., Foss A.J., Leach L. Establishment of a human in vitro model of the outer blood-retinal barrier. J. Anat. 2007;211:707–716. doi: 10.1111/j.1469-7580.2007.00812.x. PubMed DOI PMC

Fuhrman B., Aviram M. Alcohol and Wine in Health and Disease. New York Academy Sciences; New York, USA: 2002. Preservation of paraoxenase activity by wine flavonoids - Possible role in protection of LDL from lipid peroxidation; pp. 321–324. PubMed

Fatouhi L., Ganjavi M., Nematollahi D. Electrochemical study of iodide in the presence of phenol and o-cresol: Application to the catalytic determination of phenol and o-cresol. Sensors. 2004;4:170–180. doi: 10.3390/s41100170. DOI

Zitka O., Huska D., Krizkova S., Adam V., Chavis G.J., Trnkova L., Horna A., Hubalek J., Kizek R. An investigation of glutathione-platinum(II) interactions by means of the flow injection analysis using glassy carbon electrode. Sensors. 2007;7:1256–1270. doi: 10.3390/s7071256. DOI

Pokorna-Jurikova T., Matuskovic J. The study of irrigation influence on nutritional value of Lonicera kamtschatica - cultivar Gerda 25 and Lonicera edulis berries under the Nitra conditions during 2001-2003. Hortic. Sci. 2007;34:11–16.

Kantor G.R., Ratz J.L. Liver Toxicity from Potassium Para-Aminobenzoate. J. Am. Acad. Dermatol. 1985;13:671–672. doi: 10.1016/S0190-9622(85)80453-9. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases

. 2017 Jun 07 ; 22 (6) : . [epub] 20170607

Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity

. 2016 Dec 07 ; 21 (12) : . [epub] 20161207

Quercetin and Its Anti-Allergic Immune Response

. 2016 May 12 ; 21 (5) : . [epub] 20160512

Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis

. 2014 May 21 ; 19 (5) : 6504-23. [epub] 20140521

Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic--a comparative study

. 2012 Jul 27 ; 17 (8) : 8968-81. [epub] 20120727

Mathematical evaluation of the amino acid and polyphenol content and antioxidant activities of fruits from different apricot cultivars

. 2011 Sep 01 ; 16 (9) : 7428-57. [epub] 20110901

Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages

. 2010 Nov 29 ; 15 (12) : 8618-40. [epub] 20101129

Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes

. 2010 Sep 07 ; 15 (9) : 6285-305. [epub] 20100907

Phytohormones as important biologically active molecules--their simple simultaneous detection

. 2009 May 15 ; 14 (5) : 1825-39. [epub] 20090515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...