Bioactive Compounds and Antioxidant Activity in Different Types of Berries

. 2015 Oct 16 ; 16 (10) : 24673-706. [epub] 20151016

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid26501271

Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits.

Zobrazit více v PubMed

Halvorsen B.L., Holte K., Myhrstad M.C., Barikmo I., Hvattum E., Remberg S.F., Wold A.B., Haffner K., Baugerød H., Andersen L.F., et al. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002;132:461–471. PubMed

De Souza V.R., Pereira P.A., da Silva T.L., de Oliveira Lima L.C., Pio R., Queiroz F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014;156:362–368. doi: 10.1016/j.foodchem.2014.01.125. PubMed DOI

Slatnar A., Jakopic J., Stampar F., Veberic R., Jamnik P. The effect of bioactive compounds on in vitro and in vivo antioxidant activity of different berry juices. PLoS ONE. 2012;7:10. PubMed PMC

Namiesnik J., Vearasilp K., Nemirovski A., Leontowicz H., Leontowicz M., Pasko P., Martinez-Ayala A.L., González-Aguilar G.A., Suhaj M., Gorinstein S. In vitro studies on the relationship between the antioxidant activities of some berry extracts and their binding properties to serum albumin. Appl. Biochem. Biotechnol. 2014;172:2849–2865. doi: 10.1007/s12010-013-0712-2. PubMed DOI PMC

Yoo Y., Saliba A.J., Prenzler P.D. Should red wine be considered a functional food? Comp. Rev. Food Sci. Food Saf. 2010;9:530–551. doi: 10.1111/j.1541-4337.2010.00125.x. PubMed DOI

Yoo Y.J., Prenzler P.D., Saliba A.J., Ryan D. Assessment of Some Australian Red Wines for Price, Phenolic Content, Antioxidant Activity, and Vintage in Relation to Functional Food Prospects. J. Food Sci. 2011;76:1355–1364. doi: 10.1111/j.1750-3841.2011.02429.x. PubMed DOI

Yoo Y.J., Saliba A.J., MacDonald J.B., Prenzler P.D., Ryan D. A Cross-cultural Study of Wine Consumers with Respect to Health Benefits of Wine. Food Qual. Pref. 2013;28:531–538. doi: 10.1016/j.foodqual.2013.01.001. DOI

Anastasiadi M., Pratsinis H., Kletsas D., Skaltsounis A.-L., Haroutounian S.A. Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010;43:805–813. doi: 10.1016/j.foodres.2009.11.017. DOI

Toaldo I.M., Cruz F.A., de Lima Alves T., de Gois J.S., Borges D.L.G., Cunha H.P., da Silva E.L., Bordignon-Luiz M.T. Bioactive potential of Vitis labrusca L. grape juices from the Southern Region of Brazil: Phenolic and elemental composition and effect on lipid peroxidation in healthy subjects. Food Chem. 2015;173:527–535. doi: 10.1016/j.foodchem.2014.09.171. PubMed DOI

Lätti A.K., Riihinen K.R., Jaakola L. Phenolic compounds in berries and flowers of a natural hybrid between bilberry and lingonberry (Vaccinium × intermedium Ruthe) Phytochemistry. 2011;72:810–815. doi: 10.1016/j.phytochem.2011.02.015. PubMed DOI

Garzón G.A., Narváez C.E., Riedl K.M., Schwartz S.J. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chem. 2010;122:980–986. doi: 10.1016/j.foodchem.2010.03.017. DOI

Duymuş H.G., Göger F., Başer K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014;155:112–119. doi: 10.1016/j.foodchem.2014.01.028. PubMed DOI

Casati C.B., Baeza R., Sanchez V., Catalano A., López P., Zamora M.C. Thermal degradation kinetics of monomeric anthocyanins, colour changes and storage effect in elderberry juices. J. Berry Res. 2015;5:29–39.

Chiang C.-J., Kadouh H., Zhou K. Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. LWT Food Sci. TechNOL. 2013;51:417–422. doi: 10.1016/j.lwt.2012.11.014. DOI

Rop O., Mlcek J., Jurikova T., Valsikova M. Bioactive content and antioxidant capacity of Cape gooseberry fruit. Cent. Eur. J. Biol. 2012;7:672–679. doi: 10.2478/s11535-012-0063-y. DOI

Aladedunye F., Przybylski R., Niehaus K., Bednarz H., Matthäus B. Phenolic extracts from Crataegus × mordenensis and Prunus virginiana: Composition, antioxidant activity and performance in sunflower oil. LWT Food Sci. Technol. 2014;59:308–319. doi: 10.1016/j.lwt.2014.06.002. DOI

Heinonen I.M., Lehtonen P.J., Hopia A.I. Antioxidant Activity of Berry and Fruit Wines and Liquors. J. Agric. Food Chem. 1998;46:25–31. PubMed

Kähkönen M., Kylli P., Ollilainen V., Salminen J.P., Heinonen M. Antioxidant activity of isolated ellagitannins from red raspberries and cloudberries. J. Agric. Food Chem. 2012;60:1167–1174. doi: 10.1021/jf203431g. PubMed DOI

Ogawa K., Sakakibara H., Iwata R., Ishii T., Sato T., Goda T., Shimoi K., Kumazawa S. Anthocyanin Composition and Antioxidant Activity of the Crowberry (Empetrum nigrum) and Other Berries. J. Agric. Food Chem. 2008;56:4457–4462. doi: 10.1021/jf800406v. PubMed DOI

Wang S.Y., Feng R., Bowman L., Penhallegon R., Ding M., Lu Y. Antioxidant Activity in Lingonberries (Vaccinium vitis-idaea L.) and Its Inhibitory Effect on Activator Protein-1, Nuclear Factor-κB, and Mitogen-Activated Protein Kinases Activation. J. Agric. Food Chem. 2005;53:3156–3166. doi: 10.1021/jf048379m. PubMed DOI

Asami D.K., Hong Y.J., Barrett D.M., Mitchell A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003;51:1237–1241. doi: 10.1021/jf020635c. PubMed DOI

Jurikova T., Sochor J., Mlcek J., Balla S., Ercisli S., Durisova L., Kynicky J. Polyphenolic Compounds and Antioxidant Activity in Berries of Four Russian Cultivars of Lonicera. kamtschatica (Sevast.) Pojark. Erwerbs Obstbau. 2014;56:117–122. doi: 10.1007/s10341-014-0215-5. DOI

Rop O., Řezníček V., Mlček J., Juríková T., Sochor J., Kizek R., Humpolíček P., Balík J. Nutritional values of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.) Hort. Sci. 2012;39:123–128.

Hukkanen A.T., Pölönen S.S., Kärenlampi S.O., Kokko H.I. Antioxidant capacity and phenolic content of sweet rowanberries. J. Agric. Food Chem. 2006;54:112–119. doi: 10.1021/jf051697g. PubMed DOI

Fredes C., Robert P. The powerful colour of the maqui (Aristotelia chilensis [Mol.] Stuntz) fruit. J. Berry Res. 2014;4:175–182.

Rop O., Ercişli S., Mlcek J., Jurikova T., Hoza I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turk. J. Agric. For. 2014;38:224–232. doi: 10.3906/tar-1304-86. DOI

Basu S.K., Thomas J., Acharya S.N. Prospects for growth in global nutraceutical and functional food markets a canadian perspective. Aust. J. Basic Appl. Sci. 2007;1:637–649.

Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacol. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Limberaki E., Eleftheriou P., Vagdatli E., Kostoglou V., Petrou C. Serum antioxidant status among young, middle-aged and elderly people before and after antioxidant rich diet. Hippokratia. 2012;16:118–123. PubMed PMC

Halliwell B., Rafter J., Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005;81:268–276. PubMed

Patras A., Brunton N.P., O'Donnell C., Tiwari B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010;21:3–11. doi: 10.1016/j.tifs.2009.07.004. DOI

Verotta L., Macchi M.P., Venkatasubramanian P. Connecting Indian Wisdom and Western Science: Plant Usage for Nutrition and Health. CRC Press; Boca Raton, FL, USA: 2015. pp. 264–266.

Kowalenko C.G. Accumulation and distribution of micronutrients in Willamette red raspberry plants. Can. J. Plant. Sci. 2005;85:179–191. doi: 10.4141/P03-107. DOI

Nile S.H., Park S.W. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014;30:134–144. doi: 10.1016/j.nut.2013.04.007. PubMed DOI

Koyuncu M.A., Dilmacunal T. Determination of Vitamin C and Organic Acid Changes in Strawberry by HPLC during Cold Storage. Not. Bot. Horti Agrobot. Cluj. 2010;38:95–98.

Proteggente A.R., Pannala A.S., Paganga G., van Buren L., Wagner E., Wiseman S., van de Put F., Dacombe C., Rice-Evans C.A. The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects their Phenolic and Vitamin C Composition. Free Radic. Res. 2002;36:217–233. doi: 10.1080/10715760290006484. PubMed DOI

Kalt W., Forney C.F., Martin A., Prior R.L. Antioxidant Capacity, Vitamin C, Phenolics, and Anthocyanins after Fresh Storage of Small Fruits. J. Agric. Food Chem. 1999;47:4638–4644. doi: 10.1021/jf990266t. PubMed DOI

Atala E., Vásquez L., Speisky H., Lissi E., López-Alarcón C. Ascorbic acid contribution to ORAC values in berry extracts: An evaluation by the ORAC-pyrogallol red methodology. Food Chem. 2009;113:331–335. doi: 10.1016/j.foodchem.2008.07.063. DOI

Battino M., Beekwilder J., Denoyes-Rothan B., Laimer M., McDougall G.J., Mezzetti B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009;67:145–150. doi: 10.1111/j.1753-4887.2009.00178.x. PubMed DOI

Giampieri F., Tulipani S., Alvarez-Suarez J.M., Quiles J.L., Mezzetti B., Battino M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition. 2012;28:9–19. doi: 10.1016/j.nut.2011.08.009. PubMed DOI

Wang Z., Cang T., Qi P., Zhao X., Xu H., Wang X., Zhang H., Wang X. Dissipation of four fungicides on greenhouse strawberries and an assessment of their risks. Food Control. 2015;55:215–220. doi: 10.1016/j.foodcont.2015.02.050. DOI

Strik B.C. Berry crops: Worldwide area and production systems. In: Zhao Y., editor. Berry Fruit: Value-Added Products for Health Promotion. 1st ed. CRC Press; Boca Raton, FL, USA: 2007. pp. 3–51.

Odriozola-Serrano I., Soliva-Fortuny R., Gimeno-Añó V., Martín-Belloso O. Kinetic Study of Anthocyanins, Vitamin C, and Antioxidant Capacity in Strawberry Juices Treated by High-Intensity Pulsed Electric Fields. J. Agric. Food Chem. 2008;56:8387–8393. doi: 10.1021/jf801537f. PubMed DOI

Škrovánková S., Kramářová D., Šimánková K., Hoza I. Determination of ascorbic acid by HPLC with electrochemical detection. Chem. Listy. 2006;100:736.

Sapei L., Hwa L. Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. Procedia Chem. 2014;9:62–68. doi: 10.1016/j.proche.2014.05.008. DOI

Franke A.A., Custer L.J., Arakaki C., Murphy S.P. Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. J. Food Comp. Anal. 2004;17:1–35. doi: 10.1016/S0889-1575(03)00066-8. DOI

Giampieri F., Forbes-Hernandez T.Y., Gasparrini M., Alvarez-Suarez J.M., Afrin S., Bompadre S., Quiles J.L., Mezzetti B., Battino M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015;6:1386–1398. doi: 10.1039/C5FO00147A. PubMed DOI

Kunwar R.M., Shrestha K.P., Bussmann R.W. Traditional herbal medicine in Far-west Nepal: A pharmacological appraisal. J. Ethnobiol. Ethnomed. 2010;6:35–52. doi: 10.1186/1746-4269-6-35. PubMed DOI PMC

Giampieri F., Alvarez-Suarez J.M., Battino M. Strawberry and Human Health: Effects beyond Antioxidant Activity. J. Agric. Food Chem. 2014;62:3867–3876. doi: 10.1021/jf405455n. PubMed DOI

Ibrahim D.S., Abd El-Maksoud M.A.E. Effect of strawberry (Fragaria × ananassa) leaf extract on diabetic nephropathy in rats. Int. J. Exp. Pathol. 2015;96:87–93. doi: 10.1111/iep.12116. PubMed DOI PMC

Pinto Mda S., de Carvalho J.E., Lajolo F.M., Genovese M.I., Shetty K. Evaluation of antiproliferative, anti-type 2 diabetes, and antihypertension potentials of ellagitannins from strawberries (Fragaria ananassa Duch.) using in vitro models. J. Med. Food. 2010;13:1–9. PubMed

Alvarez-Suarez J.M., Giampieri F., Tulipani S., Casoli T., di Stefano G., González-Paramás A.M., Santos-Buelga C., Busco F., Quiles J.L., Cordero M.D., et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem. 2014;25:289–294. doi: 10.1016/j.jnutbio.2013.11.002. PubMed DOI

Ellis C.L., Edirisinghe I., Kappagoda T., Burton-Freeman B. Attenuation of meal-induced inflammatory and thrombotic responses in overweight men and women after 6-week daily strawberry (Fragaria) intake. J. Atheroscler. Thromb. 2011;18:318–327. doi: 10.5551/jat.6114. PubMed DOI

Basu A., Rhone M., Lyons T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010;68:168–177. doi: 10.1111/j.1753-4887.2010.00273.x. PubMed DOI PMC

Prasath G.S., Subramanian S.P. Antihyperlipidemic Effect of Fisetin, a Bioflavonoid of Strawberries, Studied in Streptozotocin-Induced Diabetic Rats. J. Biochem. Mol. Toxicol. 2014;28:442–449. doi: 10.1002/jbt.21583. PubMed DOI

Chen H.-S., Bai M.-H., Zhang T., Li G.-D., Liu M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol. 2015;46:1730–1738. doi: 10.3892/ijo.2015.2870. PubMed DOI

Duo J., Ying G.G., Wang G.W., Zhang L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep. 2012;5:1453–1456. PubMed

Edderkaoui M., Lugea A., Hui H., Eibl G., Lu Q.Y., Moro A., Pandol S.J. Ellagic acid and embelin affect key cellular components of pancreatic adenocarcinoma, cancer, and stellate cells. Nutr. Cancer. 2013;65:1232–1244. doi: 10.1080/01635581.2013.832779. PubMed DOI PMC

