Quercetin and Its Anti-Allergic Immune Response
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
27187333
PubMed Central
PMC6273625
DOI
10.3390/molecules21050623
PII: molecules21050623
Knihovny.cz E-zdroje
- Klíčová slova
- anti-allergic effect, anti-inflammatory properties, flavonoids, immune response, quercetin,
- MeSH
- antioxidancia metabolismus terapeutické užití MeSH
- Brassica chemie MeSH
- česneky chemie MeSH
- flavonoly imunologie metabolismus terapeutické užití MeSH
- histamin imunologie metabolismus MeSH
- imunoglobulin E biosyntéza MeSH
- interleukin-4 biosyntéza imunologie MeSH
- lidé MeSH
- přirozená imunita účinky léků MeSH
- quercetin imunologie metabolismus terapeutické užití MeSH
- rovnováha Th1-Th2 účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- flavonoly MeSH
- histamin MeSH
- IL4 protein, human MeSH Prohlížeč
- imunoglobulin E MeSH
- interleukin-4 MeSH
- quercetin MeSH
Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate) and suppresses IL-6 and cytosolic calcium level increase.
Zobrazit více v PubMed
Kawai M., Hirano T., Higa S., Arimitsu J., Maruta M., Kuwahara Y., Ohkawara T., Hagihara K., Yamadori T., Shima Y., et al. Flavonoids and related compounds as anti-allergic substances. Allergol. Int. 2007;56:113–123. doi: 10.2332/allergolint.R-06-135. PubMed DOI
Ozdemir C., Akdis M., Akdis C. T regulatory cells and their counterparts: Masters of immune regulation. Clin. Exp. Allergy. 2009;39:626–639. doi: 10.1111/j.1365-2222.2009.03242.x. PubMed DOI
Singh A., Holvoet S., Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clin. Exp. Allergy. 2011;41:1346–1359. doi: 10.1111/j.1365-2222.2011.03773.x. PubMed DOI
Lakhanpal P., Rai D.K. Quercetin: A versatile flavonoid. Internet J. Med. Update. 2007;2:22–37. doi: 10.4314/ijmu.v2i2.39851. DOI
Magrone T., Jirillo E. Influence of polyphenols on allergic immune reactions: Mechanisms of action. Proc. Nutr. Soc. 2012;71:316–321. doi: 10.1017/S0029665112000109. PubMed DOI
Joskova M., Franova S., Sadlonova V. Acute bronchodilator effect of quercetin in experimental allergic asthma. Bratisl. Med. J. 2011;112:9–12. PubMed
Matsushima M., Takagi K., Ogawa M., Hirose E., Ota Y., Abe F., Baba K., Hasegawa T., Hasegawa Y., Kawabe T. Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells. Inflamm. Res. 2009;58:705–715. doi: 10.1007/s00011-009-0039-1. PubMed DOI
Juríková T., Mlček J., Sochor J., Hegedűsová A. Polyphenols and their mechanism of action in allergic immune response. Glob. J. Allergy. 2015;1:037–039.
