Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19015622
PubMed Central
PMC6244844
DOI
10.3390/molecules131102823
PII: 131102823
Knihovny.cz E-zdroje
- MeSH
- antioxidancia analýza terapeutické užití MeSH
- Crataegus chemie MeSH
- elektrochemie přístrojové vybavení MeSH
- kyselina 4-aminobenzoová analýza MeSH
- kyselina gallová analýza MeSH
- Lonicera chemie MeSH
- neurodegenerativní nemoci farmakoterapie prevence a kontrola MeSH
- ovoce chemie MeSH
- quercetin analýza MeSH
- Rosaceae chemie MeSH
- rutin analýza MeSH
- vysokoúčinná kapalinová chromatografie přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina 4-aminobenzoová MeSH
- kyselina gallová MeSH
- quercetin MeSH
- rutin MeSH
Neurodegenerative disorders (NDD) have become the common global health burden over the last several decades. According to World Health Organization (WHO), a staggering 30 million people will be affected by Alzheimer's disease in Europe and the USA by 2050. Effective therapies in this complex field considering the multitude of symptoms associated with NDD indications, have not been found yet. Based on the results of NDD related studies, prevention appears to be the promise alternative. Antioxidative and anti-inflammatory properties are hypothesized for natural phenolics, a group of plant secondary products that may positively impact neurodegenerative diseases. In these studies, phenolic-rich extracts from less common fruit species: Blue honeysuckle (Lonicera edulis, Turcz. ex. Freyn), Saskatoon berry (Amelanchier alnifolia Nutt.), and Chinese hawthorn (Crateagus pinnatifida Bunge) were obtained and analyzed to detect neuroprotective substances content and establish a potential therapeutic value. High performance liquid chromatography with electrochemical detection was optimized and further applied on analysis of the extracts of less common fruit species. It was observed that Chinese hawthorn and Blue honeysuckle extracts are potent source of neuroprotective phenolic antioxidants. In accordance the results, it appears that the fruit or formulated products may have the potential for the prevention of neurodegenerative diseases.
Zobrazit více v PubMed
WHO . The World Health Report 2002. World Health Organization; Geneva, Switzerland: 2002.
Halliwell B. Reactive Oxygen Species and the Central-Nervous-System. J. Neurochem. 1992;59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. PubMed DOI
Dawson V.L., Dawson T.M. Nitric oxide neurotoxicity. J. Chem. Neuroanat. 1996;10:179–190. doi: 10.1016/0891-0618(96)00148-2. PubMed DOI
Aisen P.S., Davis K.L. The search for disease-modifying treatment for Alzheimer's disease. Neurology. 1997;48:S35–S41. doi: 10.1212/WNL.48.5_Suppl_6.35S. PubMed DOI
Gerlach M., Benshachar D., Riederer P., Youdim M.B.H. Altered Brain Metabolism of Iron as a Cause of Neurodegenerative Diseases. J. Neurochem. 1994;63:793–807. PubMed
Ashok B.T., Ali R. The aging paradox: free radical theory of aging. Exp. Gerontol. 1999;34:293–303. doi: 10.1016/S0531-5565(99)00005-4. PubMed DOI
Hecht S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 1999;91:1194–1210. doi: 10.1093/jnci/91.14.1194. PubMed DOI
Rosenfeld M.E. Inflammation, lipids, and free radicals: Lessons learned from the atherogenic process. Sem. Reprod. Endocrin. 1998;16:249–261. doi: 10.1055/s-2007-1016285. PubMed DOI