Zhang Y., Seeram N.P., Lee R., Feng L., Heber D. Isolation and Identification of Strawberry Phenolics with Antioxidant and Human Cancer Cell Antiproliferative Properties. J. Agric. Food Chem. 2008;56:670–675. doi: 10.1021/jf071989c. PubMed DOI

Casto B.C., Knobloch T.J., Galioto R.L., Yu Z., Accurso B.T., Warner B.M. Chemoprevention of oral cancer by lyophilized strawberries. Anticancer Res. 2013;33:4757–4766. PubMed PMC

Chen T., Yan F., Qian J., Guo M., Zhang H., Tang X., Chen F., Stoner G.D., Wang X. Randomized phase II trial of lyophilized strawberries in patients with dysplastic precancerous lesions of the esophagus. Cancer Prev. Res. 2012;5:41–50. doi: 10.1158/1940-6207.CAPR-11-0469. PubMed DOI PMC

Somasagara R.R., Hegde M., Chiruvella K.K., Musini A., Choudhary B., Raghavan S.C. Extracts of Strawberry Fruits Induce Intrinsic Pathway of Apoptosis in Breast Cancer Cells and Inhibits Tumor Progression in Mice. PLoS ONE. 2012;7:10. doi: 10.1371/journal.pone.0047021. PubMed DOI PMC

Giampieri F., Alvarez-Suarez J.M., Mazzoni L., Forbes-Hernandez T.Y., Gasparrini M., Gonzàlez-Paramàs A.M., Santos-Buelga C., Quiles J.L., Bompadre S., Mezzettia B., et al. An anthocyanin-rich strawberry extract protects against oxidative stress damage and improves mitochondrial functionality in human dermal fibroblasts exposed to an oxidizing agent. Food Funct. 2014;5:1939–1948. doi: 10.1039/C4FO00048J. PubMed DOI

Giampieri F., Alvarez-Suarez J.M., Mazzoni L., Forbes-Hernandez T.Y., Gasparrini M., Gonzàlez-Paramàs A.M., Santos-Buelga C., Quiles J.L., Bompadre S., Mezzettia B., et al. Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide Oxidative Damage and Improves Mitochondrial Functionality. Molecules. 2014;19:7798–7816. doi: 10.3390/molecules19067798. PubMed DOI PMC

Kim Y.-J., Shin Y. Antioxidant profile, antioxidant activity, and physicochemical characteristics of strawberries from different cultivars and harvest locations. J. Korean Soc. Appl. Biol. Chem. 2015;58:587–595. doi: 10.1007/s13765-015-0085-z. DOI

Gündüz K., Ozdemir E. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chem. 2014;155:298–303. doi: 10.1016/j.foodchem.2014.01.064. PubMed DOI

Mandave P.C., Pawar P.K., Ranjekar P.K., Mantri N., Kuvalekar A.A. Comprehensive evaluation of in vitro antioxidant activity, total phenols and chemical profiles of two commercially important strawberry varieties. Sci. Hortic. 2014;172:124–134. doi: 10.1016/j.scienta.2014.03.002. DOI

Fredericks C.H., Fanning K.J., Gidley M.J., Netzel G., Zabaras D., Herrington M., Netzel M. High-anthocyanin strawberries through cultivar selection. J. Sci. Food Agric. 2013;93:846–852. doi: 10.1002/jsfa.5806. PubMed DOI

Jin P., Wang S.Y., Wang C.Y., Zheng Y. Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chem. 2011;124:262–270. doi: 10.1016/j.foodchem.2010.06.029. DOI

Ferreyra R.M., Viña S.Z., Mugridge A., Chaves A.R. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Sci. Hortic. 2007;112:27–32. doi: 10.1016/j.scienta.2006.12.001. DOI

Tulipani S., Mezzetti B., Capocasa F., Bompadre S., Beekwilder J., de Vos C., Capanoglu E., Bovy A., Battino M. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 2008;56:696–704. doi: 10.1021/jf0719959. PubMed DOI

Wang S.Y., Millner P. Effect of Different Cultural Systems on Antioxidant Capacity, Phenolic Content, and Fruit Quality of Strawberries (Fragaria × aranassa Duch.) J. Agric. Food Chem. 2009;57:9651–9657. doi: 10.1021/jf9020575. PubMed DOI

Tulipani S., Marzban G., Herndl A., Laimer M., Mezzetti B., Battino M. Influence of environmental and genetic factors on health-related compounds in strawberry. Food Chem. 2011;124:906–913. doi: 10.1016/j.foodchem.2010.07.018. DOI

Reganold J.P., Andrews P.K., Reeve J.R., Carpenter-Boggs L., Schadt C.W. Fruit and Soil Quality of Organic and Conventional Strawberry Agroecosystems. PLoS ONE. 2010;5:1–14. doi: 10.1371/annotation/1eefd0a4-77af-4f48-98c3-2c5696ca9e7a. PubMed DOI PMC

Crecente-Campo J., Nunes-Damaceno M., Romero-Rodríguez M.A., Vázquez-Odériz M.L. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva) J. Food Comp. Anal. 2012;28:23–30. doi: 10.1016/j.jfca.2012.07.004. DOI

Fernandes V.C., Domingues V.F., de Freitas V., Delerue-Matos C., Mateus N. Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chem. 2012;134:1926–1931. doi: 10.1016/j.foodchem.2012.03.130. PubMed DOI

Xu F., Shi L., Chen W., Cao S., Su X., Yang Z. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci. Hortic. 2014;175:181–186. doi: 10.1016/j.scienta.2014.06.012. DOI

Fan L., Dubé C., Fang C., Roussel D., Charles M.T., Desjardins Y., Khanizadeh S. Effect of production systems on phenolic composition and oxygen radical absorbance capacity of “Orléans” strawberry. LWT Food Sci. Technol. 2012;45:241–245. doi: 10.1016/j.lwt.2011.09.004. DOI

Fan L., Yu C., Fang C., Zhang M., Ranieri M., Dubé C. The effect of three production systems on the postharvest quality and phytochemical composition of “Orléans” strawberry. Can. J. Plant. Sci. 2011;91:403–409. doi: 10.4141/CJPS10147. DOI

Levaj B., Bursać Kovačević D., Bituh M., Dragović-Uzelac V. Influence of Jam Processing Upon the Contents of Phenolics and Antioxidant Capacity in Strawberry fruit (Fragaria ananassa × Duch.) Croatian J. Food Technol. Biotechnol. Nutr. 2012;7:18–22.

Oszmiański J., Wojdyło A. Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur. Food Res. Technol. 2009;228:623–631. doi: 10.1007/s00217-008-0971-2. DOI

Hartmann A., Patz C.D., Andlauer W., Dietrich H., Ludwig M. Influence of processing on quality parameters of strawberries. J. Agric. Food Chem. 2008;56:9484–9489. doi: 10.1021/jf801555q. PubMed DOI

Howard L.R., Brownmiller C., Prior R.L. Improved color and anthocyanin retention in strawberry puree by oxygen exclusion. J. Berry Res. 2014;4:107–116.

Seeram N.P., Lee R., Scheuller H.S., Heber D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006;97:1–11. doi: 10.1016/j.foodchem.2005.02.047. DOI

Aaby K., Ekeberg D., Skrede G. Characterization of phenolic compounds in strawberry (Fragaria × ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 2007;55:4395–4406. doi: 10.1021/jf0702592. PubMed DOI

Cerezo A.B., Cuevas E., Winterhalter P., Garcia-Parrilla M.C., Troncoso A.M. Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chem. 2010;123:574–582. doi: 10.1016/j.foodchem.2010.04.073. DOI

Da Silva F.L., Escribano-Bailón M.T., Pérez Alonso J.J., Rivas-Gonzalo J.C., Santos-Buelga C. Anthocyanin pigments in strawberry. LWT Food Sci. Technol. 2007;40:374–382. doi: 10.1016/j.lwt.2005.09.018. DOI

Canuto G.A., Oliveira D.R., da Conceição L.S., Farah J.P., Tavares M.F. Development and validation of a liquid chromatography method for anthocyanins in strawberry (Fragaria spp.) and complementary studies on stability, kinetics and antioxidant power. Food Chem. 2016;192:566–574. doi: 10.1016/j.foodchem.2015.06.095. PubMed DOI

Van De Velde F., Tarola A.M., Güemes D., Pirovani M.E. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria × ananassa Duch.) Foods. 2013;2:120–131. doi: 10.3390/foods2020120. PubMed DOI PMC

Stewart D., McDougall G.J., Sungurtas J., Verrall S., Graham J., Martinussen I. Metabolomic approach to identifying bioactive compounds in berries: Advances toward fruit nutritional enhancement. Mol. Nutr. Food Res. 2007;51:645–651. doi: 10.1002/mnfr.200700056. PubMed DOI

Fredes C., Montenegro G., Zoffoli J.P., Santander F., Robert P. Comparison of the total phenolic content, total anthocyanin content and antioxidant activity of polyphenol-rich fruits grown in Chile. Cienc. Inv. Agr. 2014;41:49–60. doi: 10.4067/S0718-16202014000100005. DOI

Oliveira A., Gomes M.H., Alexandre E.M., Poças F., Almeida D.P., Pintado M. Phytochemicals preservation in strawberry as affected by pH modulation. Food Chem. 2015;170:74–83. doi: 10.1016/j.foodchem.2014.07.156. PubMed DOI

Tulipani S., Alvarez-Suarez J.M., Busco F., Bompadre S., Quiles J.L., Mezzetti B., Battino M. Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chem. 2011;128:180–186. doi: 10.1016/j.foodchem.2011.03.025. PubMed DOI

Banaszewski K., Park E., Edirisinghe I., Cappozzo J.C., Burton-Freeman B.M. A pilot study to investigate bioavailability of strawberry anthocyanins and characterize postprandial plasma polyphenols absorption patterns by Q-TOF LC/MS in humans. J. Berry Res. 2013;3:113–126.

Fu Y., Zhou X., Chen S., Sun Y., Shen Z., Ye X. Chemical composition and antioxidant activity of Chinese wild raspberry (Rubus hirsutus Thunb.) LWT Food Sci. Technol. 2015;60:1262–1268. doi: 10.1016/j.lwt.2014.09.002. DOI

Benvenuti S., Pellati F., Melegari M., Bertelli D. Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J. Food Sci. 2004;69:164–169. doi: 10.1111/j.1365-2621.2004.tb13352.x. DOI

Rotundo A., Bounous G., Benvenuti S., Vampa G., Melegari M., Soragni F. Quality and yield of Ribes and Rubus cultivars grown in Southern Italy hilly locations. Phytother. Res. 1998;12:135–137. doi: 10.1002/(SICI)1099-1573(1998)12:1+<S135::AID-PTR275>3.0.CO;2-H. DOI

Romero Rodriguez M.A., Vazquez Oderiz M.L., Lopez Hernandez J., Simal Lozano J.S. Determination of vitamin C and organic acids in various fruits by HPLC. J. Chromatogr. Sci. 1992;30:433–437. doi: 10.1093/chromsci/30.11.433. PubMed DOI

De Ancos B., Gonzáles E.M., Cano M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000;48:4565–4570. doi: 10.1021/jf0001684. PubMed DOI

Zhang Y., Zhang Z., Yang Y., Zu X., Guan D.I., Guan Y. Diuretic Activity of Rubus idaeus L (Rosaceae) in Rats. Trop. J. Pharm. Res. 2011;10:243–248. doi: 10.4314/tjpr.v10i3.15. DOI

Cheplick S., Kwon Y., Bhowmik P., Shetty K. Clonal variation in raspberry fruit phenolics and relevance for diabetes and hypertension management. J. Food Biochem. 2007;31:656–679. doi: 10.1111/j.1745-4514.2007.00136.x. DOI

McDougall G.J., Ross H.A., Ikeji M., Stewart D. Berry Extracts Exert Different Antiproliferative Effects against Cervical and Colon Cancer Cells Grown in Vitro. J. Agric. Food Chem. 2008;56:3016–3023. doi: 10.1021/jf073469n. PubMed DOI

Cerda B., Tomas-Barberan F.A., Espin J.C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agric. Food Chem. 2005;53:227–235. doi: 10.1021/jf049144d. PubMed DOI

Seeram N.P., Adams L.S., Zhang Y., Lee R., Sand D., Scheuller H.S., Heber D. Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry Extracts Inhibit Growth and Stimulate Apoptosis of Human Cancer Cells in Vitro. J. Agric. Food Chem. 2006;54:9329–9339. doi: 10.1021/jf061750g. PubMed DOI

Wedge D.E., Meepagala K.M., Magee J.B., Hope Smith S., Huang G., Larcom L.L. Anticarcinogenic Activity of Strawberry, Blueberry, and Raspberry Extracts to Breast and Cervical Cancer Cells. J. Med. Food. 2001;4:49–51. doi: 10.1089/10966200152053703. PubMed DOI

Bowen-Forbes C.S., Zhang Y., Nair M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Comp. Anal. 2010;23:554–560. doi: 10.1016/j.jfca.2009.08.012. DOI

Ross H.A., McDougall G.J., Stewart D. Antiproliferative activity is predominantly associated with ellagitannins in raspberry extracts. Phytochemistry. 2007;68:218–228. doi: 10.1016/j.phytochem.2006.10.014. PubMed DOI

Haffner K., Rosenfeld H.J., Skrede G., Wang L. Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharvest Biol. Technol. 2002;24:279–289. doi: 10.1016/S0925-5214(01)00147-8. DOI

Dragišić Maksimović J.J., Milivojević J.M., Poledica M.M., Nikolić M.D., Maksimović V.M. Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka) J. Food Comp. Anal. 2013;31:173–179. doi: 10.1016/j.jfca.2013.05.008. DOI

Gülçin İ., Topal F., Çakmakçı R., Bilsel M., Gören A.C., Erdogan U. Pomological Features, Nutritional Quality, Polyphenol Content Analysis, and Antioxidant Properties of Domesticated and 3 Wild Ecotype Forms of Raspberries (Rubus idaeus L.) J. Food Sci. 2011;76:585–593. PubMed

Bobinaitė R., Viškelis P., Rimantas Venskutonis P. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012;132:1495–1501. doi: 10.1016/j.foodchem.2011.11.137. PubMed DOI

Chen L., Xin X., Zhang H., Yuan Q. Phytochemical properties and antioxidant capacities of commercial raspberry varieties. J. Funct. Foods. 2013;5:508–515. doi: 10.1016/j.jff.2012.10.009. DOI

Maatta-Riihinen K.R., Kamal-Eldin A., Torronen A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae) J. Agric. Food Chem. 2004;52:6178–6187. doi: 10.1021/jf049450r. PubMed DOI

Çekiç C., Özgen M. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.) J. Food Comp. Anal. 2010;23:540–544. doi: 10.1016/j.jfca.2009.07.002. DOI

Mazur S.P., Nes A., Wold A.-B., Remberg S.F., Aaby K. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 2014;160:233–240. doi: 10.1016/j.foodchem.2014.02.174. PubMed DOI

Anttonen M.J., Karjalainen R.O. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Comp. Anal. 2005;18:759–769. doi: 10.1016/j.jfca.2004.11.003. DOI

Jin P., Wang S.Y., Gao H., Chen H., Zheng Y., Wang C.Y. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chem. 2012;132:399–405. doi: 10.1016/j.foodchem.2011.11.011. PubMed DOI

Wang S.Y., Chen C.-T., Wang C.Y. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 2009;112:676–684. doi: 10.1016/j.foodchem.2008.06.032. DOI

Hassani S., Shariatpanahi M., Tavakoli F., Nili-Ahmadabadi A., Abdollahi M. The changes of bioactive ingredients and antioxidant properties in various berries during jam processing. Int. J. Biosci. 2015;6:172–179.

Giovanelli G., Limbo S., Buratti S. Effects of new packaging solutions on physico-chemical, nutritional and aromatic characteristics of red raspberries (Rubus idaeus L.) in postharvest storage. Postharvest Biol. Technol. 2014;98:72–81. doi: 10.1016/j.postharvbio.2014.07.002. DOI

Ali L., Svensson B., Alsanius B.W., Olsson M.E. Late season harvest and storage of Rubus berries-Major antioxidant and sugar levels. Sci. Hortic. 2011;129:376–381. doi: 10.1016/j.scienta.2011.03.047. DOI

Pavlovic A.V., Dabic D.C., Momirovic N.M., Dojcinovic B.P., Milojkovic-Opsenica D.M., Tesic Z.L. Chemical composition of two different extracts of berries harvested in Serbia. J. Agric. Food Chem. 2013;61:4188–4194. doi: 10.1021/jf400607f. PubMed DOI

Borges G., Degeneve A., Mullen W., Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010;58:3901–3909. doi: 10.1021/jf902263n. PubMed DOI

Bradish C.M., Perkins-Veazie P., Fernandez G.E., Xie G., Jia W. Comparison of Flavonoid Composition of Red Raspberries (Rubus idaeus L.) Grown in the Southern United States. J. Agric. Food Chem. 2012;60:5779–5786. doi: 10.1021/jf203474e. PubMed DOI

Zoriţa D., Florica R., Rugină D., Lucian C., Socaciu C. HPLC/PDA–ESI/MS Identification of Phenolic Acids, Flavonol Glycosides and Antioxidant Potential in Blueberry, Blackberry, Raspberries and Cranberries. J. Food Nutr. Res. 2014;2:781–785.

Dobson P., Graham J., Stewart D., Brennan R., Hackett C.A., McDougall G.J. Over-seasons Analysis of Quantitative Trait Loci Affecting Phenolic Content and Antioxidant Capacity in Raspberry. J. Agric. Food Chem. 2012;60:5360–5366. doi: 10.1021/jf3005178. PubMed DOI

Hatfield G. Encyclopedia of Folk Medicine: Old World and New World Traditions. 1st ed. ABC-CLIO; Santa Barbara, CA, USA: 2004. p. 392.

Tavares L., Figueira I., McDougall G.J., Vieira H.L., Stewart D., Alves P.M., Santos C.N. Neuroprotective effects of digested polyphenols from wild blackberry species. Eur. J. Nutr. 2013;52:225–236. doi: 10.1007/s00394-012-0307-7. PubMed DOI

Feresin R.G., Zhang J., Elam M., Hooshmand S., Kim J., Arjmandi B.J. Effects of blackberry and blueberry polyphenol extracts on NO, TNF-α, and COX-2 production in LPS-stimulated RAW264.7 macrophages. Faseb J. 2012;26:823.20.

Marquina M.A., Corao G.M., Araujo L., Buitrago D., Sosa M. Hyaluronidase inhibitory activity from the polyphenols in the fruit of blackberry (Rubus fruticosus B.) Fitoterapia. 2002;73:727–729. doi: 10.1016/S0367-326X(02)00222-8. PubMed DOI

Dai J., Patel J.D., Mumper R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food. 2007;10:258–265. doi: 10.1089/jmf.2006.238. PubMed DOI

Hager T.J., Howard L.R., Prior R.L. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. J. Agric. Food Chem. 2008;56:689–695. doi: 10.1021/jf071994g. PubMed DOI

Shipp J., Abdel-Aal E.-S.M. Food Applications and Physiological Effects of Anthocyanins as Functional Food Ingredients. Open Food Sci. J. 2010;4:7–22. doi: 10.2174/1874256401004010007. DOI

Jiao H., Wang S.Y. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J. Agric. Food Chem. 2000;48:5672–5676. doi: 10.1021/jf000765q. PubMed DOI

Acosta O., Vaillant F., Pérez A.M., Dornier M. Potential of ultrafiltration for separation and purification of ellagitannins in blackberry (Rubus adenotrichus Schltdl.) juice. Sep. Purif. Technol. 2014;125:120–125. doi: 10.1016/j.seppur.2014.01.037. DOI

Soto M., Acosta O., Vaillant F., Pérez A. Effects of Mechanical and Enzymatic Pretreatments on Extraction of Polyphenols from Blackberry Fruits. J. Food Process. Eng. 2015 doi: 10.1111/jfpe.12240. DOI

Siriwoharn T., Wrolstad R.E., Finn C.E., Pereira C.B. Influence of Cultivar, Maturity, and Sampling on Blackberry (Rubus L. Hybrids) Anthocyanins, Polyphenolics, and Antioxidant Properties. J. Agric. Food Chem. 2004;52:8021–8030. doi: 10.1021/jf048619y. PubMed DOI

Kevers C., Pincemail J., Defraigne J.O., Dommes J. Antioxidant capacity of small dark fruits: Influence of cultivars and harvest time. J. Berry Res. 2014;4:97–105.

Wu R., Frei B., Kennedy J.A., Zhao Y. Effects of refrigerated storage and processing technologies on the bioactive compounds and antioxidant capacities of “Marion” and “Evergreen” blackberries. LWT Food Sci. Technol. 2010;43:1253–1264. doi: 10.1016/j.lwt.2010.04.002. DOI

Koca I., Karadeniz B. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci. Hortic. 2009;121:447–450. doi: 10.1016/j.scienta.2009.03.015. DOI

Denardin C.C., Hirsch G.E., da Rocha R.F., Vizzotto M., Henriques A.T., Moreira J.C.F., Guma F.T.C.R., Emanuelli T. Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J. Food Drug Anal. 2015 doi: 10.1016/j.jfda.2015.01.006. PubMed DOI PMC

Hager T.J., Howard L.R., Prior R.L. Processing and storage effects on the ellagitannin composition of processed blackberry products. J. Agric. Food Chem. 2010;58:11749–11754. doi: 10.1021/jf102964b. PubMed DOI

Gancel A.L., Feneuil A., Acosta O., Pérez A.M., Vaillant F. Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus) Food Res. Int. 2011;44:2243–2251. doi: 10.1016/j.foodres.2010.06.013. DOI

Wang W.D., Xu S.Y. Degradation kinetics of anthocyanins in blackberry juice and concentrate. J. Food Eng. 2007;82:271–275. doi: 10.1016/j.jfoodeng.2007.01.018. DOI

Kolniak-Ostek J., Kucharska A.Z., Sokół-Łętowska A., Fecka I. Characterization of phenolic compounds of thorny and thornless blackberries. J. Agric. Food Chem. 2015;63:3012–3021. doi: 10.1021/jf5039794. PubMed DOI

Cho M.J., Howard L.R., Prior R.L., Clark J.R. Flavonoid glycosides and antioxidant capacity of various blackberry, blueberry, and red grape genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2004;84:1771–1782. doi: 10.1002/jsfa.1885. DOI

Mertz C., Cheynier V., Gunata Z., Brat P. Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 2007;55:8616–8624. doi: 10.1021/jf071475d. PubMed DOI

Acosta-Montoya Ó., Vaillant F., Cozzano S., Mertz C., Pérez A.M., Castro M.V. Phenolic content and antioxidant capacity of tropical highland blackberry (Rubus adenotrichus Schltdl.) during three edible maturity stages. Food Chem. 2010;119:1497–1501.

Brownmiller C.R., Howard L.R., Prior R.L. Processing and storage effects on procyanidin composition and concentration of processed blueberry products. J. Agric. Food Chem. 2009;57:1896–1902. doi: 10.1021/jf803015s. PubMed DOI

Jiao Z., Liu J., Wang S. Antioxidant Activities of Blackberry Pigment Extract. Food Technol. Biotechnol. 2005;43:97–102.

Johnson M.H., de Mejia E.G. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. J. Food Sci. 2012;77:141–148. doi: 10.1111/j.1750-3841.2011.02505.x. PubMed DOI

Penney B.G., McRae K.B., Bishop G.A. Second-crop N fertilization improves lowbush blueberry (Vaccinium angustifolium Ait.) production. Can. J. Plant Sci. 2003;83:149–155. doi: 10.4141/P02-057. DOI

Harb J., Khraiwesh B., Streif J., Reski R., Frank W. Characterization of blueberry monodehydroascorbate reductase gene and changes in levels of ascorbic acid and the antioxidative capacity of water soluble antioxidants upon storage of fruits under various conditions. Sci. Hortic. 2010;125:390–395. doi: 10.1016/j.scienta.2010.04.031. DOI

Sinelli N., Spinardi A., di Egidio V., Mignani I., Casiraghi E. Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol. Technol. 2008;50:31–36. doi: 10.1016/j.postharvbio.2008.03.013. DOI

Paes J., Dotta R., Barbero G.F., Martínez J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids. 2014;95:8–16. doi: 10.1016/j.supflu.2014.07.025. DOI

Gündüz K., Serçe S., Hancock J.F. Variation among highbush and rabbiteye cultivars of blueberry for fruit quality and phytochemical characteristics. J. Food Compos. Anal. 2015;38:69–79. doi: 10.1016/j.jfca.2014.09.007. DOI

Golding J.B., Bladesa B.L., Satyana S., Jessupa A.J., Spohra L.J., Harrisa A.M., Banosc C., Davies J.B. Low dose gamma irradiation does not affect the quality, proximate or nutritional profile of ‘Brigitta’ blueberry and ‘Maravilla’ raspberry fruit. Postharvest Biol. Technol. 2014;96:49–52. doi: 10.1016/j.postharvbio.2014.05.002. DOI

Barba F.J., Jäger H., Meneses N., Esteve M.J., Frígola A., Knorr D. Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov. Food Sci. Emerg. Technol. 2012;14:18–24. doi: 10.1016/j.ifset.2011.12.004. DOI

Calò R., Marabini L. Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells) J. Photochem. Photobiol. B Biol. 2014;132:27–35. doi: 10.1016/j.jphotobiol.2014.01.013. PubMed DOI

Shen C.-L., von Bergen V., Chyu M.-C., Jenkins M.R., Mo H., Chen C.-H., Kwun I.-S. Fruits and dietary phytochemicals in bone protection. Nutr. Res. 2012;32:897–910. doi: 10.1016/j.nutres.2012.09.018. PubMed DOI

Al-Awwadi N.A., Araiz C., Bornet A., Delbosc S., Cristol J.P., Linck N., Azay J., Teissedre P.-L., Cros G. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in highfructose-fed rats. J. Agric. Food Chem. 2005;53:151–157. doi: 10.1021/jf048919f. PubMed DOI

Martineau L.C., Couture A., Spoor D., Benhaddou-Andaloussi A., Harris C., Meddah B., Leduca C., Burtc A., Vuonga T., Le P.M., et al. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Aiton. Phytomedicine. 2006;13:612–623. doi: 10.1016/j.phymed.2006.08.005. PubMed DOI

Stull A.J., Cash K.C., Johnson W.D., Champagne C.M., Cefalu W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010;140:1764–1768. doi: 10.3945/jn.110.125336. PubMed DOI PMC

Basu A., Du M., Leyva M.J., Sanchez K., Betts N.M., Wu M., Aston C.E., Lyons T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010;140:1582–1587. doi: 10.3945/jn.110.124701. PubMed DOI PMC

Prior R.L., Wu X., Gu L., Hager T., Hager A., Wilkes S., Howard L. Purified berry anthocyanins but not whole berries normalize lipid parameters in mice fed an obesogenic high fat diet. Mol. Nutr. Food Res. 2009;53:1406–1418. doi: 10.1002/mnfr.200900026. PubMed DOI

Wu X., Kang J., Xie C., Burris R., Ferguson M.E., Badger T.M., Nagarajan S. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J. Nutr. 2010;140:1628–1632. doi: 10.3945/jn.110.123927. PubMed DOI

Del Bo′ C., Riso P., Campolo J., Møller P., Loft S., Klimis-Zacas D., Brambilla A., Rizzolo A., Porrini M. A single portion of blueberry (Vaccinium corymbosum L.) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr. Res. 2013;33:220–227. PubMed

Adams L.S., Phung S., Yee N., Seeram N.P., Li L., Chen S. Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2010;70:3594–3605. doi: 10.1158/0008-5472.CAN-09-3565. PubMed DOI PMC

Samad N.B., Debnath T., Ye M., Hasnat M.A., Lim B.O. In vitro antioxidant and anti-inflammatory activities of Korean blueberry (Vaccinium corymbosum L.) extracts. Asian Pac. J. Trop. Biomed. 2014;4:807–815. doi: 10.12980/APJTB.4.2014C1008. DOI

Schantz M., Mohn C., Baum M., Richling E. Antioxidative efficiency of an anthocyanin rich bilberry extract in the human colon tumor cell lines Caco-2 and HT-29. J. Berry Res. 2010;1:25–33.