Gabor M. Anti-inflammatory and anti-allergic properties of flavonoids. Prog. Clin. Biol. Res. 1986;213:471–480. PubMed
Boesch-Saadatmandi C., Wagner A.E., Wolffram S., Rimbach G. Effect of quercetin on inflammatory gene expression in mice liver in vivo—Role of redox factor 1, miRNA-122 and miRNA-125b. Pharm. Res. 2012;65:523–530. doi: 10.1016/j.phrs.2012.02.007. PubMed DOI
Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Amer. J. Clin. Nutr. 2004;79:727–747. PubMed
Bouktaib M., Atmani A., Rolando C. Regio-and stereoselective synthesis of the major metabolite of quercetin, quercetin-3-O-β-d-glucuronide. Tetrahedron Lett. 2002;43:6263–6266. doi: 10.1016/S0040-4039(02)01264-9. DOI
Ko E.Y., Nile S.H., Sharma K., Li G.H., Park S.W. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.) Saudi J. Biol. Sci. 2015;22:398–403. doi: 10.1016/j.sjbs.2014.11.012. PubMed DOI PMC
Koh E., Wimalasiri K., Chassy A., Mitchell A. Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Comp. Anal. 2009;22:637–643. doi: 10.1016/j.jfca.2009.01.019. DOI
Sun T., Xu Z., Wu C.T., Janes M., Prinyawiwatkul W., No H. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.) J. Food Sci. 2007;72:S98–S102. doi: 10.1111/j.1750-3841.2006.00245.x. PubMed DOI
Francesca N., Barbera M., Martorana A., Saiano F., Gaglio R., Aponte M., Moschetti G., Settanni L. Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation. Food Chem. 2016;196:1172–1179. doi: 10.1016/j.foodchem.2015.10.045. PubMed DOI
Zielinski A.A.F., Alberti A., Braga C.M., da Silva K.M., Canteri M.H.G., Mafra L.I., Granato D., Nogueira A., Wosiacki G. Effect of mash maceration and ripening stage of apples on phenolic compounds and antioxidant power of cloudy juices: A study using chemometrics. LWT-Food Sci. Technol. 2014;57:223–229. doi: 10.1016/j.lwt.2014.01.029. DOI
Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015;16:24673–24706. doi: 10.3390/ijms161024673. PubMed DOI PMC
Flamini R., Mattivi F., de Rosso M., Arapitsas P., Bavaresco L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013;14:19651–19669. doi: 10.3390/ijms141019651. PubMed DOI PMC
Tsanova-Savova S., Ribarova F. Flavonols and flavones in some bulgarian plant foods. Pol. J. Food Nutr. Sci. 2013;63:173–177. doi: 10.2478/v10222-012-0081-5. DOI
Jeszka-Skowron M., Krawczyk M., Zgoła-Grześkowiak A. Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: Influence of citric acid addition on extraction of metals. J. Food Comp. Anal. 2015;40:70–77. doi: 10.1016/j.jfca.2014.12.015. DOI
Martelo-Vidal M.J., Vazquez M. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools. Food Chem. 2014;158:28–34. doi: 10.1016/j.foodchem.2014.02.080. PubMed DOI
Yoo Y.J., Saliba A.J., MacDonald J.B., Prenzler P.D., Ryan D. A Cross-cultural Study of Wine Consumers with Respect to Health Benefits of Wine. Food Qual. Pref. 2013;28:531–538. doi: 10.1016/j.foodqual.2013.01.001. DOI
Yoo Y., Saliba A.J., Prenzler P.D., Ryan D. Total Phenolic Content, Antioxidant Activity, and Cross-Cultural Consumer Rejection Threshold in White and Red Wines Functionally Enhanced with Catechin-Rich Extracts. J. Agric. Food Chem. 2012;60:388–393. doi: 10.1021/jf203216z. PubMed DOI
Nishimuro H., Ohnishi H., Sato M., Ohnishi-Kameyama M., Matsunaga I., Naito S., Ippoushi K., Oike H., Nagata T., Akasaka H., et al. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients. 2015;7:2345–2358. doi: 10.3390/nu7042345. PubMed DOI PMC
D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoter. 2015;106:256–271. doi: 10.1016/j.fitote.2015.09.018. PubMed DOI
Chirumbolo S. Quercetin as a potential anti-allergic drug: Which perspectives? Iran. J. Allergy Asthma Immunol. 2011;10:139–140. PubMed
Vasantha Rupasinghe H., Kathirvel P., Huber G.M. Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘Idared’ apple peels. Molecules. 2011;16:9783–9791. doi: 10.3390/molecules16129783. PubMed DOI PMC
Sato A., Zhang T., Yonekura L., Tamura H. Antiallergic activities of eleven onions (Allium cepa) were attributed to quercetin 4′-glucoside using quechers method and Pearson’s correlation coefficient. J. Funct. Foods. 2015;14:581–589. doi: 10.1016/j.jff.2015.02.029. DOI
Slimestad R., Fossen T., Vågen I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007;55:10067–10080. doi: 10.1021/jf0712503. PubMed DOI
Beslic Z., Todic S., Tesevic V., Jadranin M., Novakovic M., Tesic D. Pruning effect on content of quercetin and catechin in berry skins of cv. Blaufränkisch (Vitis vinifera L.) Turk. J. Agric. Forestry. 2010;34:461–466.