Hayes J.D., McLellan L.I. Glutathione and glutathione-dependent enzymes represent a Co-ordinately regulated defence against oxidative stress. Free Radic. Res. 1999;31:273–300. doi: 10.1080/10715769900300851. PubMed DOI
Clausen J. Demential Syndromes and the Lipid-Metabolism. Acta Neurol. Scand. 1984;70:345–355. doi: 10.1111/j.1600-0404.1984.tb00835.x. PubMed DOI
Harman D. Aging - Prospects for Further Increases in the Functional Life-Span. Age. 1994;17:119–146. doi: 10.1007/BF02435819. DOI
Hensley K., Butterfield D.A., Hall N., Cole P., Subramaniam R., Mark R., Mattson M.P., Markesbery W.R., Harris M.E., Aksenov M., Aksenova M., Wu J.F., Carney J.M. Pharmacological Intervention in Aging and Age-Associated Disorders. New York Academy of Sciences; New York, USA: 1996. Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer's disease-associated amyloid beta peptide; pp. 120–134. PubMed
Markesbery W.R., Carney J.M. Oxidative alterations in Alzheimer's disease. Brain Pathol. 1999;9:133–146. doi: 10.1111/j.1750-3639.1999.tb00215.x. PubMed DOI PMC
Smith M.A., Perry G. Free radical damage, iron, and Alzheimer's disease. J. Neurol. Sci. 1995;134:92–94. doi: 10.1016/0022-510X(95)00213-L. PubMed DOI
Wang C.N., Chi C.W., Lin Y.L., Chen C.F., Shiao Y.J. The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J. Biol. Chem. 2001;276:5287–5295. PubMed
Ebadi M., Srinivasan S.K., Baxi M.D. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog. Neurobiol. 1996;48:1–19. doi: 10.1016/0301-0082(95)00029-1. PubMed DOI
Olanow C.W., Arendash G.W. Metals and Free-Radicals in Neurodegeneration. Curr. Opin. Neurol. 1994;7:548–558. doi: 10.1097/00019052-199412000-00013. PubMed DOI
Cacabelos R. Influence of pharmacogenetic factors on Alzheimer's disease therapeutics. Neurodegener. Dis. 2008;5:176–178. doi: 10.1159/000113695. PubMed DOI
Muthuswamy A., Tangpong J., Keller J.N., Markesbery W.R., Kiningham K.K., Murphy M.P., Flood D.G., St Clair D.K. Beta-amyloid mediated nitration of MnSOD: Implication for oxidative stress in a APP NLh/NLh X PS-1P264L/PS-1P264L double knock-in mouse model of Alzheimer's disease. Free Radic. Biol. Med. 2005;39:S62–S62.
Oliver C.N., Starkereed P.E., Stadtman E.R., Liu G.J., Carney J.M., Floyd R.A. Oxidative Damage to Brain Proteins, Loss of Glutamine-Synthetase Activity, and Production of Free-Radicals During Ischemia Reperfusion-Induced Injury to Gerbil Brain. Proc. Natl. Acad. Sci. U. S. A. 1990;87:5144–5147. doi: 10.1073/pnas.87.13.5144. PubMed DOI PMC
Sakamoto A., Ohnishi S.T., Ohnishi T., Ogawa R. Protective Effect of a New Antioxidant on the Rat-Brain Exposed to Ischemia-Reperfusion Injury - Inhibition of Free-Radical Formation and Lipid-Peroxidation. Free Radic. Biol. Med. 1991;11:385–391. doi: 10.1016/0891-5849(91)90155-V. PubMed DOI
Emilien G., Maloteaux J.M., Beyreuther K., Masters C.L. Alzheimer disease - Mouse models pave the way for therapeutic opportunities. Arch. Neurol. 2000;57:176–181. doi: 10.1001/archneur.57.2.176. PubMed DOI
Selkoe D.J. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature. 1999;399:A23–A31. doi: 10.1038/399a023. PubMed DOI
Noguchi N., Watanabe A., Shi H.L. Diverse functions of antioxidants. Free Radic. Res. 2000;33:809–817. doi: 10.1080/10715760000301331. PubMed DOI
Kerry N.L., Abbey M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis. 1997;135:93–102. doi: 10.1016/S0021-9150(97)00156-1. PubMed DOI
Wagner C., Fachinetto R., Corte C.L.D., Brito V.B., Severo D., Dias G., Morel A.F., Nogueira C.W., Rocha J.B.T. Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res. 2006;1107:192–198. doi: 10.1016/j.brainres.2006.05.084. PubMed DOI
Copp R.P., Wisniewski T., Hentati F., Larnaout A., Ben Hamida M., Kayden H.J. Localization of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Res. 1999;822:80–87. doi: 10.1016/S0006-8993(99)01090-2. PubMed DOI
Tagami M., Yamagata K., Ikeda K., Nara Y., Fujino H., Kubota A., Numano F., Yamori Y. Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion. Lab. Invest. 1998;78:1415–1429. PubMed
Yu Z.F., Bruce-Keller A.J., Goodman Y., Mattson M.P. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J. Neurosci. Res. 1998;53:613–625. doi: 10.1002/(SICI)1097-4547(19980901)53:5<613::AID-JNR11>3.0.CO;2-1. PubMed DOI
Finch C.E., Cohen D.M. Aging, metabolism, and Alzheimer disease: Review and hypotheses. Exp. Neurol. 1997;143:82–102. doi: 10.1006/exnr.1996.6339. PubMed DOI
Jama J.W., Launer L.J., Witteman J.C.M., denBreeijen J.H., Breteler M.M.B., Grobbee D.E., Hofman A. Dietary antioxidants and cognitive function in a population-based sample of older persons - The Rotterdam study. Am. J. Epidemiol. 1996;144:275–280. doi: 10.1093/oxfordjournals.aje.a008922. PubMed DOI
RiceEvans C.A., Miller N.J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. PubMed DOI
Rosch D., Bergmann M., Knorr D., Kroh L.W. Structure-antioxidant efficiency relationships of phenolic compounds and their contribution to the antioxidant activity of sea buckthorn juice. J. Agric. Food Chem. 2003;51:4233–4239. doi: 10.1021/jf0300339. PubMed DOI
Sapers G.M., Jones S.B., Maher G.T. Factors Affecting the Recovery of Juice and Anthocyanin from Cranberries. J. Am. Soc. Hortic. Sci. 1983;108:246–249.
Zatylny A.M., Ziehl W.D., St-Pierre R.G. Physicochemical properties of fruit of chokecherry (Prunus virginiana L.), highbush cranberry (Viburnum trilobum Marsh.), and black currant (Ribes nigrum L.) cultivars grown in Saskatchewan. Can. J. Plant Sci. 2005;85:425–429. doi: 10.4141/P04-060. DOI
Zatylny A.M., Ziehl W.D., St-Pierre R.G. Physicochemical properties of fruit of 16 saskatoon (Amelanchier alnifolia Nutt.) cultivars. Can. J. Plant Sci. 2005;85:933–938. doi: 10.4141/P04-065. DOI
Valentova K., Sersen F., Ulrichova J. Radical scavenging and anti-lipoperoxidative activities of Smallanthus sonchifolius leaf extracts. J. Agric. Food Chem. 2005;53:5577–5582. doi: 10.1021/jf050403o. PubMed DOI
Psotova J., Kolar M., Sousek J., Svagera Z., Vicar J., Ulrichova J. Biological activities of Prunella vulgaris extract. Phytother. Res. 2003;17:1082–1087. doi: 10.1002/ptr.1324. PubMed DOI
George S., Brat P., Alter P., Amiot M.J. Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agric. Food Chem. 2005;53:1370–1373. doi: 10.1021/jf048396b. PubMed DOI
Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors. 2007;7:2402–2418. doi: 10.3390/s7102402. PubMed DOI PMC
Klejdus B., Vacek J., Adam V., Zehnalek J., Kizek R., Trnkova L., Kuban V. Determination of isoflavones in soybean food and human urine using liquid chromatography with electrochemical detection. J. Chromatogr. B. 2004;806:101–111. doi: 10.1016/j.jchromb.2004.03.044. PubMed DOI
Mikelova R., Hodek P., Hanustiak P., Adam V., Krizkova S., Havel L., Stiborova M., Horna A., Beklova M., Trnkova L., Kizek R. Determination of isoflavones using liquid chromatography with electrochemical detection. Acta Chim. Slov. 2007;54:92–97.
Klejdus B., Mikelova R., Petrlova J., Potesil D., Adam V., Stiborova M., Hodek P., Vacek J., Kizek R., Kuban V. Determination of isoflavones in soy bits by fast column high-performance liquid chromatography coupled with UV-visible diode-array detection. J. Chromatogr. A. 2005;1084:71–79. PubMed
Klejdus B., Mikelova R., Petrlova J., Potesil D., Adam V., Stiborova M., Hodek P., Vacek J., Kizek R., Kuban V. Evaluation of isoflavone aglycon and glycoside distribution in soy plants and soybeans by fast column high-performance liquid chromatography coupled with a diode-array detector. J. Agric. Food Chem. 2005;53:5848–5852. doi: 10.1021/jf0502754. PubMed DOI
Klejdus B., Mikelova R., Adam V., Zehnalek J., Vacek J., Kizek R., Kuban V. Liquid chromatographic-mass spectrometric determination of genistin and daidzin in soybean food samples after accelerated solvent extraction with modified content of extraction cell. Anal. Chim. Acta. 2004;517:1–11.
Vacek J., Klejdus B., Lojkova L., Kuban V. Current trends in isolation, separation, determination and identification of isoflavones: A review. J. Sep. Sci. 2008;31:2054–2067. doi: 10.1002/jssc.200700569. PubMed DOI
Klejdus B., Vacek J., Lojkova L., Benesova L., Kuban V. Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases. J. Chromatogr. A. 2008;1195:52–59. PubMed
Mimica-Dukic N., Simin N., Cvejic J., Jovin E., Orcic D., Bozin B. Phenolic compounds in field horsetail (Equisetum arvense L.) as natural antioxidants. Molecules. 2008;13:1455–1464. doi: 10.3390/molecules13071455. PubMed DOI PMC
De Marino S., Gala F., Zollo F., Vitalini S., Fico G., Visioli F., Iorizzi M. Identification of minor secondary metabolites from the latex of Croton lechleri (Muell-Arg) and evaluation of their antioxidant activity. Molecules. 2008;13:1219–1229. doi: 10.3390/molecules13061219. PubMed DOI PMC
Lamien-Meda A., Lamien C.E., Compaore M.M.Y., Meda R.N.T., Kiendrebeogo M., Zeba B., Millogo J.F., Nacoulma O.G. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules. 2008;13:581–594. doi: 10.3390/molecules13030581. PubMed DOI PMC
Simic A., Manojlovic D., Segan D., Todorovic M. Electrochemical Behavior and antioxidant and prooxidant activity of natural phenolics. Molecules. 2007;12:2327–2340. doi: 10.3390/12102327. PubMed DOI PMC
Bendini A., Cerretani L., Carrasco-Pancorbo A., Gomez-Caravaca A.M., Segura-Carretero A., Fernandez-Gutierrez A., Lercker G. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical method. An overview of the last decade. Molecules. 2007;12:1679–1719. doi: 10.3390/12081679. PubMed DOI PMC
Koblovska R., Mackova Z., Vitkova M., Kokoska L., Klejdus B., Lapcik O. Isoflavones in the Rutaceae family: Twenty selected representatives of the genera Citrus, Fortunella, Poncirus, Ruta and Severinia. Phytochem. Anal. 2008;19:64–70. doi: 10.1002/pca.1016. PubMed DOI
Hakkinen S., Auriola S. High-performance liquid chromatography with electrospray ionization mass spectrometry and diode array ultraviolet detection in the identification of flavonol aglycones and glycosides in berries. J. Chromatogr. A. 1998;829:91–100. doi: 10.1016/S0021-9673(98)00756-0. PubMed DOI
Hong V., Wrolstad R.E. Use of Hplc Separation Photodiode Array Detection for Characterization of Anthocyanins. J. Agric. Food Chem. 1990;38:708–715. doi: 10.1021/jf00093a026. DOI
Stefova M., Kulevanova S., Stafilov T. Assay of flavonols and quantification of quercetin in medicinal plants by HPLC with UV-diode array detection. J. Liq. Chromatogr. Relat. Technol. 2001;24:2283–2292. doi: 10.1081/JLC-100105140. DOI
Gitz D.C., Liu-Gitz L., McClure J.W., Huerta A.J. Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch.) J. Exp. Bot. 2004;55:919–927. doi: 10.1093/jxb/erh092. PubMed DOI
Janeiro P., Corduneanu O., Brett A.M.O. Chrysin and (+/-)-taxifolin electrochemical oxidation mechanisms. Electroanalysis. 2005;17:1059–1064. doi: 10.1002/elan.200403216. DOI
Klejdus B., Sterbova D., Stratil P., Kuban V. Identification and characterization of isoflavones in plant material by HPLC-DAD-MS tandem. Chem. Listy. 2003;97:530–539.
Oliveira-Brett A.M., Diculescu V.C. Electrochemical study of quercetin-DNA interactions: Part I. Analysis in incubated solutions. Bioelectrochemistry. 2004;64:133–141. doi: 10.1016/j.bioelechem.2004.05.003. PubMed DOI
Oliveira-Brett A.M., Diculescu V.C. Electrochemical study of quercetin-DNA interactions - Part II. In situ sensing with DNA biosensors. Bioelectrochemistry. 2004;64:143–150. doi: 10.1016/j.bioelechem.2004.05.002. PubMed DOI
Isuzugawa K., Inoue M., Ogihara Y. Catalase contents in cells determine sensitivity to the apoptosis inducer gallic acid. Biol. Pharmacol. Bull. 2001;24:1022–1026. doi: 10.1248/bpb.24.1022. PubMed DOI
Lecanu L., Greeson J., Papadopoulos V. Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology. 2006;76:19–33. doi: 10.1159/000088929. PubMed DOI
Zhao B., Lu Z., Nie G., Tang H., Belton P. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Free Radic. Res. 2006;40:S134–S134. PubMed
Nash J.F. Human safety and efficacy of ultraviolet filters and sunscreen products. Dermatol. Clin. 2006;24:35–51. doi: 10.1016/j.det.2005.09.006. PubMed DOI
Sayre R.M., Dowdy J.C., Gerwig A.J., Shields W.J., Lloyd R.V. Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone. Photochem. Photobiol. 2005;81:452–456. doi: 10.1562/2004-02-12-RA-083.1. PubMed DOI
Kluczyk A., Popek T., Kiyota T., de Macedo P., Stefanowicz P., Lazar C., Konishi Y. Drug evolution: p-aminobenzoic acid as a building block. Curr. Med. Chem. 2002;9:1871–1892. doi: 10.2174/0929867023368872. PubMed DOI
Hu M.L., Chen Y.K., Chen L.C., Sano M. Para-Aminobenzoic Acid Scavenges Reactive Oxygen Species and Protects DNA against Uv and Free-Radical Damage. J. Nutr. Biochem. 1995;6:504–508. doi: 10.1016/0955-2863(95)00082-B. DOI
Beecher G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003;133:3248S–3254S. PubMed
Patterson C., Madamanchi N.R., Runge M.S. The oxidative paradox - Another piece in the puzzle. Circ. Res. 2000;87:1074–1076. doi: 10.1161/01.RES.87.12.1074. PubMed DOI
Grace P.A. Ischemia - Reperfusion Injury. Br. J. Surg. 1994;81:637–647. doi: 10.1002/bjs.1800810504. PubMed DOI
Halliwell B. Free Radicals and Oxidative Stress: Environment, Drugs and Food Additives. Portland Press Ltd; London, UK: 1995. How to characterize an antioxidant: An update; pp. 73–101.
Singh A., Naidu P.S., Kulkarni S.K. Quercetin potentiates L-dopa reversal of drug-induced catalepsy in rats: Possible COMT/MAO inhibition. Pharmacology. 2003;68:81–88. doi: 10.1159/000069533. PubMed DOI
Primiano T., Yu R., Kong A.N.T. Signal transduction events elicited by natural products that function as cancer chemopreventive agents. Pharm. Biol. 2001;39:83–107. doi: 10.1076/phbi.39.2.83.6256. DOI
Ren W.Y., Qiao Z.H., Wang H.W., Zhu L., Zhang L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003;23:519–534. doi: 10.1002/med.10033. PubMed DOI
Yao L.H., Jiang Y.M., Shi J., Tomas-Barberan F.A., Datta N., Singanusong R., Chen S.S. Flavonoids in food and their health benefits. Plant Food Hum. Nutr. 2004;59:113–122. doi: 10.1007/s11130-004-0049-7. PubMed DOI
Zand R.S.R., Jenkins D.J.A., Diamandis E.P. Flavonoids and steroid hormone-dependent cancers. J. Chromatogr. B. 2002;777:219–232. doi: 10.1016/S1570-0232(02)00213-1. PubMed DOI
Holden J.M., Bhagwat S.A., Haytowitz D.B., Gebhardt S.E., Dwyer J.T., Peterson J., Beecher G.R., Eldridge A.L., Balentine D. Development of a database of critically evaluated flavonoids data: application of USDA's data quality evaluation system. J. Food Compos. Anal. 2005;18:829–844. doi: 10.1016/j.jfca.2004.07.002. DOI
Suntornsuk L. Capillary electrophoresis of phytochemical substances. J. Pharm. Biomed. Anal. 2002;27:679–698. doi: 10.1016/S0731-7085(01)00531-3. PubMed DOI
Collins A.R. Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. Am. J. Clin. Nutr. 2005;81:261S–267S. PubMed
Manach C., Williamson G., Morand C., Scalbert A., Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S. PubMed
Zheng W., Wang S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001;49:5165–5170. doi: 10.1021/jf010697n. PubMed DOI
Hamilton R.D., Foss A.J., Leach L. Establishment of a human in vitro model of the outer blood-retinal barrier. J. Anat. 2007;211:707–716. doi: 10.1111/j.1469-7580.2007.00812.x. PubMed DOI PMC
Fuhrman B., Aviram M. Alcohol and Wine in Health and Disease. New York Academy Sciences; New York, USA: 2002. Preservation of paraoxenase activity by wine flavonoids - Possible role in protection of LDL from lipid peroxidation; pp. 321–324. PubMed
Fatouhi L., Ganjavi M., Nematollahi D. Electrochemical study of iodide in the presence of phenol and o-cresol: Application to the catalytic determination of phenol and o-cresol. Sensors. 2004;4:170–180. doi: 10.3390/s41100170. DOI
Zitka O., Huska D., Krizkova S., Adam V., Chavis G.J., Trnkova L., Horna A., Hubalek J., Kizek R. An investigation of glutathione-platinum(II) interactions by means of the flow injection analysis using glassy carbon electrode. Sensors. 2007;7:1256–1270. doi: 10.3390/s7071256. DOI
Pokorna-Jurikova T., Matuskovic J. The study of irrigation influence on nutritional value of Lonicera kamtschatica - cultivar Gerda 25 and Lonicera edulis berries under the Nitra conditions during 2001-2003. Hortic. Sci. 2007;34:11–16.
Kantor G.R., Ratz J.L. Liver Toxicity from Potassium Para-Aminobenzoate. J. Am. Acad. Dermatol. 1985;13:671–672. doi: 10.1016/S0190-9622(85)80453-9. PubMed DOI
Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases
Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity
Quercetin and Its Anti-Allergic Immune Response
Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes
Phytohormones as important biologically active molecules--their simple simultaneous detection