Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36615704
PubMed Central
PMC9824062
DOI
10.3390/nu15010046
PII: nu15010046
Knihovny.cz E-zdroje
- Klíčová slova
- Mediterranean diet, anti-inflammatory foods, high blood pressure, western diet,
- MeSH
- DASH dieta * MeSH
- dieta MeSH
- hypertenze * epidemiologie prevence a kontrola MeSH
- krevní tlak MeSH
- ovoce MeSH
- randomizované kontrolované studie jako téma MeSH
- vitaminy MeSH
- zelenina MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vitaminy MeSH
Western-type diet with high salt and sugar, sedentary behavior, obesity, tobacco and alcoholism are important risk factors for hypertension. This review aims to highlight the role of western diet-induced oxidative stress and inflammation in the pathogenesis of hypertension and the role of various types of diets in its prevention with reference to dietary approaches to stop hypertension (DASH) diet. It seems that it is crucial to alter the western type of diet because such diets can also predispose all CVDs. Western diet-induced oxidative stress is characterized by excessive production of reactive oxygen species (ROS) with an altered oxidation-reduction (redox) state, leading to a marked increase in inflammation and vascular dysfunction. Apart from genetic and environmental factors, one important cause for differences in the prevalence of hypertension in various countries may be diet quality, deficiency in functional foods, and salt consumption. The role of the DASH diet has been established. However, there are gaps in knowledge about the role of some Indo-Mediterranean foods and Japanese foods, which have been found to decrease blood pressure (BP) by improving vascular function. The notable Indo-Mediterranean foods are pulses, porridge, spices, and millets; fruits such as guava and blackberry and vegetables, which may also decrease BPs. The Japanese diet consists of soya tofu, whole rice, in particular medical rice, vegetables and plenty of fish rich in fish oil, fish peptides and taurine that are known to decrease BPs. Epidemiological studies and randomized, controlled trials have demonstrated the role of these diets in the prevention of hypertension and metabolic diseases. Such evidence is still meager from Japan, although the prevalence of hypertension is lower (15-21%) compared to other developed countries, which may be due to the high quality of the Japanese diet. Interestingly, some foods, such as berries, guava, pumpkin seeds, carrots, soya beans, and spices, have been found to cause a decrease in BPs. Omega-3 fatty acids, fish peptide, taurine, dietary vitamin D, vitamin C, potassium, magnesium, flavonoids, nitrate and l-arginine are potential nutrients that can also decrease BPs. Larger cohort studies and controlled trials are necessary to confirm our views.
Department of Cardiology Emirates Hospital Dubai 999041 United Arab Emirates
Department of Internal Medicine Comenius University 813 72 Bratislava Slovakia
Department of Nutrition Faculty of Nutrition Kanazawa Gakuin University Kanazawa City 920 1392 Japan
Era Medical College Era University Lucknow 226001 India
Executive Vice President Kameda Seika Co Ltd Tokyo 160 0005 Japan
Halberg Hospital and Research Institute Moradabad 244001 India
Zobrazit více v PubMed
World Health Organization Non-Communicable Diseases. WHO. [(accessed on 30 October 2022)]. Available online: https://www.emro.who.int/entity/ncds/index.html.
Hypertension. [(accessed on 30 October 2022)]. Available online: https://www.who.int/health-topics/hypertension#tab=tab_1.
Wang J.-S., Liu W.-J., Lee C.-L. Associations of Adherence to the DASH Diet and the Mediterranean Diet with All-Cause Mortality in Subjects with Various Glucose Regulation States. Front. Nutr. 2022;9:828792. doi: 10.3389/fnut.2022.828792. PubMed DOI PMC
Nguyen T.N., Chow C.K. Global and national high blood pressure burden and control. Lancet. 2021;398:932–933. doi: 10.1016/S0140-6736(21)01688-3. PubMed DOI
Zhou B., Carrillo-Larco R.M., Danaei G., Riley L.M., Paciorek C.J., Stevens G.A., Gregg E.W., Bennett J.E., Solomon B., Singleton R.K., et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957–980. doi: 10.1016/S0140-6736(21)01330-1. PubMed DOI PMC
Waki T., Miura K., Tanaka-Mizuno S., Ohya Y., Node K., Itoh H., Rakugi H., Sato J., Goda K., Kitsuregawa M., et al. Prevalence of hypertensive diseases and treated hypertensive patients in Japan: A nationwide administrative claims database study. Hypertens. Res. 2022;45:1123–1133. doi: 10.1038/s41440-022-00924-1. PubMed DOI
Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601. PubMed DOI
Appel L.J., Brands M.W., Daniels S.R., Karanja N., Elmer P.J., Sacks F.M. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension. 2006;47:296–308. doi: 10.1161/01.HYP.0000202568.01167.B6. PubMed DOI
Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D., Obarzanek E., Conlin P.R., Miller E.R., Simons-Morton D.G., et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001;344:3–10. doi: 10.1056/NEJM200101043440101. PubMed DOI
Singh R., Suh I., Singh V., Chaithiraphan S., Laothavorn P., Sy R., Babilonia N., Rahman A., Sheikh S., Tomlinson B., et al. Hypertension and stroke in Asia: Prevalence, control and strategies in developing countries for prevention. J. Hum. Hypertens. 2000;14:749–763. doi: 10.1038/sj.jhh.1001057. PubMed DOI
Umemoto S., Onaka U., Kawano R., Kawamura A., Motoi S., Honda N., Kanazashi H., Mitarai M. Effects of a Japanese Cuisine-Based Antihypertensive Diet and Fish Oil on Blood Pressure and Its Variability in Participants with Untreated Normal High Blood Pressure or Stage I Hypertension: A Feasibility Randomized Controlled Study. J. Atheroscler. Thromb. 2022;29:152–173. doi: 10.5551/jat.57802. PubMed DOI PMC
Kawamura A., Kajiya K., Kishi H., Inagaki J., Mitarai M., Oda H., Umemoto S., Kobayashi S. Effects of the DASH-JUMP dietary intervention in Japanese participants with high-normal blood pressure and stage 1 hypertension: An open-label single-arm trial. Hypertens. Res. 2016;39:777–785. doi: 10.1038/hr.2016.76. PubMed DOI PMC
NIH-Supported DASH Diet Tops Rankings for “Heart-Healthy” and “Healthy Eating”. [(accessed on 30 October 2022)]; Available online: https://www.nhlbi.nih.gov/news/2021/nih-supported-dash-diet-tops-rankings-heart-healthy-and-healthy-eating.
Bazzano L.A., Green T., Harrison T.N., Reynolds K. Dietary Approaches to Prevent Hypertension. Curr. Hypertens. Rep. 2013;15:694–702. doi: 10.1007/s11906-013-0390-z. PubMed DOI PMC
Ndanuko R.N., Tapsell L.C., E Charlton K., Neale E.P., Batterham M.J. Dietary Patterns and Blood Pressure in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. Int. Rev. J. 2016;7:76–89. PubMed PMC
Guo R., Li N., Yang R., Liao X.-Y., Zhang Y., Zhu B.-F., Zhao Q., Chen L., Zhang Y.-G., Lei Y. Effects of the Modified DASH Diet on Adults with Elevated Blood Pressure or Hypertension: A Systematic Review and Meta-Analysis. Front. Nutr. 2021;8:621. doi: 10.3389/fnut.2021.725020. PubMed DOI PMC
Steinberg D., Bennett G.G., Svetkey L. The DASH Diet, 20 Years Later. JAMA. 2017;317:1529–1530. doi: 10.1001/jama.2017.1628. PubMed DOI PMC
Singh R.B., Sircar A.R., Rastogi S.S., Ghosh S., Singh R. Can diet modulate blood pressure and blood lipids in hypertension? J. Nutr. Med. 1991;2:17–24.
Singh R.B., Rastogi S.S., Mani U.V., Seth J., Devi L. How dietary minerals reduce blood lipids in subjects with risk factors of cardiovascular disease. Trace Elem. Med. 1991;8:29–33.
Singh R.B., Rastogi S.S., Niaz M.A., Ghosh sS., Singh R., Gupta S. Effect of fat-modified and fruit- and vegetable-enriched diets on blood lipids in the Indian diet heart study. Am. J. Cardiol. 1992;70:869–874. doi: 10.1016/0002-9149(92)90729-I. PubMed DOI
De Lorgeril M., Renaud S., Salen P., Monjaud I., Mamelle N., Martin J.L., Guidollet J., Touboul P., Delaye J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343:1454–1459. PubMed
Singh R.B., Dubnov G., Niaz M.A., Ghosh S., Singh R., Rastogi S.S., Manor O., Pella D., Berry E.M. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): A randomised single-blind trial. Lancet. 2002;360:1455–1461. doi: 10.1016/S0140-6736(02)11472-3. PubMed DOI
Singh R.B., Rastogi S.S., Verma R., Laxmi B., Ghosh S., Niaz M.A. Randomised controlled trial of cardioprotective diet in patients with recent acute myocardial infarction: Results of one year follow up. BMJ. 1992;304:1015–1019. doi: 10.1136/bmj.304.6833.1015. PubMed DOI PMC
Singh R.B., Kumar A., Neki N.S., Pella D., Rastogi S.S., Basu T.K., Acharya S.N., Juneja L., Toru T., Otsuka K., et al. Diet and Lifestyle Guidelines and Desirable Levels of Risk Factors for Prevention of Cardiovascular Disease and Diabetes among Elderly Subjects. A Revised Scientific Statement of the International College of Cardiology and International College of Nutrition-2011. World Heart J. 2011;3:305–320.
Singh R.B., Fedacko J., Fatima G., Magomedova A., Watanabe S., Elkilany G. Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients. 2022;14:898. doi: 10.3390/nu14040898. PubMed DOI PMC
Filippou C.D., Tsioufis C.P., Thomopoulos C.G., Mihas C.C., Dimitriadis K.S., Sotiropoulou L.I., Chrysochoou C.A., Nihoyannopoulos P.I., Tousoulis D.M. Dietary approaches to stop hypertension (DASH) diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 2020;11:1150–1160. doi: 10.1093/advances/nmaa041. PubMed DOI PMC
Filippou C.D., Thomopoulos C.G., Kouremeti M.M., Sotiropoulou L.I., Nihoyannopoulos P.I., Tousoulis D.M., Tsioufis C.P. Mediterranean diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021;40:3191–3200. doi: 10.1016/j.clnu.2021.01.030. PubMed DOI
Bakaloudi D.R., Chrysoula L., Leonida I., Kotzakioulafi E., Theodoridis X., Chourdakis M. Impact of the level of adherence to the Mediterranean Diet on blood pressure: A systematic review and meta-analysis of observational studies. Clin. Nutr. 2021;40:5771–5780. doi: 10.1016/j.clnu.2021.10.002. PubMed DOI
Cowell O.R., Mistry N., Deighton K., Matu J., Griffiths A., Minihane A.M., Mathers J.C., Shannon O.M., Siervo M. Effects of a Mediterranean diet on blood pressure: A systematic review and meta-analysis of randomized controlled trials and observational studies. J. Hypertens. 2020;39:729–739. doi: 10.1097/HJH.0000000000002667. PubMed DOI
Ghosh S., Kumar M. Prevalence and associated risk factors of hypertension among persons aged 15–49 in India: A cross-sectional study. BMJ Open. 2019;9:e029714. doi: 10.1136/bmjopen-2019-029714. PubMed DOI PMC
Singh R.B., Fedacko J., Pella D., Macejova Z., Ghosh S., De A.K., Begom R., Tumbi Z.A., Memuna H., Vajpeyee S.K., et al. Prevalence and risk factors for prehypertension and hypertension in five Indian cities. Acta Cardiol. 2011;66:29–37. doi: 10.1080/AC.66.1.2064964. PubMed DOI
Singh R.B., Sircar A.R., Rastogi S.S. Dietary modulators of blood pressure in hypertension. Eur. J. Clin. Nutr. 1990;44:319–327. PubMed
Singh R.B., Rastogi S.S., Mehta P.J., Mody R., Garg V. Effect of diet and weight reduction in hypertension. Nutrition. 1990;6:297–302. PubMed
Singh R.B., Rastogi S.S., Sircar A.R., Mehta P.J., Sharma K.K. Dietary strategies for risk-factor modification to prevent cardiovascular diseases. Nutrition. 1991;7:210–214. PubMed
Singh R.B., A Niaz M., Bishnoi I., Singh U., Begum R., Rastogi S.S. Effect of low energy diet and weight loss on major risk factors, central obesity and associated disturbances in patients with essential hypertension. J. Hum. Hypertens. 1995;9:355–362. PubMed
Beegom R., Beegom R., Niaz M.A., Singh R.B. Diet, central obesity and prevalence of hypertension in the urban population of South India. Int. J. Cardiol. 1995;51:183–191. doi: 10.1016/0167-5273(95)02402-I. PubMed DOI
Singh R.B., Beegom R., Verma S.P., Haque M., Singh R., Mehta A.S., De A.K., Kundu S., Roy S., Krishnan A., et al. Association of dietary factors and other coronary risk factors with social class in women in five Indian cities. Asia Pac. J. Clin. Nutr. 2000;9:298–302. doi: 10.1046/j.1440-6047.2000.00177.x. PubMed DOI
Janus E.D., Postiglione A., Singh R.B., Lewis B., on behalf of the council on arteriosclerosis of the International Society and federation of Cardiology The modernization of Asia: Implications for coronary heart disease. Circulation. 1996;94:2671–2673. doi: 10.1161/01.CIR.94.11.2671. PubMed DOI
Singh R.B., Rastogi S.S., Singh R., Ghosh S., Niaz M.A. Effects of guava intake on serum total and high-density lipoprotein cholesterol levels and on systemic blood pressure. Am. J. Cardiol. 1992;70:1287–1291. doi: 10.1016/0002-9149(92)90763-O. PubMed DOI
Singh R.B., Indian Consensus Group Indian consensus for prevention of hypertension and coronary artery disease. A scientific statement of the Indian Society of Hypertension and International College of Nutrition. J. Nutr. Environ. Med. 1996;6:309–318. doi: 10.3109/13590849609007257. DOI
Singh R.B., Niaz A.M., Ghosh S., Agarwal P., Ahmad S., Begum R., Onouchi Z., Kummerow F.A. Randomized, controlled trial of antioxidant vitamins and cardioprotective diet on hyperlipidemia, oxidative stress, and development of experimental atherosclerosis: The diet and antioxidant trial on atherosclerosis (DATA) Cardiovasc. Drugs Ther. 1995;9:763–771. doi: 10.1007/BF00879869. PubMed DOI
GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393:1958–1972. doi: 10.1016/S0140-6736(19)30041-8. PubMed DOI PMC
Singh R.B., Fedacko J., Verma N., Maheshwari A., Joshi S., Bharadwaj K., Bowered O.A., Chibisov S., Kharlitskaya E. Can Potassium and Magnesium Deficiency Predispose to Variations in Blood Pressures and Aggravate Hypertension? World Heart J. 2021;13:115–120.
Singh R.B., Wilson D.W., Chibisov S., Kharlitskaya E., Abromova M. Effects of guava fruit intake on cardiometabolic diseases. In: Singh R.B., Watana S., Isaza A., editors. Functional Foods and Nutraceuticals in the Pathophysiology of Noncommunicable and Metabolic Diseases. Elsevier; Cambridge, UK: 2022.
Nanri A., Mizoue T., Shimazu T., Ishihara J., Takachi R., Noda M., Iso H., Sasazuki S., Sawada N., Tsugane S., et al. Dietary patterns and all-cause, cancer, and cardiovascular disease mortality in Japanese men and women: The Japan public health center-based prospective study. PLoS ONE. 2017;12:e0174848. doi: 10.1371/journal.pone.0174848. PubMed DOI PMC
Htun N.C., Suga H., Imai S., Shimizu W., Takimoto H. Food intake patterns and cardiovascular risk factors in Japanese adults: Analyses from the 2012 National Health and nutrition survey, Japan. Nutr. J. 2017;16:61. doi: 10.1186/s12937-017-0284-z. PubMed DOI PMC
Umesawa M., CIRCS Investigators. Kitamura A., Kiyama M., Okada T., Shimizu Y., Imano H., Ohira T., Nakamura M., Maruyama K., et al. Association between dietary behavior and risk of hypertension among Japanese male workers. Hypertens. Res. 2013;36:374–380. doi: 10.1038/hr.2012.205. PubMed DOI
Kokubo Y., Saito I., Iso H., Yamagishi K., Yatsuya H., Ishihara J., Maruyama K., Inoue M., Sawada N., Tsugane S., et al. Dietary magnesium intake and risk of incident coronary heart disease in men: A prospective cohort study. Clin. Nutr. 2017;37:1602–1608. doi: 10.1016/j.clnu.2017.08.006. PubMed DOI
Singh R.B., Rastogi S.S., Singh N.K., Ghosh S., Gupta S.H.O.B.H.A., Niaz M.A. Can guava fruit intake decrease blood pressure and blood lipids? J. Hum. Hypertens. 1993;7:33–38. PubMed
Xie H., Li J., Zhu X., Li J., Yin J., Ma T., Luo Y., He L., Bai Y., Zhang G., et al. Association between healthy lifestyle and the occurrence of cardiometabolic multimorbidity in hypertensive patients: A prospective cohort study of UK Biobank. Cardiovasc. Diabetol. 2022;21:1–12. doi: 10.1186/s12933-022-01632-3. PubMed DOI PMC
Cilli E., Ranieri J., Guerra F., Ferri C., Di Giacomo D. Cardiovascular disease, self-care and emotional regulation processes in adult patients: Balancing unmet needs and quality of life. Biopsychosoc. Med. 2022;16:1–9. doi: 10.1186/s13030-022-00249-y. PubMed DOI PMC
Oparil S., Acelajado M.C., Bakris G.L., Berlowitz D.R., Cífková R., Dominiczak A.F., Grassi G., Jordan J., Poulter N.R., Rodgers A., et al. Hypertension. Nat. Rev. Dis. Primers. 2018;22:18014. doi: 10.1038/nrdp.2018.14. PubMed DOI PMC
Feyh A., Bracero L., Lakhani H.V., Santhanam P., Shapiro J.I., Khitan Z., Sodhi K. Role of Dietary Components in Modulating Hypertension. J. Clin. Exp. Cardiol. 2016;7:433. doi: 10.4172/2155-9880.1000433. PubMed DOI PMC
Yamori Y., Taguchi T., Mori H., Mori M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J. Biomed. Sci. 2010;17:S21. doi: 10.1186/1423-0127-17-S1-S21. PubMed DOI PMC
Kato Y., Domoto T., Hiramitsu M., Katagiri T., Sato K., Miyake Y., Aoi S., Ishihara K., Ikeda H., Umei N., et al. Effect on Blood Pressure of Daily Lemon Ingestion and Walking. J. Nutr. Metab. 2014;2014:912684. doi: 10.1155/2014/912684. PubMed DOI PMC
Filipovic M.G., Aeschbacher S., Reiner M.F., Stivala S., Gobbato S., Bonetti N., Risch M., Risch L., Camici G., Luescher T.F., et al. Whole blood omega-3 fatty acid concentrations are inversely associated with blood pressure in young, healthy adults. J. Hypertens. 2018;36:1548–1554. doi: 10.1097/HJH.0000000000001728. PubMed DOI PMC
Nakamura H., Tsujiguchi H., Hara A., Kambayashi Y., Miyagi S., Nguyen T.T.T., Suzuki K., Tao Y., Sakamoto Y., Shimizu Y., et al. Dietary Calcium Intake and Hypertension: Importance of Serum Concentrations of 25-Hydroxyvitamin D. Nutrients. 2019;11:911. doi: 10.3390/nu11040911. PubMed DOI PMC
Sacks F.M., Brown L.E., Appel L. Combination of potassium, calcium and magnesium supplements in hypertension. Hypertension. 1995;26:950–956. doi: 10.1161/01.HYP.26.6.950. PubMed DOI
Gee L.C., Ahluwalia A. Dietary Nitrate Lowers Blood Pressure: Epidemiological, Pre-clinical Experimental and Clinical Trial Evidence. Curr. Hypertens. Rep. 2016;18:1–14. doi: 10.1007/s11906-015-0623-4. PubMed DOI PMC
Lidder S., Webb A.J. Vascular Effects of Dietary Nitrate (as Found in Green Leafy Vegetables and Beetroot) via the Nitrate-Nitrite-Nitric Oxide Pathway. Br. J. Clin. Pharmacol. 2013;75:677–696. doi: 10.1111/j.1365-2125.2012.04420.x. PubMed DOI PMC
McRae M.P. Therapeutic Benefits of l-Arginine: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2016;15:184–189. doi: 10.1016/j.jcm.2016.06.002. PubMed DOI PMC
Mozos I., Stoian D., Caraba A., Malainer C., Horbańczuk J.O., Atanasov A.G. Lycopene and Vascular Health. Front. Pharmacol. 2018;9:521. doi: 10.3389/fphar.2018.00521. PubMed DOI PMC
Wong A., Viola D., Bergen D., Caulfield E., Mehrabani J., Figueroa A. The effects of pumpkin seed oil supplementation on arterial hemodynamics, stiffness and cardiac autonomic function in postmenopausal women. Complement. Ther. Clin. Pract. 2019;37:23–26. doi: 10.1016/j.ctcp.2019.08.003. PubMed DOI
Khalesi S., Irwin C., Schubert M. Flaxseed Consumption May Reduce Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Trials. J. Nutr. 2015;145:758–765. doi: 10.3945/jn.114.205302. PubMed DOI
Sauder K.A., McCrea C.E., Ulbrecht J.S., Kris-Etherton P., West S.G. Pistachio Nut Consumption Modifies Systemic Hemodynamics, Increases Heart Rate Variability, and Reduces Ambulatory Blood Pressure in Well-Controlled Type 2 Diabetes: A Randomized Trial. J. Am. Heart Assoc. 2014;3:e000873. doi: 10.1161/JAHA.114.000873. PubMed DOI PMC
Potter A.S., Foroudi S., Stamatikos A., Patil B.S., Deyhim F. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults. Nutr. J. 2011;10:96. doi: 10.1186/1475-2891-10-96. PubMed DOI PMC
Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015;16:24673–24706. doi: 10.3390/ijms161024673. PubMed DOI PMC
Jayalath V.H., De Souza R.J., Sievenpiper J.L., Ha V., Chiavaroli L., Mirrahimi A., Di Buono M., Bernstein A.M., Leiter L.A., Kris-Etherton P., et al. Effect of Dietary Pulses on Blood Pressure: A Systematic Review and Meta-analysis of Controlled Feeding Trials. Am. J. Hypertens. 2013;27:56–64. doi: 10.1093/ajh/hpt155. PubMed DOI PMC
Wolfe K.L., Kang X., He X., Dong M., Zhang Q., Liu R.H. Cellular Antioxidant activity of common fruits. J. Agric. Food Chem. 2008;56:8418–8426. doi: 10.1021/jf801381y. PubMed DOI
Schwingshackl L., Schwedhelm C., Hoffmann G., Knüppel S., Iqbal K., Andriolo V., Bechthold A., Schlesinger S., Boeing H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. Int. Rev. J. 2017;8:793–803. doi: 10.3945/an.117.017178. PubMed DOI PMC
Chan Q., for the INTERMAP Research Group. Stamler J., Brown I.J., Daviglus M.L., Van Horn L., Dyer A.R., Griep L.M.O., Miura K., Ueshima H., et al. Relation of raw and cooked vegetable consumption to blood pressure: The INTERMAP Study. J. Hum. Hypertens. 2013;28:353–359. doi: 10.1038/jhh.2013.115. PubMed DOI PMC
Elkilany G., Singh R.B., Hristova K., Niaz M.A., Buttar H.S. Flavonoids consumption and the Risk of cardiovascular diseases. IJCN. 2022;22:34–38.
Vendrame S., Klimis-Zacas D. Potential Factors Influencing the Effects of Anthocyanins on Blood Pressure Regulation in Humans: A Review. Nutrients. 2019;11:1431. doi: 10.3390/nu11061431. PubMed DOI PMC
Clark J., Zahradka P., Taylor C.G. Efficacy of flavonoids in the management of high blood pressure. Nutr. Rev. 2015;73:799–822. doi: 10.1093/nutrit/nuv048. PubMed DOI
Maaliki D., Shaito A.A., Pintus G., El-Yazbi A., Eid A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019;45:57–65. doi: 10.1016/j.coph.2019.04.014. PubMed DOI
Driscoll K.S., Appathurai A., Jois M., Radcliffe J.E. Effects of herbs and spices on blood pressure. J. Hypertens. 2019;37:671–679. doi: 10.1097/HJH.0000000000001952. PubMed DOI
Kumari S. Effect of Guava in Blood Glucose and Lipid Profile in Healthy Human Subjects: A Randomized Controlled Study. J. Clin. Diagn. Res. 2016;10:BC04–BC07. doi: 10.7860/JCDR/2016/21291.8425. PubMed DOI PMC
Serban M.C., Sahebkar A., Zanchetti A., Mikhailidis D.P., Howard G., Antal D., Andrica F., Ahmed A., Aronow W.S., Muntner P., et al. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2016;5:e002713. doi: 10.1161/JAHA.115.002713. PubMed DOI PMC
Cigno E., Magagnoli C., Pierce M., Iglesias P. Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes. Wear. 2017;376–377:756–765. doi: 10.1016/j.wear.2017.01.010. DOI
Touyz R.M., Rios F.J., Alves-Lopes R., Neves K.B., Camargo L.L., Montezano A.C. Oxidative Stress: A unifying paradigm in hypertension. Can. J. Cardiol. 2020;36:659–670. doi: 10.1016/j.cjca.2020.02.081. PubMed DOI PMC
Jiang S., Liu H., Li C. Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods. 2021;10:1854. doi: 10.3390/foods10081854. PubMed DOI PMC
Skinner R.C., Warren D.C., Naveed M., Agarwal G., Benedito V.A., Tou J.C. Apple pomace improves liver and adipose inflammatory and antioxidant status in young female rats consuming a Western diet. J. Funct. Foods. 2019;61:103471. doi: 10.1016/j.jff.2019.103471. DOI
Jeyapal S., Kona S.R., Mullapudi S.V., Putcha U.K., Gurumurthy P., Ibrahim A. Substitution of linoleic acid with α-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci. Rep. 2018;8:10953. doi: 10.1038/s41598-018-29222-y. PubMed DOI PMC
Tanaka M., Itoh H. Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Curr. Hypertens. Rep. 2019;21:63. doi: 10.1007/s11906-019-0964-5. PubMed DOI PMC
Gay H.C., Rao S.G., Vaccarino V., Ali M.K. Effects of different dietary interventions on blood pressure: Systematic review and meta-analysis of randomized controlled trials. Hypertension. 2016;67:733–739. doi: 10.1161/HYPERTENSIONAHA.115.06853. PubMed DOI
Petersen K.S., Davis K.M., Rogers C.J., Proctor D.N., West S.G., Kris-Etherton P.M. Herbs and spices at a relatively high culinary dosage improves 24-hour ambulatory blood pressure in adults at risk of cardiometabolic diseases: A randomized, crossover, controlled-feeding study. Am. J. Clin. Nutr. 2021;114:1936–1948. doi: 10.1093/ajcn/nqab291. PubMed DOI PMC
Mokhtari Z., Sharafkhah M., Poustchi H., Sepanlou S.G., Khoshnia M., Gharavi A., Sohrabpour A.A., Sotoudeh M., Dawsey S.M., Boffetta P., et al. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and risk of total and cause-specific mortality: Results from the Golestan Cohort Study. Int. J. Epidemiol. 2019;48:1824–1838. doi: 10.1093/ije/dyz079. PubMed DOI PMC
Soltani S., Arablou T., Jayedi A., Salehi-Abargouei A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020;19:37. doi: 10.1186/s12937-020-00554-8. PubMed DOI PMC
Sotos-Prieto M., Bhupathiraju S.N., Mattei J., Fung T.T., Li Y., Pan A., Willett W.C., Rimm E.B., Hu F.B. Association of Changes in Diet Quality with Total and Cause-Specific Mortality. N. Engl. J. Med. 2017;377:143–153. doi: 10.1056/NEJMoa1613502. PubMed DOI PMC
Muntner P., Carey R.M., Gidding S., Jones D.W., Taler S.J., Wright J.T., Jr., Whelton P.K. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation. 2018;137:109–118. doi: 10.1161/CIRCULATIONAHA.117.032582. PubMed DOI PMC
Garofolo L., Barros N., Jr., Miranda F., Jr., D’Almeida V., Cardien L.C., Ferreira S.R. Association of increased levels of homocysteine and peripheral arterial disease in a Japanese-Brazilian population. Eur. J. Vasc. Endovasc. Surg. 2007;34:23–28. doi: 10.1016/j.ejvs.2007.02.008. PubMed DOI
Gimeno S.G.A., Hirai A.T., Harima H.A., Kikuchi M.Y., Simony R.F., de Barros N., Jr., Cardoso M.A., Ferreira S.R.G., Japanese-Brazilian Diabetes Study Group Fat and fiber consumption are associated with peripheral arterial disease in a cross-sectional study of a Japanese-Brazilian population. Circ. J. 2008;72:44–50. doi: 10.1253/circj.72.44. PubMed DOI
Damiao R., Castro T.G., Cardoso M.A., Gimeno S.G., Ferreira S.R., Japanese–Brazilian Diabetes Study Group Dietary intakes associated with metabolic syndrome in a cohort of Japanese ancestry. Br. J. Nutr. 2006;96:532–538. PubMed