Kelly G.S. Quercetin. Altern. Med. Rev. 2011;16:172–194. PubMed
Hertog M.G., Hollman P.C., Katan M.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J. Agric. Food Chem. 1992;40:2379–2383. doi: 10.1021/jf00024a011. DOI
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004;24:851–874. doi: 10.1016/j.nutres.2004.07.005. DOI
Rimm E.B., Katan M.B., Ascherio A., Stampfer M.J., Willett W.C. Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Annals Internal Med. 1996;125:384–389. doi: 10.7326/0003-4819-125-5-199609010-00005. PubMed DOI
Häkkinen S.H., Kärenlampi S.O., Heinonen I.M., Mykkänen H.M., Törrönen A.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J. Agric. Food Chem. 1999;47:2274–2279. doi: 10.1021/jf9811065. PubMed DOI
Arai Y., Watanabe S., Kimira M., Shimoi K., Mochizuki R., Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J. Nnutr. 2000;130:2243–2250. PubMed
Boyer J., Liu R. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:5. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC
Siddiq M., Roidoung S., Sogi D., Dolan K. Total phenolics, antioxidant properties and quality of fresh-cut onions (Allium cepa L.) treated with mild-heat. Food Chem. 2013;136:803–806. doi: 10.1016/j.foodchem.2012.09.023. PubMed DOI
Mlcek J., Valsikova M., Druzbikova H., Ryant P., Juríková T., Sochor J., Borkovcová M. The antioxidant capacity and macroelement content of several onion cultivars. Turk. J. Agric. For. 2015;39:999–1004. doi: 10.3906/tar-1501-71. DOI
Gazdik Z., Reznicek V., Adam V., Zitka O., Jurikova T., Krska B., Matuskovic J., Plsek J., Saloun J., Horna A., et al. Use of liquid chromatography with electrochemical detection for the determination of antioxidants in less common fruits. Molecules. 2008;13:2823–2836. doi: 10.3390/molecules131102823. PubMed DOI PMC
Bilyk A., Cooper P.L., Sapers G.M. Varietal differences in distribution of quercetin and kaempferol in onion (Allium cepa L.) tissue. J. Agric. Food Chem. 1984;32:274–276. doi: 10.1021/jf00122a024. DOI
Patil B., Pike L. Distribution of quercetin content in different rings of various coloured onion (Allium cepa L.) cultivars. J. Horticult. Sci. 1995;70:643–650. doi: 10.1080/14620316.1995.11515338. DOI
Hirota S., Shimoda T., Takahama U. Tissue and spatial distribution of flavonol and peroxidase in onion bulbs and stability of flavonol glucosides during boiling of the scales. J. Agric. Food Chem. 1998;46:3497–3502. doi: 10.1021/jf980294w. DOI
Patil B.S., Pike L.M., Yoo K.S. Variation in the quercetin content in different colored onions (Allium cepa L.) J. Amer. Soc. Horticult. Sci. 1995;120:909–913.
Downey M.O., Harvey J.S., Robinson S.P. Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.) Aust. J. Grape Wine Res. 2003;9:110–121. doi: 10.1111/j.1755-0238.2003.tb00261.x. DOI
Santas J., Carbo R., Gordon M., Almajano M. Comparison of the antioxidant activity of two Spanish onion varieties. Food Chem. 2008;107:1210–1216. doi: 10.1016/j.foodchem.2007.09.056. DOI
Nemeth K., Piskula M. Food content, processing, absorption and metabolism of onion flavonoids. Crit. Rev. Food Sci. Nutr. 2007;47:397–409. doi: 10.1080/10408390600846291. PubMed DOI
Smith C., Lombard K.A., Peffley E.B., Liu W. Genetic analysis of quercetin in onion (Allium cepa L.) ‘lady raider’. Texas J. Agric. Nat. Res. 2003;16:24–28.
Walle T., Otake Y., Walle U.K., Wilson F.A. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J. Nutr. 2000;130:2658–2661. PubMed
Wiczkowski W., Romaszko J., Bucinski A., Szawara-Nowak D., Honke J., Zielinski H., Piskula M.K. Quercetin from shallots (Allium cepa L. var. Aggregatum) is more bioavailable than its glucosides. J. Nutr. 2008;138:885–888. PubMed
Lee K.W., Kim Y.J., Kim D.-O., Lee H.J., Lee C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003;51:6516–6520. doi: 10.1021/jf034475w. PubMed DOI
Escarpa A., Gonzalez M. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chrom. A. 1998;823:331–337. doi: 10.1016/S0021-9673(98)00294-5. PubMed DOI
Eberhardt M.V., Lee C.Y., Liu R.H. Nutrition: Antioxidant activity of fresh apples. Nature. 2000;405:903–904. PubMed
Cardeñosa V., Girones-Vilaplana A., Muriel J.L., Moreno D.A., Moreno-Rojas J.M. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.) Food Chem. 2016;202:276–283. doi: 10.1016/j.foodchem.2016.01.118. PubMed DOI
Jurikova T., Sochor J., Rop O., Mlcek J., Balla S., Szekeres L., Adam V., Kizek R. Polyphenolic profile and biological activity of chinese hawthorn (Crataegus pinnatifida bunge) fruits. Molecules. 2012;17:14490–14509. doi: 10.3390/molecules171214490. PubMed DOI PMC
Juríková T., Balla S., Sochor J., Pohanka M., Mlcek J., Baron M. Flavonoid profile of saskatoon berries (Amelanchier alnifolia Nutt.) and their health promoting effects. Molecules. 2013;18:12571–12586. doi: 10.3390/molecules181012571. PubMed DOI PMC
Jurikova T., Sochor J., Rop O., Mlček J., Balla Š., Szekeres L., Žitný R., Zitka O., Adam V., Kizek R. Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic—A comparative study. Molecules. 2012;17:8968–8981. doi: 10.3390/molecules17088968. PubMed DOI PMC
Määttä-Riihinen K.R., Kamal-Eldin A., Mattila P.H., González-Paramás A.M., Törrönen A.R. Distribution and contents of phenolic compounds in eighteen scandinavian berry species. J. Agric. Food Chem. 2004;52:4477–4486. doi: 10.1021/jf049595y. PubMed DOI
Sochor J., Jurikova T., Ercisli S., Mlcek J., Baron M., Balla S., Yilmaz S.O., Necas T. Characterization of cornelian cherry (Cornus mas L.) genotypes-genetic resources for food production in Czech Republic. Genetika. 2014;46:915–924. doi: 10.2298/GENSR1403915S. DOI
Monobe M., Nomura S., Ema K., Matsunaga A., Nesumi A., Yoshida K., Maeda-Yamamoto M., Horie H. Quercetin Glycosides-rich Tea Cultivars (Camellia sinensis L.) in Japan. Food Sci. Tech. Res. 2015;21:333–340. doi: 10.3136/fstr.21.333. DOI
Jiang H., Engelhardt U.H., Thräne C., Maiwald B., Stark J. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC. Food Chem. 2015;183:30–35. doi: 10.1016/j.foodchem.2015.03.024. PubMed DOI
Zhao Y., Chen P., Lin L., Harnly J., Yu L.L., Li Z. Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 2011;126:1269–1277. doi: 10.1016/j.foodchem.2010.11.055. PubMed DOI PMC
Mattivi F., Guzzon R., Vrhovsek U., Stefanini M., Velasco R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem. 2006;54:7692–7702. doi: 10.1021/jf061538c. PubMed DOI
Castillo-Muñoz N., Gómez-Alonso S., García-Romero E., Hermosín-Gutiérrez I. Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal. 2010;23:699–705. doi: 10.1016/j.jfca.2010.03.017. PubMed DOI
Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramley P.M., Pridham J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Rad. Res. 1995;22:375–383. doi: 10.3109/10715769509145649. PubMed DOI
De Groot H. Reactive oxygen species in tissue injury. Hepato-gastroenterol. 1994;41:328–332. PubMed
Cook N., Samman S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996;7:66–76. doi: 10.1016/0955-2863(95)00168-9. DOI
Bahorun T., Soobrattee M., Luximon-Ramma V., Aruoma O. Free radicals and antioxidants in cardiovascular health and disease. Internet J. Med. Update. 2006;1:25–41. doi: 10.4314/ijmu.v1i2.39839. DOI
Jantan I., Ahmad W., Bukhari S.N.A. Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 2015;6 doi: 10.3389/fpls.2015.00655. PubMed DOI PMC
Marzocchella L., Fantini M., Benvenuto M., Masuelli L., Tresoldi I., Modesti A., Bei R. Dietary flavonoids: Molecular mechanisms of action as anti-inflammatory agents. Rec. Patents Inflamm. Allergy Drug Disc. 2011;5:200–220. doi: 10.2174/187221311797264937. PubMed DOI
Kimata M., Shichijo M., Miura T., Serizawa I., Inagaki N., Nagai H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy. 2000;30:501–508. doi: 10.1046/j.1365-2222.2000.00768.x. PubMed DOI
Kumazawa Y., Takimoto H., Matsumoto T., Kawaguchi K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Design. 2014;20:857–863. doi: 10.2174/138161282006140220120344. PubMed DOI
Tanaka T., Takahashi R. Flavonoids and asthma. Nutrients. 2013;5:2128–2143. doi: 10.3390/nu5062128. PubMed DOI PMC
Ozdemir C., Akdis M., Akdis C.A. T-cell response to allergens. Chem. Immunol. Allergy. 2010;95:22–44. PubMed
Gröber U. Micronutrients: Metabolic tuning-prevention-therapy. Drug Metab. Drug Interact. 2009;24:331.
Nair M.P., Kandaswami C., Mahajan S., Chadha K.C., Chawda R., Nair H., Kumar N., Nair R.E., Schwartz S.A. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Bioch. Biophys. Acta Mol. Cell Res. 2002;1593:29–36. doi: 10.1016/S0167-4889(02)00328-2. PubMed DOI
Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm. Allergy Drug Targets. 2010;9:263–285. doi: 10.2174/187152810793358741. PubMed DOI
Finn D.F., Walsh J.J. Twenty-first century mast cell stabilizers. Br. J. Pharmacol. 2013;170:23–37. doi: 10.1111/bph.12138. PubMed DOI PMC
Thornhill S.M., Kelly A.-M. Natural treatment of perennial allergic rhinitis. Altern. Med. Rev. 2000;5:448–454. PubMed
Kempuraj D., Madhappan B., Christodoulou S., Boucher W., Cao J., Papadopoulou N., Cetrulo C.L., Theoharides T.C. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br. J. Pharm. 2005;145:934–944. doi: 10.1038/sj.bjp.0706246. PubMed DOI PMC
Weng Z., Zhang B., Asadi S., Sismanopoulos N., Butcher A., Fu X., Katsarou-Katsari A., Antoniou C., Theoharides T.C. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS ONE. 2012;7:e33805. doi: 10.1371/journal.pone.0033805. PubMed DOI PMC
Johri R., Zutshi U., Kameshwaran L., Atal C. Effect of quercetin and albizzia saponins on rat mast cell. Ind. J. Physiol. Pharm. 1984;29:43–46. PubMed
Min Y.-D., Choi C.-H., Bark H., Son H.-Y., Park H.-H., Lee S., Park J.-W., Park E.-K., Shin H.-I., Kim S.-H. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res. 2007;56:210–215. doi: 10.1007/s00011-007-6172-9. PubMed DOI
Shaik Y., Castellani M., Perrella A., Conti F., Salini V., Tete S., Madhappan B., Vecchiet J., de Lutiis M., Caraffa A., et al. Role of quercetin (a natural herbal compound) in allergy and inflammation. J. Biol. Reg. Homeost. Agents. 2005;20:47–52. PubMed
Fewtrell C., Gomperts B. Quercetin: A novel inhibitors of Ca2+ influx and exocytosis in rat peritoneal mast cells. Bioch. Biophys. Acta Biomembr. 1977;469:52–60. doi: 10.1016/0005-2736(77)90325-X. PubMed DOI
Haggag E.G., Abou-Moustafa M.A., Boucher W., Theoharides T.C. The effect of a herbal water-extract on histamine release from mast cells and on allergic asthma. J. Herb. Pharmacother. 2003;3:41–54. doi: 10.1080/J157v03n04_03. PubMed DOI
Pearce F.L., Befus A.D., Bienenstock J. Mucosal mast cells: III. Effect of quercetin and other flavonoids on antigen-induced histamine secretion from rat intestinal mast cells. J. Allergy Clin. Immunol. 1984;73:819–823. doi: 10.1016/0091-6749(84)90453-6. PubMed DOI
Kaiser P., Youssouf M., Tasduq S., Singh S., Sharma S., Singh G., Gupta V., Gupta B., Johri R. Anti-allergic effects of herbal product from Allium cepa (bulb) J. Med. Food. 2009;12:374–382. doi: 10.1089/jmf.2007.0642. PubMed DOI
Park H.-J., Lee C.-M., Jung I.D., Lee J.S., Jeong Y.-I., Chang J.H., Chun S.-H., Kim M.-J., Choi I.-W., Ahn S.-C., et al. Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int. Immunopharmacol. 2009;9:261–267. doi: 10.1016/j.intimp.2008.10.021. PubMed DOI
Rogerio A., Kanashiro A., Fontanari C., da Silva E., Lucisano-Valim Y., Soares E., Faccioli L. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res. 2007;56:402–408. doi: 10.1007/s00011-007-7005-6. PubMed DOI
Rogerio A.P., Dora C.L., Andrade E.L., Chaves J.S., Silva L.F., Lemos-Senna E., Calixto J.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharm. Res. 2010;61:288–297. doi: 10.1016/j.phrs.2009.10.005. PubMed DOI
Townsend E.A., Emala C.W. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013;305:L396–L403. doi: 10.1152/ajplung.00125.2013. PubMed DOI PMC
Oliveira T.T., Campos K.M., Cerqueira-Lima A.T., Carneiro T.C.B., da Silva Velozo E., Melo I.C.A.R., Figueiredo E.A., de Jesus Oliveira E., de Vasconcelos D.F.S.A., Pontes-de-Carvalho L.C., et al. Potential therapeutic effect of Allium cepa L. and quercetin in a murine model of Blomia tropicalis induced asthma. DARU J. Pharm. Sci. 2015;23 doi: 10.1186/s40199-015-0098-5. PubMed DOI PMC
Jung C.H., Lee J.Y., Cho C.H., Kim C.J. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Archives Pharm. Res. 2007;30:1599–1607. doi: 10.1007/BF02977330. PubMed DOI
Moon H., Choi H.H., Lee J.Y., Moon H.J., Sim S.S., Kim C.J. Quercetin inhalation inhibits the asthmatic responses by exposure to aerosolized-ovalbumin in conscious guinea-pigs. Archives Pharm. Res. 2008;31:771–778. doi: 10.1007/s12272-001-1225-2. PubMed DOI
Capasso R., Aviello G., Romano B., Atorino G., Pagano E., Borrelli F. Inhibitory effect of quercetin on rat trachea contractility in vitro. J. Pharm. Pharmacol. 2009;61:115–119. doi: 10.1211/jpp.61.01.0016. PubMed DOI
Shishehbor F., Behroo L., Broujerdnia M.G., Namjoyan F., Latifi S.-M. Quercetin effectively quells peanut-induced anaphylactic reactions in the peanut sensitized rats. Iran. J. Allergy Asthma Immunol. 2010;9:27–34. PubMed
Wei J., Bhatt S., Chang L.M., Sampson H.A., Masilamani M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS ONE. 2012;7:e47979. doi: 10.1371/journal.pone.0047979. PubMed DOI PMC
Sakai-Kashiwabara M., Asano K. Inhibitory action of quercetin on eosinophil activation in vitro. Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/127105. PubMed DOI PMC
Chan A.L.-F., Huang H.-L., Chien H.-C., Chen C.-M., Lin C.-N., Ko W.-C. Inhibitory effects of quercetin derivatives on phosphodiesterase isozymes and high-affinity [(3)H]-rolipram binding in guinea pig tissues. Investig. New Drugs. 2008;26:417–424. doi: 10.1007/s10637-008-9114-7. PubMed DOI
Lättig J., Böhl M., Fischer P., Tischer S., Tietböhl C., Menschikowski M., Gutzeit H.O., Metz P., Pisabarro M.T. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: Rationale for lead design. J. Comput. Aided Mol. Des. 2007;21:473–483. doi: 10.1007/s10822-007-9129-8. PubMed DOI
Fortunato L.R., Alves C.D., Teixeira M.M., Rogerio A.P. Quercetin: A flavonoid with the potential to treat asthma. Braz. J. Pharm. Sci. 2012;48:589–599. doi: 10.1590/S1984-82502012000400002. DOI
Knekt P., Kumpulainen J., Järvinen R., Rissanen H., Heliövaara M., Reunanen A., Hakulinen T., Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002;76:560–568. PubMed
Willers S., Devereux G., Craig L., McNeill G., Wijga A., El-Magd W.A., Turner S., Helms P., Seaton A. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax. 2007;62:773–779. doi: 10.1136/thx.2006.074187. PubMed DOI PMC
Shaheen S.O., Sterne J.A., Thompson R.L., Songhurst C.E., Margetts B.M., Burney P.G. Dietary antioxidants and asthma in adults: Population-based case–control study. Am. J. Resp. Crit. Care Med. 2001;164:1823–1828. doi: 10.1164/ajrccm.164.10.2104061. PubMed DOI
Tabak C., Arts I.C., Smit H.A., Heederik D., Kromhout D. Chronic obstructive pulmonary disease and intake of catechins, flavonols, and flavones: The morgen study. Am. J. Resp. Crit. Care Med. 2001;164:61–64. doi: 10.1164/ajrccm.164.1.2010025. PubMed DOI
Butland B.K., Fehily A.M., Elwood P.C. Diet, lung function, and lung function decline in a cohort of 2512 middle aged men. Thorax. 2000;55:102–108. doi: 10.1136/thorax.55.2.102. PubMed DOI PMC
Woods R.K., Walters E.H., Raven J.M., Wolfe R., Ireland P.D., Thien F.C., Abramson M.J. Food and nutrient intakes and asthma risk in young adults. Am. J. Clin. Nutr. 2003;78:414–421. PubMed
Izadi N., Luu M., Ong P.Y., Tam J.S. The role of skin barrier in the pathogenesis of food allergy. Children. 2015;2:382–402. doi: 10.3390/children2030382. PubMed DOI PMC
Lodge C.J., Allen K.J., Lowe A.J., Dharmage S.C. Overview of evidence in prevention and aetiology of food allergy: A review of systematic reviews. Int. J. Environ. Res. Public Health. 2013;10:5781–5806. doi: 10.3390/ijerph10115781. PubMed DOI PMC
Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity