Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK PrF
PubMed
33202871
PubMed Central
PMC7698232
DOI
10.3390/antiox9111123
PII: antiox9111123
Knihovny.cz E-zdroje
- Klíčová slova
- anti-aging, antioxidants, bioactive compounds, edible fruits, free radicals, health benefits, life extension,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aging is a complicated biological process in which functional and structural alterations in a living organism take place over time. Reactive oxygen species is one of the main factors responsible for aging and is associated with several chronic pathologies. The relationship between aging and diet is quite interesting and has attained worldwide attention. Healthy food, in addition to dietary antioxidants, are required to delay the process of aging and improve the quality of life. Many healthy foods such as fruits are a good source of dietary nutrients and natural bioactive compounds which have antioxidant properties and are involved in preventing aging and other age-related disorders. Health benefits linked with healthy consumption of fruit have drawn increased interest. A significant number of studies have documented the advantages of fruit intake, as it suppresses free-radical development that further reduces the oxidative stress created in the body and protects against several types of diseases such as cancer, type 2 diabetes, inflammatory disorders, and other cardiovascular diseases that ultimately prevent aging. In addition, fruits have numerous other properties like anti-inflammatory, anti-cancerous, anti-diabetic, neuroprotective, and have health-promoting effects. Mechanisms of various bioactive compounds that aids in preventing various diseases and increases longevity are also described. This manuscript provides a summary of various bioactive components present in fruits along with their health-promoting and antiaging properties.
Himalayan Forest Research Institute Shimla H P 171009 India
School of Water Energy and Environment Cranfield University Cranfield MK430AL UK
Zobrazit více v PubMed
Ho Y.S., So K.F., Chang R.C.C. Anti-aging herbal medicine—How and why can they be used in aging-associated neurodegenerative diseases? Ageing Res. Rev. 2010;9:354–362. doi: 10.1016/j.arr.2009.10.001. PubMed DOI
Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019;15:565–581. doi: 10.1038/s41582-019-0244-7. PubMed DOI
Si H., Liu D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 2014;25:581–591. doi: 10.1016/j.jnutbio.2014.02.001. PubMed DOI PMC
Harman D. Free radical theory of aging: An update: Increasing the functional life span. Ann. N. Y. Acad. Sci. 2006;1067:10–21. doi: 10.1196/annals.1354.003. PubMed DOI
Peng C., Wang X., Chen J., Jiao R., Wang L., Li Y.M., Zuo Y., Liu Y., Lei L., Ma K.Y., et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014;2014:1–14. doi: 10.1155/2014/831841. PubMed DOI PMC
Bhattacharya S. Reactive Oxygen Species and Cellular Defense System. In: Rani V., Yadav U.C.S., editors. Free Radicals in Human Health and Disease. Springer; New Delhi, India: 2015. pp. 17–29.
Diaconeasa Z., Iuhas C.I., Ayvaz H., Rugină D., Stanilă A., Dulf F., Bunea A., Socaci S.A., Socaciu C., Pintea A. Phytochemical characterization of commercial processed blueberry, blackberry, blackcurrant, cranberry, and raspberry and their antioxidant activity. Antioxidants. 2019;8:540. doi: 10.3390/antiox8110540. PubMed DOI PMC
Uttara B., Singh A.V., Zamboni P., Mahajan R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009;7:65–74. doi: 10.2174/157015909787602823. PubMed DOI PMC
Martel J., Ojcius D.M., Ko Y.F., Chang C.J., Young J.D. Antiaging effects of bioactive molecules isolated from plants and fungi. Med. Res. Rev. 2019;39:1515–1552. doi: 10.1002/med.21559. PubMed DOI
Weindruch R., Walford R.L. Retardation of Aging and Disease by Dietary Restriction. CC Thomas; Springfield, IL, USA: 1988. pp. 339–397.
Gupta B., Kumar B., Sharma A., Sori D., Sharma R., Mehta S. Nutraceuticals for Antiaging. In: Gupta R.C., Srivastava A., Lall R., editors. Nutraceuticals in Veterinary Medicine. Springer; Cham, Switzerland: 2019. pp. 383–392.
Aversa R., Petrescu R.V., Apicella A., Petrescu F.I. One can slow down the aging through antioxidants. Am. J. Eng. Appl. Sci. 2016;9:1112–1126. doi: 10.3844/ajeassp.2016.1112.1126. DOI
Kaur C., Kapoor H.C. Antioxidants in fruits and vegetables–the millennium’s health. Int. J. Food Sci. Technol. 2001;36:703–725. doi: 10.1046/j.1365-2621.2001.00513.x. DOI
Paredes-López O., Cervantes-Ceja M.L., Vigna-Pérez M., Hernández-Pérez T. Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum. Nutr. 2010;65:299–308. doi: 10.1007/s11130-010-0177-1. PubMed DOI
Gomes-Rochette N., Da Silveira Vasconcelos M., Nabavi S.M., Mota E.F., Nunes-Pinheiro D.C.S., Daglia M., de Melo D.F. Fruit as potent natural antioxidants and their biological effects. Curr. Pharm. Biotechnol. 2016;17:986–993. doi: 10.2174/1389201017666160425115401. PubMed DOI
Vauzour D., Vafeiadou K., Rendeiro C., Corona G., Spencer J.P. The inhibitory effects of berry-derived flavonoids against neurodegenerative processes. J. Berry Res. 2010;1:45–52. doi: 10.3233/BR-2010-005. DOI
Giampieri F., Tulipani S., Alvarez-Suarez J.M., Quiles J.L., Mezzetti B., Battino M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition. 2012;28:9–19. doi: 10.1016/j.nut.2011.08.009. PubMed DOI
Blumberg J.B., Camesano T.A., Cassidy A., Kris-Etherton P., Howell A., Manach C., Ostertag L.M., Sies H., Ray A.S., Vita J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013;4:618–632. doi: 10.3945/an.113.004473. PubMed DOI PMC
Acero N., Gradillas A., Beltran M., García A., Mingarro D.M. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem. 2019;279:260–271. doi: 10.1016/j.foodchem.2018.12.008. PubMed DOI
Rinaldo D., Mbéguié-A-Mbéguié D., Fils-Lycaon B. Advances on polyphenols and their metabolism in sub-tropical and tropical fruits. Trends Food Sci. Technol. 2010;21:599–606. doi: 10.1016/j.tifs.2010.09.002. DOI
Williamson G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017;42:226–235. doi: 10.1111/nbu.12278. PubMed DOI PMC
Nile S.H., Park S.W. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014;30:134–144. doi: 10.1016/j.nut.2013.04.007. PubMed DOI
Wang S.Y., Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agric. Food Chem. 2000;48:5677–5684. doi: 10.1021/jf000766i. PubMed DOI
Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC
Lima G.P.P., Vianello F., Corrêa C.R., Campos R.A.D.S., Borguini M.G. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr. Sci. 2014;5:1065–1082. doi: 10.4236/fns.2014.511117. DOI
Joseph S.V., Edirisinghe I., Burton-Freeman B.M. Fruit polyphenols: A review of anti-inflammatory effects in humans. Crit. Rev. Food Sci. Nutr. 2016;56:419–444. doi: 10.1080/10408398.2013.767221. PubMed DOI
Cutrim C.S., Cortez M.A.S. A review on polyphenols: Classification, beneficial effects and their application in dairy products. Int. J. Dairy Technol. 2018;71:564–578. doi: 10.1111/1471-0307.12515. DOI
Nurmi T., Mursu J., Heinonen M., Nurmi A., Hiltunen R., Voutilainen S. Metabolism of berry anthocyanins to phenolic acids in humans. J. Agric. Food Chem. 2009;57:2274–2281. doi: 10.1021/jf8035116. PubMed DOI
Belščak-Cvitanović A., Durgo K., Huđek A., Bačun-Družina V., Komes D. Overview of polyphenols and their properties. In: Galanakis C.M., editor. Polyphenols: Properties, Recovery, and Applications. Elsevier; Amsterdam, The Netherlands: 2018. pp. 3–44.
Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrolstad R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002;50:519–525. doi: 10.1021/jf011062r. PubMed DOI
Kasiotis K.M., Pratsinis H., Kletsas D., Haroutounian S.A. Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food Chem. Toxicol. 2013;61:112–120. doi: 10.1016/j.fct.2013.03.038. PubMed DOI
Li Y.R., Li S., Lin C.C. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors. 2018;44:69–82. doi: 10.1002/biof.1400. PubMed DOI
Boots A.W., Haenen G.R., Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI
Viña J., Borrás C., Miquel J. Theories of ageing. IUBMB Life. 2007;59:249–254. doi: 10.1080/15216540601178067. PubMed DOI
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI
Bagchi K., Puri S. Free radicals and antioxidants in health and disease: A review. East. Mediterr. Health J. 1998;4:350–360.
Ebadi M. Antioxidants and free radicals in health and disease: An introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Crit. Rev. Toxicol. 2001;38:13–71.
Scapagnini G., Caruso C., Spera G. Preventive medicine and healthy longevity: Basis for sustainable anti-aging strategies. In: Scuderi N., Toth B.A., editors. International Textbook of Aesthetic Surgery. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1213–1227.
Young I.S., Woodside J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001;54:176–186. doi: 10.1136/jcp.54.3.176. PubMed DOI PMC
Vaiserman A.M., Lushchak V., Koliada A.K. Anti-aging pharmacology: Promises and pitfalls. Ageing Res. Rev. 2016;31:9–35. doi: 10.1016/j.arr.2016.08.004. PubMed DOI
Ďuračková Z. Some current insights into oxidative stress. Physiol. Res. 2010;59:459–469. PubMed
Dhalaria R., Kumar D., Kumar H., Nepovimova E., Kuča K., Torequl Islam M., Verma R. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy. 2020;10:815. doi: 10.3390/agronomy10060815. DOI
Marklund S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 1984;222:649–655. doi: 10.1042/bj2220649. PubMed DOI PMC
Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC
Santos--Sánchez N.F., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidant compounds and their antioxidant mechanism. In: Shalaby E., editor. Antioxidants. IntechOpen; London, UK: 2019. pp. 1–28.
Alhasawi A., Legendre F., Jagadeesan S., Appanna V., Appanna V. Biochemical Strategies to Counter Nitrosative Stress: Nanofactories for Value-Added Products. In: Das S., Dash H.R., editors. Microbial Diversity in the Genomic Era. Elsevier; Amsterdam, The Netherlands: 2019. pp. 153–169.
Momtaz S., Abdollahi M. A comprehensive review of biochemical and molecular evidences from animal and human studies on the role of oxidative stress in aging: An epiphenomenon or the cause. [(accessed on 4 November 2020)];Asian J. Anim. Vet. Adv. 2012 :1–18. Available online: http://hdl.handle.net/2263/19369.
Jay D., Hitomi H., Griendling K.K. Oxidative stress and diabetic cardiovascular complications. Free Radic. Biol. Med. 2006;40:183–192. doi: 10.1016/j.freeradbiomed.2005.06.018. PubMed DOI
Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI
Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC
Bhat A.H., Dar K.B., Anees S., Zargar M.A., Masood A., Sofi M.A., Ganie S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 2015;74:101–110. doi: 10.1016/j.biopha.2015.07.025. PubMed DOI
Khanthapok P., Sukrong S. Anti-aging and health benefits from Thai food: Protective effects of bioactive compounds on the free radical theory of aging. J. Food Health Bioenviron. Sci. 2019;12:54–67.
Naczk M., Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111. doi: 10.1016/S0021-9673(04)01409-8. PubMed DOI
Olas B. Berry phenolic antioxidants–implications for human health? Front. Pharmacol. 2018;9:1–14. doi: 10.3389/fphar.2018.00078. PubMed DOI PMC
Szajdek A., Borowska E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008;63:147–156. doi: 10.1007/s11130-008-0097-5. PubMed DOI
Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154. PubMed DOI PMC
Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015;16:24673–24706. doi: 10.3390/ijms161024673. PubMed DOI PMC
Orena S., Owen J., Jin F., Fabian M., Gillitt N.D., Zeisel S.H. Extracts of fruits and vegetables activate the antioxidant response element in IMR-32 cells. J. Nutr. 2015;145:2006–2011. doi: 10.3945/jn.115.216705. PubMed DOI
Ahmed S.M.U., Luo L., Namani A., Wang X.J., Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:585–597. doi: 10.1016/j.bbadis.2016.11.005. PubMed DOI
Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102:777–783. doi: 10.1016/j.foodchem.2006.06.021. DOI
U.S. Department of Agriculture, Agricultural Research Service Food Data Central. [(accessed on 24 July 2020)]; Available online: fdc.nal.usda.gov.
Arrigoni O., De Tullio M.C. Ascorbic acid: Much more than just an antioxidant. Biochem. Biophys. Acta Gen. Subj. 2002;1569:1–9. doi: 10.1016/S0304-4165(01)00235-5. PubMed DOI
Wu X., Cheng J., Wang X. Dietary antioxidants: Potential anticancer agents. Nutr. Cancer. 2017;69:521–533. doi: 10.1080/01635581.2017.1299872. PubMed DOI
Nimse S.B., Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006. doi: 10.1039/C4RA13315C. DOI
Niki E., Noguchi N., Tsuchihashi H., Gotoh N. Interaction among vitamin C, vitamin E, and beta-carotene. Am. J. Clin. Nutr. 1995;62:1322S–1326S. doi: 10.1093/ajcn/62.6.1322S. PubMed DOI
Monaghan B.R., Schmitt F.O. The effects of carotene and of vitamin A on the oxidation of linoleic acid. J. Biol. Chem. 1932;96:387–395.
Livrea M.A., Tesoriere L., Bongiorno A., Pintaudi A.M., Ciaccio M., Riccio A. Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radic. Biol. Med. 1995;18:401–409. doi: 10.1016/0891-5849(94)00151-9. PubMed DOI
Biesalski H.K., Dragsted L.O., Elmadfa I., Grossklaus R., Müller M., Schrenk D., Weber P. Bioactive compounds: Definition and assessment of activity. Nutrition. 2009;25:1202–1205. doi: 10.1016/j.nut.2009.04.023. PubMed DOI
Ortega A.M.M., Campos M.R.S. Bioactive Compounds as Therapeutic Alternatives. In: Campos M.R.S., editor. Bioactive Compounds. Elsevier; Amsterdam, The Netherlands: 2019. pp. 247–264.
Liu R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013;78:A18–A25. doi: 10.1111/1750-3841.12101. PubMed DOI
Fu L., Xu B.T., Xu X.R., Gan R.Y., Zhang Y., Xia E.Q., Li H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. PubMed DOI
Haminiuk C.W., Maciel G.M., Plata-Oviedo M.S., Peralta R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012;47:2023–2044. doi: 10.1111/j.1365-2621.2012.03067.x. DOI
Tabart J., Franck T., Kevers C., Pincemail J., Serteyn D., Defraigne J.O., Dommes J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012;131:1116–1122. doi: 10.1016/j.foodchem.2011.09.076. DOI
Selma M.V., Espin J.C., Tomas-Barberan F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009;57:6485–6501. doi: 10.1021/jf902107d. PubMed DOI
Rockenbach I.I., Rodrigues E., Gonzaga L.V., Caliari V., Genovese M.I., Gonçalves A.E.D.S.S., Fett R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011;127:174–179. doi: 10.1016/j.foodchem.2010.12.137. DOI
Badhani B., Sharma N., Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540–27557. doi: 10.1039/C5RA01911G. DOI
Russell W.R., Scobbie L., Labat A., Duthie G.G. Selective bio-availability of phenolic acids from Scottish strawberries. Mol. Nutr. Food Res. 2009;53:S85–S91. doi: 10.1002/mnfr.200800302. PubMed DOI
Usenik V., Fabcic J., Stampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.) Food Chem. 2008;107:185–192. doi: 10.1016/j.foodchem.2007.08.004. DOI
Boyer J., Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:1–15. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC
Gavrilova V., Kajdzanoska M., Gjamovski V., Stefova M. Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC− DAD− ESI-MSn. J. Agric. Food Chem. 2011;59:4009–4018. doi: 10.1021/jf104565y. PubMed DOI
Borges G., Degeneve A., Mullen W., Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010;58:3901–3909. doi: 10.1021/jf902263n. PubMed DOI
Kelebek H., Selli S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int. J. Food Sci. Technol. 2011;46:2530–2537. doi: 10.1111/j.1365-2621.2011.02777.x. DOI
Iglesias-Carres L., Mas-Capdevila A., Bravo F.I., Aragonès G., Muguerza B., Arola-Arnal A. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS ONE. 2019;14:e0211267. doi: 10.1371/journal.pone.0211267. PubMed DOI PMC
Jakobek L., Seruga M., Novak I., Medvidović-Kosanović M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Deut. Lebensm Rundsch. 2007;103:369–378.
Chu N.T., Clydesdale F.M., Francis F.J. Isolation and identification of some fluorescent phenolic compounds in cranberries. J. Food Sci. 1973;38:1038–1042. doi: 10.1111/j.1365-2621.1973.tb02143.x. DOI
Okatan V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hortic. 2020;32:79–85. doi: 10.2478/fhort-2020-0008. DOI
Hernanz D., Recamales A.F., Meléndez-Martínez A.J., González-Miret M.L., Heredia F.J. Assessment of the differences in the phenolic composition of five strawberry cultivars (Fragaria × ananassa Duch.) grown in two different soilless systems. J. Agric. Food Chem. 2007;55:1846–1852. doi: 10.1021/jf063189s. PubMed DOI
Häkkinen S.H., Törrönen A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000;33:517–524. doi: 10.1016/S0963-9969(00)00086-7. DOI
Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Lagana G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors. 2017;43:495–506. doi: 10.1002/biof.1363. PubMed DOI
Mozetic B., Trebse P., Hribar J. Determination and quantitation of anthocyanins and hydroxycinnamic acids in different cultivars of sweet cherries (Prunus avium L.) from Nova Gorica region (Slovenia) Food Technol. Biotechnol. 2002;40:207–212.
Bakowska-Barczak A.M., Kolodziejczyk P.P. Black currant polyphenols: Their storage stability and microencapsulation. Ind. Crops Prod. 2011;34:1301–1309. doi: 10.1016/j.indcrop.2010.10.002. DOI
Kahle K., Kraus M., Scheppach W., Ackermann M., Ridder F., Richling E. Studies on apple and blueberry fruit constituents: Do the polyphenols reach the colon after ingestion? Mol. Nutr. Food Res. 2006;50:418–423. doi: 10.1002/mnfr.200500211. PubMed DOI
Huang X., Mazza G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 2011;1218:3890–3899. doi: 10.1016/j.chroma.2011.04.049. PubMed DOI
Bobinaitė R., Viškelis P., Venskutonis P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012;132:1495–1501. doi: 10.1016/j.foodchem.2011.11.137. PubMed DOI
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC
Lu J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010;14:840–860. doi: 10.1111/j.1582-4934.2009.00897.x. PubMed DOI PMC
Castilla P., Dávalos A., Teruel J.L., Cerrato F., Fernández-Lucas M., Merino J.L., Sanchez-Marti C.C., Ortuno J., Lasunción M.A. Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am. J. Clin. Nutr. 2008;87:1053–1061. doi: 10.1093/ajcn/87.4.1053. PubMed DOI
Karasawa M.M.G., Mohan C. Fruits as prospective reserves of bioactive compounds: A review. Nat. Prod. Bioprospect. 2018;8:335–346. doi: 10.1007/s13659-018-0186-6. PubMed DOI PMC
Bastos C., Barros L., Dueñas M., Calhelha R.C., Queiroz M.J.R., Santos-Buelga C., Ferreira I.C. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015;173:1045–1053. doi: 10.1016/j.foodchem.2014.10.145. PubMed DOI
Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;24:1–10. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC
Sun J., Chu Y.F., Wu X., Liu R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002;50:7449–7454. doi: 10.1021/jf0207530. PubMed DOI
Singh J.P., Kaur A., Shevkani K., Singh N. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. J. Food Sci. Technol. 2016;53:4056–4066. doi: 10.1007/s13197-016-2412-8. PubMed DOI PMC
Natella F., Nardini M., Di Felice M., Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: Structure− activity relation. J. Agric. Food Chem. 1999;47:1453–1459. doi: 10.1021/jf980737w. PubMed DOI
Khan B.A., Mahmood T., Menaa F., Shahzad Y., Yousaf A.M., Hussain T., Ray S.D. New perspectives on the efficacy of gallic acid in cosmetics and nanocosmeceuticals. Curr. Pharm. Des. 2018;24:5181–5187. doi: 10.2174/1381612825666190118150614. PubMed DOI
Umar Lule S., Xia W. Food phenolics, pros and cons: A review. Food Rev. Int. 2005;21:367–388. doi: 10.1080/87559120500222862. DOI
Ruifeng G., Yunhe F., Zhengkai W., Yimeng L., Minjun Y., Xiaojing S., Zhengtao Y., Naisheng Z. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway. Eur. J. Pharmacol. 2014;729:54–58. doi: 10.1016/j.ejphar.2014.01.015. PubMed DOI
Ozcan T., Akpinar-Bayizit A., Yilmaz-Ersan L., Delikanli B. Phenolics in human health. Int. J. Chem. Eng. Appl. 2014;5:393–396. doi: 10.7763/IJCEA.2014.V5.416. DOI
Kumar H., Bhardwaj K., Nepovimova E., Kamil K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC
Gulcin I., Beydemir S. Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors. Mini-Rev. Med. Chem. 2013;13:408–430. PubMed
Thorat I.D., Jagtap D.D., Mohapatra D., Joshi D.C., Sutar R.F., Kapdi S.S. Antioxidants, their properties, uses in food products and their legal implications. Int. J. Food Stud. 2013;2:81–104. doi: 10.7455/ijfs/2.1.2013.a7. DOI
Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99:191–203. doi: 10.1016/j.foodchem.2005.07.042. DOI
Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013;2013:1–16. doi: 10.1155/2013/162750. PubMed DOI PMC
Kabera J.N., Semana E., Mussa A.R., He X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014;2:377–392.
Orhan D.D., Özçelik B., Özgen S., Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010;165:496–504. doi: 10.1016/j.micres.2009.09.002. PubMed DOI
Manthey J.A., Guthrie N., Grohmann K. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 2001;8:135–153. doi: 10.2174/0929867013373723. PubMed DOI
Hwang S.L., Shih P.H., Yen G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012;60:877–885. doi: 10.1021/jf204452y. PubMed DOI
Benavente-Garcia O., Castillo J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008;56:6185–6205. doi: 10.1021/jf8006568. PubMed DOI
Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI
Manthey J.A., Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 2002;50:5837–5843. doi: 10.1021/jf020121d. PubMed DOI
Casagrande F., Darbon J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem. Pharmacol. 2001;61:1205–1215. doi: 10.1016/S0006-2952(01)00583-4. PubMed DOI
Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem. 1999;63:896–899. doi: 10.1271/bbb.63.896. PubMed DOI
Pervaiz T., Songtao J., Faghihi F., Haider M.S., Fang J. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J. Plant Biochem. Physiol. 2017;5:1–9. doi: 10.4172/2329-9029.1000187. DOI
You Q., Wang B., Chen F., Huang Z., Wang X., Luo P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011;125:201–208. doi: 10.1016/j.foodchem.2010.08.063. DOI
Olivas-Aguirre F.J., Rodrigo-García J., Martínez-Ruiz N.D.R., Cárdenas-Robles A.I., Mendoza-Díaz S.O., Alvarez-Parrilla E., Gonzalez-Aguilar G.A., De la Rosa L.A., Ramos-Jimenez A., Wall-Medrano A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules. 2016;21:1264. doi: 10.3390/molecules21091264. PubMed DOI PMC
Smeriglio A., Barreca D., Bellocco E., Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016;30:1265–1286. doi: 10.1002/ptr.5642. PubMed DOI
Kong J.M., Chia L.S., Goh N.K., Chia T.F., Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry. 2003;64:923–933. doi: 10.1016/S0031-9422(03)00438-2. PubMed DOI
Yazhen S., Wenju W., Panpan Z., Yuanyuan Y., Panpan D., Wusen Z., Yanling W. Anthocyanins: Novel Antioxidants in Diseases Prevention and Human Health. In: Badria F.A., Ananga A., editors. Flavonoids-A Coloring Model for Cheering up Life. IntechOpen; London, UK: 2019. pp. 1–16.
Miguel M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci. 2011;1:7–15.
Srivastava A., Akoh C.C., Fischer J., Krewer G. Effect of anthocyanin fractions from selected cultivars of Georgia-grown blueberries on apoptosis and phase II enzymes. J. Agric. Food Chem. 2007;55:3180–3185. doi: 10.1021/jf062915o. PubMed DOI
Jimenez-Garcia S.N., Guevara-Gonzalez R.G., Miranda-Lopez R., Feregrino-Perez A.A., Torres-Pacheco I., Vazquez-Cruz M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013;54:1195–1207. doi: 10.1016/j.foodres.2012.11.004. DOI
Battino M., Beekwilder J., Denoyes-Rothan B., Laimer M., McDougall G.J., Mezzetti B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009;67:S145–S150. doi: 10.1111/j.1753-4887.2009.00178.x. PubMed DOI
Viskelis P., Rubinskienė M., Jasutienė I., Šarkinas A., Daubaras R., Česonienė L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009;74:C157–C161. doi: 10.1111/j.1750-3841.2009.01066.x. PubMed DOI
Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017;61:1–21. doi: 10.1080/16546628.2017.1361779. PubMed DOI PMC
Thoppil R.J., Bhatia D., Barnes K.F., Haznagy-Radnai E., Hohmann J., Darvesh A.S., Bishayee A. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr. Cancer Drug Tar. 2012;12:1244–1257. PubMed
Vendrame S., Klimis-Zacas D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr. Rev. 2015;73:348–358. doi: 10.1093/nutrit/nuu066. PubMed DOI
Shukla A.S., Jha A.K., Kumari R., Rawat K., Syeda S., Shrivastava A. Role of Catechins in Chemosensitization. In: Bharti A.C., Aggarwal B.B., editors. Role of Nutraceuticals in Cancer Chemosensitization. Volume 2. Elsevier; Amsterdam, The Netherlands: 2018. pp. 169–198.
Zanwar A.A., Badole S.L., Shende P.S., Hegde M.V., Bodhankar S.L. Antioxidant role of catechin in health and disease. In: Watson R.R., Preedy V.R., Zibadi S., editors. Polyphenols in Human Health and Disease. Volume 1. Elsevier; Amsterdam, The Netherlands: 2014. pp. 267–271.
Naasani I., Seimiya H., Tsuruo T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun. 1998;249:391–396. doi: 10.1006/bbrc.1998.9075. PubMed DOI
Cosarca S., Tanase C., Muntean D.L. Therapeutic aspects of catechins and its derivatives- an update. Acta Biol. Marisiensis. 2019;2:21–29. doi: 10.2478/abmj-2019-0003. DOI
Fan F.Y., Sang L.X., Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules. 2017;22:484. doi: 10.3390/molecules22030484. PubMed DOI PMC
Pan Z., Zhou Y., Luo X., Ruan Y., Zhou L., Wang Q., Yan Y.J., Liu Q., Chen J. Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis. Int. Immunopharmacol. 2018;61:241–248. doi: 10.1016/j.intimp.2018.06.011. PubMed DOI
Williamson G., Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005;81:243S–255S. doi: 10.1093/ajcn/81.1.243S. PubMed DOI
Pocernich C.B., Lange M.L., Sultana R., Butterfield D.A. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res. 2011;8:452–469. doi: 10.2174/156720511796391908. PubMed DOI
Horvathova K., Novotny L., Tothova D., Vachalkova A. Determination of free radical scavenging activity of quercetin, rutin, luteolin and apigenin in H~ 2O~ 2-treated human ML cells K562. Neoplasma. 2004;51:395–399. PubMed
Heijnen C.G., Haenen G.R., Minou Oostveen R., Stalpers E.M., Bast A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radic. Res. 2002;36:575–581. doi: 10.1080/10715760290025951. PubMed DOI
Chondrogianni N., Kapeta S., Chinou I., Vassilatou K., Papassideri I., Gonos E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol. 2010;45:763–771. doi: 10.1016/j.exger.2010.07.001. PubMed DOI
Lesjak M., Beara I., Simin N., Pintać D., Majkić T., Bekvalac K., Orcic D., Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods. 2018;40:68–75. doi: 10.1016/j.jff.2017.10.047. DOI
David A.V.A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016;10:84–89. PubMed PMC
Bautista-Ortín A.B., Rodríguez-Rodríguez P., Gil-Muñoz R., Jiménez-Pascual E., Busse-Valverde N., Martínez-Cutillas A., Lopez-Roca J.M., Gómez-Plaza E. Influence of berry ripeness on concentration, qualitative composition and extractability of grape seed tannins. Aust. J. Grape Wine Res. 2012;18:123–130. doi: 10.1111/j.1755-0238.2012.00178.x. DOI
Puupponen-Pimiä R., Nohynek L., Alakomi H.L., Oksman-Caldentey K.M. Bioactive berry compounds—novel tools against human pathogens. Appl. Microbiol. Biotechnol. 2005;67:8–18. doi: 10.1007/s00253-004-1817-x. PubMed DOI
Bushman B.S., Phillips B., Isbell T., Ou B., Crane J.M., Knapp S.J. Chemical composition of cranberry (Rubus spp.) seeds and oils and their antioxidant potential. J. Agric. Food Chem. 2004;52:7982–7987. doi: 10.1021/jf049149a. PubMed DOI
Mullen W., McGinn J., Lean M.E., MacLean M.R., Gardner P., Duthie G.G., Yokota T., Crozier A. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J. Agric. Food Chem. 2002;50:5191–5196. doi: 10.1021/jf020140n. PubMed DOI
Han X., Shen T., Lou H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007;8:950–988. doi: 10.3390/i8090950. DOI
De Ligt M., Timmers S., Schrauwen P. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances? Biochim. Biophys. Acta Mol. Basis Dis. 2015;1852:1137–1144. doi: 10.1016/j.bbadis.2014.11.012. PubMed DOI
Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur. J. Endocrinol. 1998;138:619–620. doi: 10.1530/eje.0.1380619. PubMed DOI
Catalgol B., Batirel S., Taga Y., Ozer N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012;3:1–18. doi: 10.3389/fphar.2012.00141. PubMed DOI PMC
Knutson M.D., Leeuwenburgh C. Resveratrol and novel potent activators of SIRT1: Effects on aging and age-related diseases. Nutr. Rev. 2008;66:591–596. doi: 10.1111/j.1753-4887.2008.00109.x. PubMed DOI
Sebastià N., Montoro A., Mañes J., Soriano J.M. A preliminary study of presence of resveratrol in skins and pulps of European and Japanese plum cultivars. J. Sci. Food Agric. 2012;92:3091–3094. doi: 10.1002/jsfa.5759. PubMed DOI
Di Franco R., Calvanese M., Murino P., Manzo R., Guida C., Di Gennaro D., Anania C., Ravo V. Skin toxicity from external beam radiation therapy in breast cancer patients: Protective effects of Resveratrol, Lycopene, Vitamin C and anthocianin (Ixor®) Radiat. Oncol. 2012;7:1–6. doi: 10.1186/1748-717X-7-12. PubMed DOI PMC
Risuleo G. Resveratrol: Multiple activities on the biological functionality of the cell. In: Gupta R.C., editor. Nutraceuticals. Elsevier; Amsterdam, The Netherlands: 2016. pp. 453–464.
Serra A.T., Duarte R.O., Bronze M.R., Duarte C.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem. 2011;125:318–325. doi: 10.1016/j.foodchem.2010.07.088. DOI
Lee J., Koo N., Min D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004;3:21–33. doi: 10.1111/j.1541-4337.2004.tb00058.x. PubMed DOI
Lim Y.Y., Lim T.T., Tee J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007;103:1003–1008. doi: 10.1016/j.foodchem.2006.08.038. DOI
Favela-Hernández J.M.J., González-Santiago O., Ramírez-Cabrera M.A., Esquivel-Ferriño P.C., Camacho-Corona M.D.R. Chemistry and Pharmacology of Citrus sinensis. Molecules. 2016;21:247. doi: 10.3390/molecules21020247. PubMed DOI PMC
Khan M.K., Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014;33:85–104. doi: 10.1016/j.jfca.2013.11.004. DOI
Afrin S., Gasparrini M., Forbes-Hernandez T.Y., Reboredo-Rodriguez P., Mezzetti B., Varela-Lόpez A., Giampieri F., Battino M. Promising health benefits of the strawberry: A focus on clinical studies. J. Agric. Food Chem. 2016;64:4435–4449. doi: 10.1021/acs.jafc.6b00857. PubMed DOI
Giampieri F., Alvarez-Suarez J.M., Battino M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014;62:3867–3876. doi: 10.1021/jf405455n. PubMed DOI
Bai L., Guo S., Liu Q., Cui X., Zhang X., Zhang L., Yang X., Hou M., Ho C.T., Bai N. Characterization of nine polyphenols in fruits of Malus pumila Mill by high-performance liquid chromatography. J. Food Drug Anal. 2016;24:293–298. doi: 10.1016/j.jfda.2015.10.002. PubMed DOI PMC
Rupasinghe H.V., Thilakarathna S., Nair S. Polyphenols: Chemistry, Dietary Sources and Health Benefits. Nova Science; New York, NY, USA: 2013. Polyphenols of apples and their potential health benefits; pp. 333–368.
Bondonno N.P., Bondonno C.P., Ward N.C., Hodgson J.M., Croft K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017;69:243–256. doi: 10.1016/j.tifs.2017.04.012. DOI
Kelley D.S., Adkins Y., Laugero K.D. A review of the health benefits of cherries. Nutrients. 2018;10:368. doi: 10.3390/nu10030368. PubMed DOI PMC
Slimestad R., Solheim H. Anthocyanins from black currants (Ribes nigrum L.) J. Agric. Food Chem. 2002;50:3228–3231. doi: 10.1021/jf011581u. PubMed DOI
Jiao H., Wang S.Y. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J. Agric. Food Chem. 2000;48:5672–5676. doi: 10.1021/jf000765q. PubMed DOI
Pappas E., Schaich K.M. Phytochemicals of cranberries and cranberry products: Characterization, potential health effects, and processing stability. Crit. Rev. Food Sci. Nutr. 2009;49:741–781. doi: 10.1080/10408390802145377. PubMed DOI
Bodet C., Grenier D., Chandad F., Ofek I., Steinberg D., Weiss E.I. Potential oral health benefits of cranberry. Crit. Rev. Food Sci. Nutr. 2008;48:672–680. doi: 10.1080/10408390701636211. PubMed DOI
Yang J., Xiao Y.Y. Grape phytochemicals and associated health benefits. Crit. Rev. Food Sci. Nutr. 2013;53:1202–1225. doi: 10.1080/10408398.2012.692408. PubMed DOI
Pezzuto J.M. Grapes and human health: A perspective. J. Agric. Food Chem. 2008;56:6777–6784. doi: 10.1021/jf800898p. PubMed DOI
Beekwilder J., Hall R.D., De Vos C.H. Identification and dietary relevance of antioxidants from raspberry. Biofactors. 2005;23:197–205. doi: 10.1002/biof.5520230404. PubMed DOI
Wang H., Liu J., Li T., Liu R.H. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food Funct. 2018;9:5273–5282. doi: 10.1039/C8FO01680A. PubMed DOI
Cimino F., Cristani M., Saija A., Bonina F.P., Virgili F. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors. 2007;30:129–138. doi: 10.1002/biof.5520300206. PubMed DOI
Tajaldini M., Samadi F., Khosravi A., Ghasemnejad A., Asadi J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed. Pharmacother. 2020;121:1–8. doi: 10.1016/j.biopha.2019.109594. PubMed DOI
Fan K., Kurihara N., Abe S., Ho C.T., Ghai G., Yang K. Chemopreventive effects of orange peel extract (OPE) I. OPE inhibits intestinal tumor growth in ApcMin/+ mice. J. Med. Food. 2007;10:11–17. doi: 10.1089/jmf.2006.0214. PubMed DOI
Wang J., Deng N., Wang H., Li T., Chen L., Zheng B., Liu R.H. Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules. 2020;25:351. doi: 10.3390/molecules25020351. PubMed DOI PMC
Puglia C., Offerta A., Saija A., Trombetta D., Venera C. Protective effect of red orange extract supplementation against UV-induced skin damages: Photoaging and solar lentigines. J. Cosmet. Dermatol. 2014;13:151–157. doi: 10.1111/jocd.12083. PubMed DOI
Bonina F.P., Leotta C., Scalia G., Puglia C., Trombetta D., Tringali G., Roccazzello A.M., Rapisarda P., Saija A. Evaluation of oxidative stress in diabetic patients after supplementation with a standardised red orange extract. Diabetes Nutr. Metab. 2002;15:14–19. PubMed
Wedge D.E., Meepagala K.M., Magee J.B., Smith S.H., Huang G., Larcom L.L. Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. J. Med. Food. 2001;4:49–51. doi: 10.1089/10966200152053703. PubMed DOI
Seeram N.P., Adams L.S., Zhang Y., Lee R., Sand D., Scheuller H.S., Heber D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006;54:9329–9339. doi: 10.1021/jf061750g. PubMed DOI
Zhang Y., Seeram N.P., Lee R., Feng L., Heber D. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. 2008;56:670–675. doi: 10.1021/jf071989c. PubMed DOI
Cho H.J., Park J.H.Y. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. J. Cancer Prev. 2013;18:257–263. doi: 10.15430/JCP.2013.18.3.257. PubMed DOI PMC
Shi N., Clinton S.K., Liu Z., Wang Y., Riedl K.M., Schwartz S.J., Zhang X., Pan Z., Chen T. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice. Nutrients. 2015;7:1696–1715. doi: 10.3390/nu7031696. PubMed DOI PMC
Lee D.E., Chung M.Y., Lim T.G., Huh W.B., Lee H.J., Lee K.W. Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells. J. Food Sci. 2013;78:H1464–H1469. doi: 10.1111/1750-3841.12223. PubMed DOI
Vayndorf E.M., Lee S.S., Liu R.H. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J. Funct. Foods. 2013;5:1235–1243. doi: 10.1016/j.jff.2013.04.006. PubMed DOI PMC
Snyder S.M., Zhao B., Luo T., Kaiser C., Cavender G., Hamilton-Reeves J., Sullivan D.K., Shay N.F. Consumption of quercetin and quercetin-containing apple and cherry extracts affects blood glucose concentration, hepatic metabolism, and gene expression patterns in obese C57BL/6J high fat–fed mice. J. Nutr. 2016;146:1001–1007. doi: 10.3945/jn.115.228817. PubMed DOI PMC
Olsson M.E., Gustavsson K.E., Andersson S., Nilsson A., Duan R.D. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 2004;52:7264–7271. doi: 10.1021/jf030479p. PubMed DOI
Holtung L., Grimmer S., Aaby K. Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. J. Agric. Food Chem. 2011;59:3632–3640. doi: 10.1021/jf104427r. PubMed DOI
Molan A.L., Liu Z., Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother. Res. 2014;28:416–422. doi: 10.1002/ptr.5009. PubMed DOI
Dai J., Patel J.D., Mumper R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food. 2007;10:258–265. doi: 10.1089/jmf.2006.238. PubMed DOI
Boateng J., Verghese M., Shackelford L., Walker L.T., Khatiwada J., Ogutu S., Williams D.S., Jones J., Guyton M., Asiamah D., et al. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem. Toxicol. 2007;45:725–732. doi: 10.1016/j.fct.2006.10.019. PubMed DOI
God J., Tate P.L., Larcom L.L. Red raspberries have antioxidant effects that play a minor role in the killing of stomach and colon cancer cells. Nutr. Res. 2010;30:777–782. doi: 10.1016/j.nutres.2010.10.004. PubMed DOI
Zhang H., Liu J., Li G., Wei J., Chen H., Zhang C., Zhao J., Wang Y., Dang S., Li X., et al. Fresh red raspberry phytochemicals suppress the growth of hepatocellular carcinoma cells by PTEN/AKT pathway. Int. J. Biochem. Cell Biol. 2018;104:55–65. doi: 10.1016/j.biocel.2018.09.003. PubMed DOI
Bibi S., Du M., Zhu M.J. Dietary Red Raspberry Reduces Colorectal Inflammation and Carcinogenic Risk in Mice with Dextran Sulfate Sodium–Induced Colitis. J. Nutr. 2018;148:667–674. doi: 10.1093/jn/nxy007. PubMed DOI PMC
Tu L., Sun H., Tang M., Zhao J., Zhang Z., Sun X., He S. Red raspberry extract (Rubus idaeus L shrub) intake ameliorates hyperlipidemia in HFD-induced mice through PPAR signaling pathway. Food Chem. Toxicol. 2019;133:110796. doi: 10.1016/j.fct.2019.110796. PubMed DOI
Yi W., Fischer J., Krewer G., Akoh C.C. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J. Agric. Food Chem. 2005;53:7320–7329. doi: 10.1021/jf051333o. PubMed DOI
Paul S., DeCastro A.J., Lee H.J., Smolarek A.K., So J.Y., Simi B., Wang C.X., Zhou R., Rimando A.M., Suh N. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the β-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis. 2010;31:1272–1278. doi: 10.1093/carcin/bgq004. PubMed DOI PMC
Galli R.L., Bielinski D.F., Szprengiel A., Shukitt-Hale B., Joseph J.A. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol. Aging. 2006;27:344–350. doi: 10.1016/j.neurobiolaging.2005.01.017. PubMed DOI
Peng C., Zuo Y., Kwan K.M., Liang Y., Ma K.Y., Chan H.Y.E., Huang Y., Yu H., Chen Z.Y. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 2012;47:170–178. doi: 10.1016/j.exger.2011.12.001. PubMed DOI
Wu T., Tang Q., Gao Z., Yu Z., Song H., Zheng X., Chen W. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS ONE. 2013;8:e77585. doi: 10.1371/journal.pone.0077585. PubMed DOI PMC
Narayansingh R., Hurta R.A. Cranberry extract and quercetin modulate the expression of cyclooxygenase-2 (COX-2) and IκBα in human colon cancer cells. J. Sci. Food Agric. 2009;89:542–547. doi: 10.1002/jsfa.3471. DOI
Ferguson P.J., Kurowska E.M., Freeman D.J., Chambers A.F., Koropatnick J. In vivo inhibition of growth of human tumor lines by flavonoid fractions from cranberry extract. Nutr. Cancer. 2006;56:86–94. doi: 10.1207/s15327914nc5601_12. PubMed DOI
Xiao X., Kim J., Sun Q., Kim D., Park C.S., Lu T.S., Park Y. Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chem. 2015;167:438–446. doi: 10.1016/j.foodchem.2014.07.006. PubMed DOI
Ruel G., Pomerleau S., Couture P., Lemieux S., Lamarche B., Couillard C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Brit. J. Nutr. 2006;96:357–364. doi: 10.1079/BJN20061814. PubMed DOI
Duffey K.J., Sutherland L.A. Adult consumers of cranberry juice cocktail have lower C-reactive protein levels compared with nonconsumers. Nutr. Res. 2015;35:118–126. doi: 10.1016/j.nutres.2014.11.005. PubMed DOI
Novotny J.A., Baer D.J., Khoo C., Gebauer S.K., Charron C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015;145:1185–1193. doi: 10.3945/jn.114.203190. PubMed DOI
Chew B., Mathison B., Kimble L., McKay D., Kaspar K., Khoo C., Chen C.Y.O., Blumberg J. Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. Eur. J. Nutr. 2019;58:1223–1235. doi: 10.1007/s00394-018-1643-z. PubMed DOI PMC
Vaisman N., Niv E. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: A double blind, placebo-controlled, randomized study. Int. J Food Sci. Nutr. 2015;66:342–349. doi: 10.3109/09637486.2014.1000840. PubMed DOI
Castilla P., Echarri R., Dávalos A., Cerrato F., Ortega H., Teruel J.L., Lucas M.F., Gomes-Coronado D., Ortuno J., Lasunción M.A. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr. 2006;84:252–262. doi: 10.1093/ajcn/84.1.252. PubMed DOI
Khadem-Ansari M.H., Rasmi Y., Ramezani F. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem. J. 2010;4:96–99. doi: 10.2174/1874091X01004010096. PubMed DOI PMC
Shahidi F. In: Natural Antioxidants: An Overview. Natural Antioxidants: Chemistry, Health Effects, and Applications. Shahidi F., editor. The American Oil Chemists Society; Champion, IL, USA: 1997. pp. 1–11.
Shahidi F., Naczk M., Griffiths W. Food phenolics: Sources, chemistry, effects, applications. Trends Food Sci. Technol. 1995;7:1–5.
Brewer M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011;10:221–247. doi: 10.1111/j.1541-4337.2011.00156.x. DOI
Mullenix P.S., Andersen C.A., Starnes B.W. Atherosclerosis as inflammation. Ann. Vasc. Surg. 2005;19:130–138. doi: 10.1007/s10016-004-0153-z. PubMed DOI
Rosenberg P.B. Clinical aspects of inflammation in Alzheimer’s disease. Int. Rev. Psychiatry. 2005;17:503–514. doi: 10.1080/02646830500382037. PubMed DOI
Giampieri F., Forbes-Hernandez T.Y., Gasparrini M., Alvarez-Suarez J.M., Afrin S., Bompadre S., Quiles J.L., Mezzetti B., Battino M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015;6:1386–1398. doi: 10.1039/C5FO00147A. PubMed DOI
Cai X., Han Y., Gu M., Song M., Wu X., Li Z., Li F., Goulette T., Xiao H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct. 2019;10:6331–6341. doi: 10.1039/C9FO01537J. PubMed DOI PMC
Forbes-Hernandez T.Y., Gasparrini M., Afrin S., Bompadre S., Mezzetti B., Quiles J.L., Giampieri F., Battino M. The healthy effects of strawberry polyphenols: Which strategy behind antioxidant capacity? Crit. Rev. Food Sci. Nutr. 2016;56:S46–S59. doi: 10.1080/10408398.2015.1051919. PubMed DOI
Van’t Veer P., Jansen M.C., Klerk M., Kok F.J. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000;3:103–107. doi: 10.1017/S1368980000000136. PubMed DOI
Neto C.C. Cranberry and its phytochemicals: A review of in vitro anticancer studies. J. Nutr. 2007;137:186S–193S. doi: 10.1093/jn/137.1.186S. PubMed DOI
Bishayee A., Haskell Y., Do C., Siveen K.S., Mohandas N., Sethi G., Stoner G.D. Potential benefits of edible berries in the management of aerodigestive and gastrointestinal tract cancers: Preclinical and clinical evidence. Crit. Rev. Food Sci. Nutr. 2016;56:1753–1775. doi: 10.1080/10408398.2014.982243. PubMed DOI
Chu S.C., Hsieh Y.S., Hsu L.S., Chen K.S., Chiang C.C., Chen P.N. Rubus idaeus L inhibits invasion potential of human A549 lung cancer cells by suppression epithelial-to-mesenchymal transition and Akt pathway in vitro and reduces tumor growth in vivo. Integr. Cancer Ther. 2014;13:259–273. doi: 10.1177/1534735413510559. PubMed DOI
Baby B., Antony P., Vijayan R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018;58:2491–2507. doi: 10.1080/10408398.2017.1329198. PubMed DOI
Stoner G.D., Wang L.S., Zikri N., Chen T., Hecht S.S., Huang C., Sardo. C., Lechner J.F. Seminars in Cancer Biology. Volume 17. Elsevier; Amsterdam, The Netherlands: 2007. Cancer prevention with freeze-dried berries and berry components; pp. 403–410. PubMed PMC
Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. PubMed DOI PMC
Goschorska M., Gutowska I., Baranowska-Bosiacka I., Barczak K., Chlubek D. The use of antioxidants in the treatment of migraine. Antioxidants. 2020;9:116. doi: 10.3390/antiox9020116. PubMed DOI PMC
Jafarpour M., Yousefi G., Hamedi A., Shariat A., Salehi A., Heydari M. Effect of a traditional syrup from Citrus medica L. fruit juice on migraine headache: A randomized double blind placebo controlled clinical trial. J. Ethnopharmacol. 2016;179:170–176. doi: 10.1016/j.jep.2015.12.040. PubMed DOI
Martin A., Prior R., Shukitt-Hale B., Cao G., Joseph J.A. Effect of fruits, vegetables, or vitamin E–rich diet on vitamins E and C distribution in peripheral and brain tissues: Implications for brain function. J. Gerontol. A Biol. Sci. Med. Sci. 2000;55:B144–B151. doi: 10.1093/gerona/55.3.B144. PubMed DOI
Devore E.E., Kang J.H., Breteler M.M., Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol. 2012;72:135–143. doi: 10.1002/ana.23594. PubMed DOI PMC
Mursu J., Virtanen J.K., Tuomainen T.P., Nurmi T., Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2014;99:328–333. doi: 10.3945/ajcn.113.069641. PubMed DOI
Muraki I., Imamura F., Manson J.E., Hu F.B., Willett W.C., van Dam R.M., Sun Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. Br. Med. J. 2013;347:12. doi: 10.1136/bmj.f5001. PubMed DOI PMC
Amani R., Moazen S., Shahbazian H., Ahmadi K., Jalali M.T. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J. Diabetes. 2014;5:962–968. doi: 10.4239/wjd.v5.i6.962. PubMed DOI PMC
Erlund I., Koli R., Alfthan G., Marniemi J., Puukka P., Mustonen P., Mattila P., Jula A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr. 2008;87:323–331. doi: 10.1093/ajcn/87.2.323. PubMed DOI
A systematic review on endophytic fungi and its role in the commercial applications
Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat.: a review