Liu J., Zhang W., Jing H., Popovich D.G. Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured Hep-G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability. J. Food Sci. 2010;75:103–107. doi: 10.1111/j.1750-3841.2010.01546.x. PubMed DOI

Srivastava A., Akoh C.C., Fischer J., Krewer G. Effect of anthocyanin fractions from selected cultivars of Georgia-grown blueberries on apoptosis and phase II enzymes. J. Agric. Food Chem. 2007;55:3180–3185. doi: 10.1021/jf062915o. PubMed DOI

Chen P.N., Chu S.C., Chiou H.L., Chiang C.L., Yang S.F., Hsieh Y.S. Cyanidin 3-glucoside and peonidin 3-glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth in vivo. Nutr. Cancer. 2005;53:232–243. doi: 10.1207/s15327914nc5302_12. PubMed DOI

Yun J.M., Afaq F., Khan N., Mukhtar H. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, induces apoptosis and cell cycle arrest in human colon cancer HCT116 cells. Mol. Carcinog. 2009;48:260–270. doi: 10.1002/mc.20477. PubMed DOI PMC

Giovanelli G., Brambilla A., Rizzolo A., Sinelli N. Effects of blanching pre-treatment and sugar composition of the osmotic solution on physico-chemical, morphological and antioxidant characteristics of osmodehydrated blueberries (Vaccinium corymbosum L.) Food Res. Int. 2012;49:263–271. doi: 10.1016/j.foodres.2012.08.015. DOI

Chong C., Law C., Figiel A., Wojdyło A., Oziembłowski M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 2013;141:3889–3896. doi: 10.1016/j.foodchem.2013.06.042. PubMed DOI

Lohachoompol V., Srzednicki G., Craske J. The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. J. Biomed. Biotechnol. 2004;5:248–252. doi: 10.1155/S1110724304406123. PubMed DOI PMC

Zielinska M., Sadowski P., Błaszczak W. Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.) LWT Food Sci. Technol. 2015;62:555–563. doi: 10.1016/j.lwt.2014.08.002. DOI

Yang G., Yue J., Gong X., Qian B., Wang H., Deng Y., Zhao Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014;92:46–53. doi: 10.1016/j.postharvbio.2014.01.018. DOI

Taruscio T.G., Barney D.L., Exon J. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium. berries. J. Agric. Food Chem. 2004;52:3169–3176. doi: 10.1021/jf0307595. PubMed DOI

Pertuzatti P.B., Barcia M.T., Rodrigues D., da Cruz P.N., Hermosín-Gutiérrez I., Smith R., Godoy H.T. Antioxidant activity of hydrophilic and lipophilic extracts of Brazilian blueberries. Food Chem. 2014;164:81–88. doi: 10.1016/j.foodchem.2014.04.114. PubMed DOI

Rodarte Castrejón A.D., Eichholz I., Rohn S., Kroh L.W., Huyskens-Keil S. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 2008;109:567–572.

Yousef G.G., Brown A.F., Funakoshi Y., Mbeunkui F., Grace M.H., Ballington J.R., Loraine A., Lila M.A. Efficient quantification of the health-relevant anthocyanin and phenolic acid profiles in commercial cultivars and breeding selections of blueberries (Vaccinium spp.) J. Agric. Food Chem. 2013;61:4806–4815. doi: 10.1021/jf400823s. PubMed DOI

You Q., Wang B., Chen F., Huang Z., Wang X., Luo P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011;125:201–208. doi: 10.1016/j.foodchem.2010.08.063. DOI

Forney C.F., Kalt W., Jordan M.A., Vinqvist-Tymchuk M.R., Fillmore S.A.E. Blueberry and cranberry fruit composition during development. J. Berry Res. 2012;2:169–177.

Reque P.M., Steffens R.S., Jablonski A., Flôres S.H., de O Rios A., de Jong E.V. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. J. Food Compos. Anal. 2014;33:111–116. doi: 10.1016/j.jfca.2013.11.007. DOI

Giovanelli G., Brambilla A., Sinelli N. Effects of osmo-air dehydration treatments on chemical, antioxidant and morphological characteristics of blueberries. LWT Food Sci. Technol. 2013;54:577–584. doi: 10.1016/j.lwt.2013.06.008. DOI

Correa-Betanzo J., Padmanabhan P., Corredig M., Subramanian J., Paliyath G. Complex Formation of Blueberry (Vaccinium angustifolium) Anthocyanins during Freeze-Drying and Its Influence on Their Biological Activity. J. Agric. Food Chem. 2015;63:2935–2946. doi: 10.1021/acs.jafc.5b00016. PubMed DOI

Buran T.J., Sandhu A.K., Li Z., Rock Ch.R., Yang W.W., Gu L. Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. J. Food Eng. 2014;128:167–173. doi: 10.1016/j.jfoodeng.2013.12.029. DOI

Barnes J.S., Nguyen H.P., Shen S., Schug K.A. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography-electrospray ionization -ion -trap-time of flight-mass spectrometry. J. Chromatogr. A. 2009;1216:4728–4735. doi: 10.1016/j.chroma.2009.04.032. PubMed DOI

Rodriguez-Mateos A., Cifuentes-Gomez T., Tabatabaee S., Lecras C., Spencer J.P.E. Procyanidin, Anthocyanin, and Chlorogenic Acid Contents of Highbush and Lowbush Blueberries. J. Agric. Food Chem. 2012;60:5772–5778. doi: 10.1021/jf203812w. PubMed DOI

Mehra L.K., MacLean D.D., Shewfelt R.L., Smith K.C., Scherm H. Effect of postharvest biofumigation on fungal decay, sensory quality, and antioxidant levels of blueberry fruit. Postharvest Biol. Technol. 2013;85:109–115. doi: 10.1016/j.postharvbio.2013.05.007. DOI

Wang E., Yina Y., Xuc C., Liu J. Isolation of high-purity anthocyanin mixtures and monomers from blueberries using combined chromatographic techniques. J. Chromatogr. A. 2014;1327:39–48. doi: 10.1016/j.chroma.2013.12.070. PubMed DOI

Bunea A., Ruginã D., Sconţa Z., Pop R.M., Pintea A., Socaciu C., Tãbãran F., Grootaert C., Struijs K., VanCamp J. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry. 2013;95:436–444. doi: 10.1016/j.phytochem.2013.06.018. PubMed DOI

Stevenson D., Scalzo J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2012;2:179–189.

Barberis A., Spissu Y., Fadda A., Azara E., Bazzu G., Marceddu S., Angioni A., Sanna D., Schirra M., Serra P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015;67:214–223. doi: 10.1016/j.bios.2014.08.019. PubMed DOI

Harasym J., Oledzki R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition. 2014;30:511–517. doi: 10.1016/j.nut.2013.08.019. PubMed DOI

Vattem D.A., Ghaedian R., Shetty K. Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac. J. Clin. Nutr. 2005;14:120–130. PubMed

Dorofejeva K., Rakcejeva T., Galoburda R., Dukalska L., Kviesis J. Vitamin C content in Latvian cranberries dried in convective and microwave vacuum driers. Procedia Food Sci. 2011;1:433–440. doi: 10.1016/j.profoo.2011.09.067. DOI

Duthie S.J., McE Jenkinson A., Crozier A., Mullen W., Pirie L., Kyle J., Sheer Yap L., Christen P., Duthie G.G. The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur. J. Nutr. 2006;45:113–122. doi: 10.1007/s00394-005-0572-9. PubMed DOI

Rudy S., Dziki D., Krzykowski A., Gawlik-Dziki U., Polak R., Róžiło R., Kulig R. Influence of pre-treatments and freeze-drying temperature on the process kinetics and selected physico-chemical properties of cranberries (Vaccinium macrocarpon Ait.) LWT Food Sci. Technol. 2015;63:497–503. doi: 10.1016/j.lwt.2015.03.067. DOI

Chu Y.-F., Liu R.H. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes. Life Sci. 2005;77:1892–1901. doi: 10.1016/j.lfs.2005.04.002. PubMed DOI

Pedersen C.B., Kyle J., McE Jenkinson A., Gardner P.T., McPhail D.B., Duthie G.G. Effects of blueberry and cranberry juice consumption on the plasma antioxidant capacity of healthy female volunteers. Eur. J. Clin. Nutr. 2000;54:405–408. doi: 10.1038/sj.ejcn.1600972. PubMed DOI

Sun J., Marais J.P.J., Khoo C., LaPlante K., Vejborg R.M., Givskov M., Tolker-Nielsen T., Seeram N.P., Rowley D.C. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli. J. Funct. Foods. 2015;17:235–242. doi: 10.1016/j.jff.2015.05.016. PubMed DOI PMC

Ermel G., Georgeault S., Inisan C., Besnard M. Inhibition of Adhesion of Uropathogenic Escherichia coli Bacteria to Uroepithelial Cells by Extracts from Cranberry. J. Med. Food. 2012;15:126–134. doi: 10.1089/jmf.2010.0312. PubMed DOI

Burger O., Ofek I., Tabak M., Weiss E.I., Sharon N., Neeman I. A high molecular mass constituent of cranberry juice inhibits Helicobacter pylori adhesion to human gastric mucus. FEMS Immunol. Med. Microbiol. 2000;29:295–301. doi: 10.1111/j.1574-695X.2000.tb01537.x. PubMed DOI

McKay D.L., Blumberg J.B. Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr. Rev. 2007;65:490–502. doi: 10.1301/nr.2007.nov.490-502. PubMed DOI

Novotny J.A., Baer D.J., Khoo C., Gebauer S.K., Charron C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015;145:1185–1193. doi: 10.3945/jn.114.203190. PubMed DOI

Kahlon T.S., Smith G.E. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris) Food Chem. 2007;100:1182–1187. doi: 10.1016/j.foodchem.2005.10.066. DOI

Seeram N.P., Adams L.S., Hardy M.L., Heber D. Total cranberry extract versus its phytochemical constituents: Antiproliferative and synergistic effects against human tumor cell lines. J. Agric. Food Chem. 2004;52:2512–2517. doi: 10.1021/jf0352778. PubMed DOI

Vattem D.A., Jang H.D., Levin R., Shetty K. Synergism of cranberry phenolics with ellagic acid and rosmarinic acid for antimutagenic and DNA protection functions. J. Food Biochem. 2006;30:98–116. doi: 10.1111/j.1745-4514.2005.00063.x. DOI

Sun J., Liu R.H. Cranberry phytochemical extracts induce cell cycle arrest and apoptosis in human MCF-7 breast cancer cells. Cancer Lett. 2006;241:124–134. doi: 10.1016/j.canlet.2005.10.027. PubMed DOI

Vu K.D., Carlettini H., Bouvet J., Cote J., Doyon G., Sylvain J.-F., Lacroix M. Effect of different cranberry extracts and juices during cranberry juice processing on the antiproliferative activity against two colon cancer cell lines. Food Chem. 2012;132:959–967. doi: 10.1016/j.foodchem.2011.11.078. DOI

Yan X., Murphy B.T., Hammond G.B., Vinson J.A., Neto C.C. Antioxidant activities and antitumor screening of extracts from cranberry fruit (Vaccinium macrocarpon) J. Agric. Food Chem. 2002;50:5844–5849. doi: 10.1021/jf0202234. PubMed DOI

Carpenter J.L., Caruso F.L., Tata A., Vorsa N., Neto C.C. Variation in proanthocyanidin content and composition among commonly grown North American cranberry cultivars (Vaccinium macrocarpon) J. Sci. Food Agric. 2014;94:2738–2745. doi: 10.1002/jsfa.6618. PubMed DOI

Wang S.Y., Stretch A.W. Antioxidant Capacity in Cranberry Is Influenced by Cultivar and Storage Temperature. J. Agric. Food Chem. 2001;49:969–974. doi: 10.1021/jf001206m. PubMed DOI

Vollmannova A., Tomas J., Urminska D., Polakova Z., Melichacova S., Krizova L. Content of Bioactive Components in Chosen Cultivars of Cranberries (Vaccinium vitis-idaea L.) Czech. J. Food Sci. 2009;27:248–251.

Van den Heuvel J.E., Autio W.R. Early-season Air Temperature Affects Phenolic Production in “Early Black” Cranberry Fruit. Hort. Sci. 2008;43:1737–1741.

Çelik H., Özgen M., Serçec S., Kayad C. Phytochemical accumulation and antioxidant capacity at four maturity stages of cranberry fruit. Sci. Hortic. 2008;117:345–348. doi: 10.1016/j.scienta.2008.05.005. DOI

Côté J., Caillet S., Doyon G., Dussault D., Salmieri S., Lorenzo G., Sylvain J.-F., Lacroix M. Effects of juice processing on cranberry antioxidant properties. Food Res. Int. 2011;44:2907–2914. doi: 10.1016/j.foodres.2011.06.052. DOI

Biswas N., Balac P., Narlakanti S.K., Haque M.D.E., Hassan M.D.M. Identification of Phenolic Compounds in Processed Cranberries by HPLC Method. J. Nutr. Food Sci. 2013;3:181–186. doi: 10.4172/2155-9600.1000181. DOI

Rodríguez-Pérez C., Quirantes-Piné R., Contreras Mdel M., Uberos J., Fernández-Gutiérrez A., Segura-Carretero A. Assessment of the stability of proanthocyanidins and other phenolic compounds in cranberry syrup after gamma-irradiation treatment and during storage. Food Chem. 2015;174:392–399. doi: 10.1016/j.foodchem.2014.11.061. PubMed DOI

Mikulic-Petkovsek M., Slatnar A., Stampar F., Veberic R. HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012;135:2138–2146. doi: 10.1016/j.foodchem.2012.06.115. PubMed DOI

Viskelis P., Rubinskiene M., Jasutiene I., Sarkinas A., Daubaras R., Cesoniene L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009;74:157–161. doi: 10.1111/j.1750-3841.2009.01066.x. PubMed DOI

Brown P.N., Shipley P.R. Determination of Anthocyanins in Cranberry Fruit and Cranberry Fruit Products by High-Performance Liquid Chromatography with Ultraviolet Detection: Single-Laboratory Validation. J. AOAC Int. 2011;94:459–466. doi: 10.5740/jaoacint.11-142. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention

. 2022 Dec 22 ; 15 (1) : . [epub] 20221222

Diversity of Phytochemical and Antioxidant Characteristics of Black Mulberry (Morus nigra L.) Fruits from Turkey

. 2022 Jul 08 ; 11 (7) : . [epub] 20220708

Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life

. 2020 Nov 13 ; 9 (11) : . [epub] 20201113

Effects of Different Factors on Concentration of Functional Components of Aronia and Saskatoon Berries

Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos)

. 2018 Dec 21 ; 24 (1) : . [epub] 20181221

Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases

. 2017 Jun 07 ; 22 (6) : . [epub] 20170607

Black Crowberry (Empetrum nigrum L.) Flavonoids and Their Health Promoting Activity

. 2016 Dec 07 ; 21 (12) : . [epub] 20161207

Quercetin and Its Anti-Allergic Immune Response

. 2016 May 12 ; 21 (5) : . [epub] 20160512

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace