Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life

. 2020 Nov 13 ; 9 (11) : . [epub] 20201113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33202871

Grantová podpora
VT2019-2021 UHK PrF

Aging is a complicated biological process in which functional and structural alterations in a living organism take place over time. Reactive oxygen species is one of the main factors responsible for aging and is associated with several chronic pathologies. The relationship between aging and diet is quite interesting and has attained worldwide attention. Healthy food, in addition to dietary antioxidants, are required to delay the process of aging and improve the quality of life. Many healthy foods such as fruits are a good source of dietary nutrients and natural bioactive compounds which have antioxidant properties and are involved in preventing aging and other age-related disorders. Health benefits linked with healthy consumption of fruit have drawn increased interest. A significant number of studies have documented the advantages of fruit intake, as it suppresses free-radical development that further reduces the oxidative stress created in the body and protects against several types of diseases such as cancer, type 2 diabetes, inflammatory disorders, and other cardiovascular diseases that ultimately prevent aging. In addition, fruits have numerous other properties like anti-inflammatory, anti-cancerous, anti-diabetic, neuroprotective, and have health-promoting effects. Mechanisms of various bioactive compounds that aids in preventing various diseases and increases longevity are also described. This manuscript provides a summary of various bioactive components present in fruits along with their health-promoting and antiaging properties.

Zobrazit více v PubMed

Ho Y.S., So K.F., Chang R.C.C. Anti-aging herbal medicine—How and why can they be used in aging-associated neurodegenerative diseases? Ageing Res. Rev. 2010;9:354–362. doi: 10.1016/j.arr.2009.10.001. PubMed DOI

Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019;15:565–581. doi: 10.1038/s41582-019-0244-7. PubMed DOI

Si H., Liu D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 2014;25:581–591. doi: 10.1016/j.jnutbio.2014.02.001. PubMed DOI PMC

Harman D. Free radical theory of aging: An update: Increasing the functional life span. Ann. N. Y. Acad. Sci. 2006;1067:10–21. doi: 10.1196/annals.1354.003. PubMed DOI

Peng C., Wang X., Chen J., Jiao R., Wang L., Li Y.M., Zuo Y., Liu Y., Lei L., Ma K.Y., et al. Biology of ageing and role of dietary antioxidants. BioMed Res. Int. 2014;2014:1–14. doi: 10.1155/2014/831841. PubMed DOI PMC

Bhattacharya S. Reactive Oxygen Species and Cellular Defense System. In: Rani V., Yadav U.C.S., editors. Free Radicals in Human Health and Disease. Springer; New Delhi, India: 2015. pp. 17–29.

Diaconeasa Z., Iuhas C.I., Ayvaz H., Rugină D., Stanilă A., Dulf F., Bunea A., Socaci S.A., Socaciu C., Pintea A. Phytochemical characterization of commercial processed blueberry, blackberry, blackcurrant, cranberry, and raspberry and their antioxidant activity. Antioxidants. 2019;8:540. doi: 10.3390/antiox8110540. PubMed DOI PMC

Uttara B., Singh A.V., Zamboni P., Mahajan R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009;7:65–74. doi: 10.2174/157015909787602823. PubMed DOI PMC

Martel J., Ojcius D.M., Ko Y.F., Chang C.J., Young J.D. Antiaging effects of bioactive molecules isolated from plants and fungi. Med. Res. Rev. 2019;39:1515–1552. doi: 10.1002/med.21559. PubMed DOI

Weindruch R., Walford R.L. Retardation of Aging and Disease by Dietary Restriction. CC Thomas; Springfield, IL, USA: 1988. pp. 339–397.

Gupta B., Kumar B., Sharma A., Sori D., Sharma R., Mehta S. Nutraceuticals for Antiaging. In: Gupta R.C., Srivastava A., Lall R., editors. Nutraceuticals in Veterinary Medicine. Springer; Cham, Switzerland: 2019. pp. 383–392.

Aversa R., Petrescu R.V., Apicella A., Petrescu F.I. One can slow down the aging through antioxidants. Am. J. Eng. Appl. Sci. 2016;9:1112–1126. doi: 10.3844/ajeassp.2016.1112.1126. DOI

Kaur C., Kapoor H.C. Antioxidants in fruits and vegetables–the millennium’s health. Int. J. Food Sci. Technol. 2001;36:703–725. doi: 10.1046/j.1365-2621.2001.00513.x. DOI

Paredes-López O., Cervantes-Ceja M.L., Vigna-Pérez M., Hernández-Pérez T. Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum. Nutr. 2010;65:299–308. doi: 10.1007/s11130-010-0177-1. PubMed DOI

Gomes-Rochette N., Da Silveira Vasconcelos M., Nabavi S.M., Mota E.F., Nunes-Pinheiro D.C.S., Daglia M., de Melo D.F. Fruit as potent natural antioxidants and their biological effects. Curr. Pharm. Biotechnol. 2016;17:986–993. doi: 10.2174/1389201017666160425115401. PubMed DOI

Vauzour D., Vafeiadou K., Rendeiro C., Corona G., Spencer J.P. The inhibitory effects of berry-derived flavonoids against neurodegenerative processes. J. Berry Res. 2010;1:45–52. doi: 10.3233/BR-2010-005. DOI

Giampieri F., Tulipani S., Alvarez-Suarez J.M., Quiles J.L., Mezzetti B., Battino M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition. 2012;28:9–19. doi: 10.1016/j.nut.2011.08.009. PubMed DOI

Blumberg J.B., Camesano T.A., Cassidy A., Kris-Etherton P., Howell A., Manach C., Ostertag L.M., Sies H., Ray A.S., Vita J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013;4:618–632. doi: 10.3945/an.113.004473. PubMed DOI PMC

Acero N., Gradillas A., Beltran M., García A., Mingarro D.M. Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chem. 2019;279:260–271. doi: 10.1016/j.foodchem.2018.12.008. PubMed DOI

Rinaldo D., Mbéguié-A-Mbéguié D., Fils-Lycaon B. Advances on polyphenols and their metabolism in sub-tropical and tropical fruits. Trends Food Sci. Technol. 2010;21:599–606. doi: 10.1016/j.tifs.2010.09.002. DOI

Williamson G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017;42:226–235. doi: 10.1111/nbu.12278. PubMed DOI PMC

Nile S.H., Park S.W. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014;30:134–144. doi: 10.1016/j.nut.2013.04.007. PubMed DOI

Wang S.Y., Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agric. Food Chem. 2000;48:5677–5684. doi: 10.1021/jf000766i. PubMed DOI

Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. PubMed DOI PMC

Lima G.P.P., Vianello F., Corrêa C.R., Campos R.A.D.S., Borguini M.G. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr. Sci. 2014;5:1065–1082. doi: 10.4236/fns.2014.511117. DOI

Joseph S.V., Edirisinghe I., Burton-Freeman B.M. Fruit polyphenols: A review of anti-inflammatory effects in humans. Crit. Rev. Food Sci. Nutr. 2016;56:419–444. doi: 10.1080/10408398.2013.767221. PubMed DOI

Cutrim C.S., Cortez M.A.S. A review on polyphenols: Classification, beneficial effects and their application in dairy products. Int. J. Dairy Technol. 2018;71:564–578. doi: 10.1111/1471-0307.12515. DOI

Nurmi T., Mursu J., Heinonen M., Nurmi A., Hiltunen R., Voutilainen S. Metabolism of berry anthocyanins to phenolic acids in humans. J. Agric. Food Chem. 2009;57:2274–2281. doi: 10.1021/jf8035116. PubMed DOI

Belščak-Cvitanović A., Durgo K., Huđek A., Bačun-Družina V., Komes D. Overview of polyphenols and their properties. In: Galanakis C.M., editor. Polyphenols: Properties, Recovery, and Applications. Elsevier; Amsterdam, The Netherlands: 2018. pp. 3–44.

Moyer R.A., Hummer K.E., Finn C.E., Frei B., Wrolstad R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002;50:519–525. doi: 10.1021/jf011062r. PubMed DOI

Kasiotis K.M., Pratsinis H., Kletsas D., Haroutounian S.A. Resveratrol and related stilbenes: Their anti-aging and anti-angiogenic properties. Food Chem. Toxicol. 2013;61:112–120. doi: 10.1016/j.fct.2013.03.038. PubMed DOI

Li Y.R., Li S., Lin C.C. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors. 2018;44:69–82. doi: 10.1002/biof.1400. PubMed DOI

Boots A.W., Haenen G.R., Bast A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008;585:325–337. doi: 10.1016/j.ejphar.2008.03.008. PubMed DOI

Viña J., Borrás C., Miquel J. Theories of ageing. IUBMB Life. 2007;59:249–254. doi: 10.1080/15216540601178067. PubMed DOI

Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Lushchak V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014;224:164–175. doi: 10.1016/j.cbi.2014.10.016. PubMed DOI

Bagchi K., Puri S. Free radicals and antioxidants in health and disease: A review. East. Mediterr. Health J. 1998;4:350–360.

Ebadi M. Antioxidants and free radicals in health and disease: An introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Crit. Rev. Toxicol. 2001;38:13–71.

Scapagnini G., Caruso C., Spera G. Preventive medicine and healthy longevity: Basis for sustainable anti-aging strategies. In: Scuderi N., Toth B.A., editors. International Textbook of Aesthetic Surgery. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1213–1227.

Young I.S., Woodside J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001;54:176–186. doi: 10.1136/jcp.54.3.176. PubMed DOI PMC

Vaiserman A.M., Lushchak V., Koliada A.K. Anti-aging pharmacology: Promises and pitfalls. Ageing Res. Rev. 2016;31:9–35. doi: 10.1016/j.arr.2016.08.004. PubMed DOI

Ďuračková Z. Some current insights into oxidative stress. Physiol. Res. 2010;59:459–469. PubMed

Dhalaria R., Kumar D., Kumar H., Nepovimova E., Kuča K., Torequl Islam M., Verma R. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants. Agronomy. 2020;10:815. doi: 10.3390/agronomy10060815. DOI

Marklund S.L. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem. J. 1984;222:649–655. doi: 10.1042/bj2220649. PubMed DOI PMC

Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 2004;61:192–208. doi: 10.1007/s00018-003-3206-5. PubMed DOI PMC

Santos--Sánchez N.F., Salas-Coronado R., Villanueva-Cañongo C., Hernández-Carlos B. Antioxidant compounds and their antioxidant mechanism. In: Shalaby E., editor. Antioxidants. IntechOpen; London, UK: 2019. pp. 1–28.

Alhasawi A., Legendre F., Jagadeesan S., Appanna V., Appanna V. Biochemical Strategies to Counter Nitrosative Stress: Nanofactories for Value-Added Products. In: Das S., Dash H.R., editors. Microbial Diversity in the Genomic Era. Elsevier; Amsterdam, The Netherlands: 2019. pp. 153–169.

Momtaz S., Abdollahi M. A comprehensive review of biochemical and molecular evidences from animal and human studies on the role of oxidative stress in aging: An epiphenomenon or the cause. [(accessed on 4 November 2020)];Asian J. Anim. Vet. Adv. 2012 :1–18. Available online: http://hdl.handle.net/2263/19369.

Jay D., Hitomi H., Griendling K.K. Oxidative stress and diabetic cardiovascular complications. Free Radic. Biol. Med. 2006;40:183–192. doi: 10.1016/j.freeradbiomed.2005.06.018. PubMed DOI

Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001. PubMed DOI

Reuter S., Gupta S.C., Chaturvedi M.M., Aggarwal B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010;49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006. PubMed DOI PMC

Bhat A.H., Dar K.B., Anees S., Zargar M.A., Masood A., Sofi M.A., Ganie S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 2015;74:101–110. doi: 10.1016/j.biopha.2015.07.025. PubMed DOI

Khanthapok P., Sukrong S. Anti-aging and health benefits from Thai food: Protective effects of bioactive compounds on the free radical theory of aging. J. Food Health Bioenviron. Sci. 2019;12:54–67.

Naczk M., Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111. doi: 10.1016/S0021-9673(04)01409-8. PubMed DOI

Olas B. Berry phenolic antioxidants–implications for human health? Front. Pharmacol. 2018;9:1–14. doi: 10.3389/fphar.2018.00078. PubMed DOI PMC

Szajdek A., Borowska E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008;63:147–156. doi: 10.1007/s11130-008-0097-5. PubMed DOI

Slavin J.L., Lloyd B. Health benefits of fruits and vegetables. Adv. Nutr. 2012;3:506–516. doi: 10.3945/an.112.002154. PubMed DOI PMC

Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015;16:24673–24706. doi: 10.3390/ijms161024673. PubMed DOI PMC

Orena S., Owen J., Jin F., Fabian M., Gillitt N.D., Zeisel S.H. Extracts of fruits and vegetables activate the antioxidant response element in IMR-32 cells. J. Nutr. 2015;145:2006–2011. doi: 10.3945/jn.115.216705. PubMed DOI

Ahmed S.M.U., Luo L., Namani A., Wang X.J., Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:585–597. doi: 10.1016/j.bbadis.2016.11.005. PubMed DOI

Pantelidis G.E., Vasilakakis M., Manganaris G.A., Diamantidis G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102:777–783. doi: 10.1016/j.foodchem.2006.06.021. DOI

U.S. Department of Agriculture, Agricultural Research Service Food Data Central. [(accessed on 24 July 2020)]; Available online: fdc.nal.usda.gov.

Arrigoni O., De Tullio M.C. Ascorbic acid: Much more than just an antioxidant. Biochem. Biophys. Acta Gen. Subj. 2002;1569:1–9. doi: 10.1016/S0304-4165(01)00235-5. PubMed DOI

Wu X., Cheng J., Wang X. Dietary antioxidants: Potential anticancer agents. Nutr. Cancer. 2017;69:521–533. doi: 10.1080/01635581.2017.1299872. PubMed DOI

Nimse S.B., Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–28006. doi: 10.1039/C4RA13315C. DOI

Niki E., Noguchi N., Tsuchihashi H., Gotoh N. Interaction among vitamin C, vitamin E, and beta-carotene. Am. J. Clin. Nutr. 1995;62:1322S–1326S. doi: 10.1093/ajcn/62.6.1322S. PubMed DOI

Monaghan B.R., Schmitt F.O. The effects of carotene and of vitamin A on the oxidation of linoleic acid. J. Biol. Chem. 1932;96:387–395.

Livrea M.A., Tesoriere L., Bongiorno A., Pintaudi A.M., Ciaccio M., Riccio A. Contribution of vitamin A to the oxidation resistance of human low density lipoproteins. Free Radic. Biol. Med. 1995;18:401–409. doi: 10.1016/0891-5849(94)00151-9. PubMed DOI

Biesalski H.K., Dragsted L.O., Elmadfa I., Grossklaus R., Müller M., Schrenk D., Weber P. Bioactive compounds: Definition and assessment of activity. Nutrition. 2009;25:1202–1205. doi: 10.1016/j.nut.2009.04.023. PubMed DOI

Ortega A.M.M., Campos M.R.S. Bioactive Compounds as Therapeutic Alternatives. In: Campos M.R.S., editor. Bioactive Compounds. Elsevier; Amsterdam, The Netherlands: 2019. pp. 247–264.

Liu R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013;78:A18–A25. doi: 10.1111/1750-3841.12101. PubMed DOI

Fu L., Xu B.T., Xu X.R., Gan R.Y., Zhang Y., Xia E.Q., Li H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. PubMed DOI

Haminiuk C.W., Maciel G.M., Plata-Oviedo M.S., Peralta R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012;47:2023–2044. doi: 10.1111/j.1365-2621.2012.03067.x. DOI

Tabart J., Franck T., Kevers C., Pincemail J., Serteyn D., Defraigne J.O., Dommes J. Antioxidant and anti-inflammatory activities of Ribes nigrum extracts. Food Chem. 2012;131:1116–1122. doi: 10.1016/j.foodchem.2011.09.076. DOI

Selma M.V., Espin J.C., Tomas-Barberan F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009;57:6485–6501. doi: 10.1021/jf902107d. PubMed DOI

Rockenbach I.I., Rodrigues E., Gonzaga L.V., Caliari V., Genovese M.I., Gonçalves A.E.D.S.S., Fett R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011;127:174–179. doi: 10.1016/j.foodchem.2010.12.137. DOI

Badhani B., Sharma N., Kakkar R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540–27557. doi: 10.1039/C5RA01911G. DOI

Russell W.R., Scobbie L., Labat A., Duthie G.G. Selective bio-availability of phenolic acids from Scottish strawberries. Mol. Nutr. Food Res. 2009;53:S85–S91. doi: 10.1002/mnfr.200800302. PubMed DOI

Usenik V., Fabcic J., Stampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.) Food Chem. 2008;107:185–192. doi: 10.1016/j.foodchem.2007.08.004. DOI

Boyer J., Liu R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004;3:1–15. doi: 10.1186/1475-2891-3-5. PubMed DOI PMC

Gavrilova V., Kajdzanoska M., Gjamovski V., Stefova M. Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC− DAD− ESI-MSn. J. Agric. Food Chem. 2011;59:4009–4018. doi: 10.1021/jf104565y. PubMed DOI

Borges G., Degeneve A., Mullen W., Crozier A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010;58:3901–3909. doi: 10.1021/jf902263n. PubMed DOI

Kelebek H., Selli S. Evaluation of chemical constituents and antioxidant activity of sweet cherry (Prunus avium L.) cultivars. Int. J. Food Sci. Technol. 2011;46:2530–2537. doi: 10.1111/j.1365-2621.2011.02777.x. DOI

Iglesias-Carres L., Mas-Capdevila A., Bravo F.I., Aragonès G., Muguerza B., Arola-Arnal A. Optimization of a polyphenol extraction method for sweet orange pulp (Citrus sinensis L.) to identify phenolic compounds consumed from sweet oranges. PLoS ONE. 2019;14:e0211267. doi: 10.1371/journal.pone.0211267. PubMed DOI PMC

Jakobek L., Seruga M., Novak I., Medvidović-Kosanović M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Deut. Lebensm Rundsch. 2007;103:369–378.

Chu N.T., Clydesdale F.M., Francis F.J. Isolation and identification of some fluorescent phenolic compounds in cranberries. J. Food Sci. 1973;38:1038–1042. doi: 10.1111/j.1365-2621.1973.tb02143.x. DOI

Okatan V. Antioxidant properties and phenolic profile of the most widely appreciated cultivated berry species: A comparative study. Folia Hortic. 2020;32:79–85. doi: 10.2478/fhort-2020-0008. DOI

Hernanz D., Recamales A.F., Meléndez-Martínez A.J., González-Miret M.L., Heredia F.J. Assessment of the differences in the phenolic composition of five strawberry cultivars (Fragaria × ananassa Duch.) grown in two different soilless systems. J. Agric. Food Chem. 2007;55:1846–1852. doi: 10.1021/jf063189s. PubMed DOI

Häkkinen S.H., Törrönen A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int. 2000;33:517–524. doi: 10.1016/S0963-9969(00)00086-7. DOI

Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Lagana G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors. 2017;43:495–506. doi: 10.1002/biof.1363. PubMed DOI

Mozetic B., Trebse P., Hribar J. Determination and quantitation of anthocyanins and hydroxycinnamic acids in different cultivars of sweet cherries (Prunus avium L.) from Nova Gorica region (Slovenia) Food Technol. Biotechnol. 2002;40:207–212.

Bakowska-Barczak A.M., Kolodziejczyk P.P. Black currant polyphenols: Their storage stability and microencapsulation. Ind. Crops Prod. 2011;34:1301–1309. doi: 10.1016/j.indcrop.2010.10.002. DOI

Kahle K., Kraus M., Scheppach W., Ackermann M., Ridder F., Richling E. Studies on apple and blueberry fruit constituents: Do the polyphenols reach the colon after ingestion? Mol. Nutr. Food Res. 2006;50:418–423. doi: 10.1002/mnfr.200500211. PubMed DOI

Huang X., Mazza G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 2011;1218:3890–3899. doi: 10.1016/j.chroma.2011.04.049. PubMed DOI

Bobinaitė R., Viškelis P., Venskutonis P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2012;132:1495–1501. doi: 10.1016/j.foodchem.2011.11.137. PubMed DOI

Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC

Lu J.M., Lin P.H., Yao Q., Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010;14:840–860. doi: 10.1111/j.1582-4934.2009.00897.x. PubMed DOI PMC

Castilla P., Dávalos A., Teruel J.L., Cerrato F., Fernández-Lucas M., Merino J.L., Sanchez-Marti C.C., Ortuno J., Lasunción M.A. Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am. J. Clin. Nutr. 2008;87:1053–1061. doi: 10.1093/ajcn/87.4.1053. PubMed DOI

Karasawa M.M.G., Mohan C. Fruits as prospective reserves of bioactive compounds: A review. Nat. Prod. Bioprospect. 2018;8:335–346. doi: 10.1007/s13659-018-0186-6. PubMed DOI PMC

Bastos C., Barros L., Dueñas M., Calhelha R.C., Queiroz M.J.R., Santos-Buelga C., Ferreira I.C. Chemical characterisation and bioactive properties of Prunus avium L.: The widely studied fruits and the unexplored stems. Food Chem. 2015;173:1045–1053. doi: 10.1016/j.foodchem.2014.10.145. PubMed DOI

Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;24:1–10. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC

Sun J., Chu Y.F., Wu X., Liu R.H. Antioxidant and antiproliferative activities of common fruits. J. Agric. Food Chem. 2002;50:7449–7454. doi: 10.1021/jf0207530. PubMed DOI

Singh J.P., Kaur A., Shevkani K., Singh N. Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. J. Food Sci. Technol. 2016;53:4056–4066. doi: 10.1007/s13197-016-2412-8. PubMed DOI PMC

Natella F., Nardini M., Di Felice M., Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: Structure− activity relation. J. Agric. Food Chem. 1999;47:1453–1459. doi: 10.1021/jf980737w. PubMed DOI

Khan B.A., Mahmood T., Menaa F., Shahzad Y., Yousaf A.M., Hussain T., Ray S.D. New perspectives on the efficacy of gallic acid in cosmetics and nanocosmeceuticals. Curr. Pharm. Des. 2018;24:5181–5187. doi: 10.2174/1381612825666190118150614. PubMed DOI

Umar Lule S., Xia W. Food phenolics, pros and cons: A review. Food Rev. Int. 2005;21:367–388. doi: 10.1080/87559120500222862. DOI

Ruifeng G., Yunhe F., Zhengkai W., Yimeng L., Minjun Y., Xiaojing S., Zhengtao Y., Naisheng Z. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway. Eur. J. Pharmacol. 2014;729:54–58. doi: 10.1016/j.ejphar.2014.01.015. PubMed DOI

Ozcan T., Akpinar-Bayizit A., Yilmaz-Ersan L., Delikanli B. Phenolics in human health. Int. J. Chem. Eng. Appl. 2014;5:393–396. doi: 10.7763/IJCEA.2014.V5.416. DOI

Kumar H., Bhardwaj K., Nepovimova E., Kamil K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. Nanomaterials. 2020;10:1334. doi: 10.3390/nano10071334. PubMed DOI PMC

Gulcin I., Beydemir S. Phenolic compounds as antioxidants: Carbonic anhydrase isoenzymes inhibitors. Mini-Rev. Med. Chem. 2013;13:408–430. PubMed

Thorat I.D., Jagtap D.D., Mohapatra D., Joshi D.C., Sutar R.F., Kapdi S.S. Antioxidants, their properties, uses in food products and their legal implications. Int. J. Food Stud. 2013;2:81–104. doi: 10.7455/ijfs/2.1.2013.a7. DOI

Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006;99:191–203. doi: 10.1016/j.foodchem.2005.07.042. DOI

Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013;2013:1–16. doi: 10.1155/2013/162750. PubMed DOI PMC

Kabera J.N., Semana E., Mussa A.R., He X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014;2:377–392.

Orhan D.D., Özçelik B., Özgen S., Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010;165:496–504. doi: 10.1016/j.micres.2009.09.002. PubMed DOI

Manthey J.A., Guthrie N., Grohmann K. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 2001;8:135–153. doi: 10.2174/0929867013373723. PubMed DOI

Hwang S.L., Shih P.H., Yen G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012;60:877–885. doi: 10.1021/jf204452y. PubMed DOI

Benavente-Garcia O., Castillo J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008;56:6185–6205. doi: 10.1021/jf8006568. PubMed DOI

Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x. PubMed DOI

Manthey J.A., Guthrie N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 2002;50:5837–5843. doi: 10.1021/jf020121d. PubMed DOI

Casagrande F., Darbon J.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK1. Biochem. Pharmacol. 2001;61:1205–1215. doi: 10.1016/S0006-2952(01)00583-4. PubMed DOI

Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M. Antiproliferative activity of flavonoids on several cancer cell lines. Biosci. Biotechnol. Biochem. 1999;63:896–899. doi: 10.1271/bbb.63.896. PubMed DOI

Pervaiz T., Songtao J., Faghihi F., Haider M.S., Fang J. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants. J. Plant Biochem. Physiol. 2017;5:1–9. doi: 10.4172/2329-9029.1000187. DOI

You Q., Wang B., Chen F., Huang Z., Wang X., Luo P.G. Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem. 2011;125:201–208. doi: 10.1016/j.foodchem.2010.08.063. DOI

Olivas-Aguirre F.J., Rodrigo-García J., Martínez-Ruiz N.D.R., Cárdenas-Robles A.I., Mendoza-Díaz S.O., Alvarez-Parrilla E., Gonzalez-Aguilar G.A., De la Rosa L.A., Ramos-Jimenez A., Wall-Medrano A. Cyanidin-3-O-glucoside: Physical-chemistry, foodomics and health effects. Molecules. 2016;21:1264. doi: 10.3390/molecules21091264. PubMed DOI PMC

Smeriglio A., Barreca D., Bellocco E., Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother. Res. 2016;30:1265–1286. doi: 10.1002/ptr.5642. PubMed DOI

Kong J.M., Chia L.S., Goh N.K., Chia T.F., Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry. 2003;64:923–933. doi: 10.1016/S0031-9422(03)00438-2. PubMed DOI

Yazhen S., Wenju W., Panpan Z., Yuanyuan Y., Panpan D., Wusen Z., Yanling W. Anthocyanins: Novel Antioxidants in Diseases Prevention and Human Health. In: Badria F.A., Ananga A., editors. Flavonoids-A Coloring Model for Cheering up Life. IntechOpen; London, UK: 2019. pp. 1–16.

Miguel M.G. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci. 2011;1:7–15.

Srivastava A., Akoh C.C., Fischer J., Krewer G. Effect of anthocyanin fractions from selected cultivars of Georgia-grown blueberries on apoptosis and phase II enzymes. J. Agric. Food Chem. 2007;55:3180–3185. doi: 10.1021/jf062915o. PubMed DOI

Jimenez-Garcia S.N., Guevara-Gonzalez R.G., Miranda-Lopez R., Feregrino-Perez A.A., Torres-Pacheco I., Vazquez-Cruz M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013;54:1195–1207. doi: 10.1016/j.foodres.2012.11.004. DOI

Battino M., Beekwilder J., Denoyes-Rothan B., Laimer M., McDougall G.J., Mezzetti B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009;67:S145–S150. doi: 10.1111/j.1753-4887.2009.00178.x. PubMed DOI

Viskelis P., Rubinskienė M., Jasutienė I., Šarkinas A., Daubaras R., Česonienė L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009;74:C157–C161. doi: 10.1111/j.1750-3841.2009.01066.x. PubMed DOI

Khoo H.E., Azlan A., Tang S.T., Lim S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017;61:1–21. doi: 10.1080/16546628.2017.1361779. PubMed DOI PMC

Thoppil R.J., Bhatia D., Barnes K.F., Haznagy-Radnai E., Hohmann J., Darvesh A.S., Bishayee A. Black currant anthocyanins abrogate oxidative stress through Nrf2-mediated antioxidant mechanisms in a rat model of hepatocellular carcinoma. Curr. Cancer Drug Tar. 2012;12:1244–1257. PubMed

Vendrame S., Klimis-Zacas D. Anti-inflammatory effect of anthocyanins via modulation of nuclear factor-κB and mitogen-activated protein kinase signaling cascades. Nutr. Rev. 2015;73:348–358. doi: 10.1093/nutrit/nuu066. PubMed DOI

Shukla A.S., Jha A.K., Kumari R., Rawat K., Syeda S., Shrivastava A. Role of Catechins in Chemosensitization. In: Bharti A.C., Aggarwal B.B., editors. Role of Nutraceuticals in Cancer Chemosensitization. Volume 2. Elsevier; Amsterdam, The Netherlands: 2018. pp. 169–198.

Zanwar A.A., Badole S.L., Shende P.S., Hegde M.V., Bodhankar S.L. Antioxidant role of catechin in health and disease. In: Watson R.R., Preedy V.R., Zibadi S., editors. Polyphenols in Human Health and Disease. Volume 1. Elsevier; Amsterdam, The Netherlands: 2014. pp. 267–271.

Naasani I., Seimiya H., Tsuruo T. Telomerase inhibition, telomere shortening, and senescence of cancer cells by tea catechins. Biochem. Biophys. Res. Commun. 1998;249:391–396. doi: 10.1006/bbrc.1998.9075. PubMed DOI

Cosarca S., Tanase C., Muntean D.L. Therapeutic aspects of catechins and its derivatives- an update. Acta Biol. Marisiensis. 2019;2:21–29. doi: 10.2478/abmj-2019-0003. DOI

Fan F.Y., Sang L.X., Jiang M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules. 2017;22:484. doi: 10.3390/molecules22030484. PubMed DOI PMC

Pan Z., Zhou Y., Luo X., Ruan Y., Zhou L., Wang Q., Yan Y.J., Liu Q., Chen J. Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis. Int. Immunopharmacol. 2018;61:241–248. doi: 10.1016/j.intimp.2018.06.011. PubMed DOI

Williamson G., Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005;81:243S–255S. doi: 10.1093/ajcn/81.1.243S. PubMed DOI

Pocernich C.B., Lange M.L., Sultana R., Butterfield D.A. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease. Curr. Alzheimer Res. 2011;8:452–469. doi: 10.2174/156720511796391908. PubMed DOI

Horvathova K., Novotny L., Tothova D., Vachalkova A. Determination of free radical scavenging activity of quercetin, rutin, luteolin and apigenin in H~ 2O~ 2-treated human ML cells K562. Neoplasma. 2004;51:395–399. PubMed

Heijnen C.G., Haenen G.R., Minou Oostveen R., Stalpers E.M., Bast A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radic. Res. 2002;36:575–581. doi: 10.1080/10715760290025951. PubMed DOI

Chondrogianni N., Kapeta S., Chinou I., Vassilatou K., Papassideri I., Gonos E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol. 2010;45:763–771. doi: 10.1016/j.exger.2010.07.001. PubMed DOI

Lesjak M., Beara I., Simin N., Pintać D., Majkić T., Bekvalac K., Orcic D., Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods. 2018;40:68–75. doi: 10.1016/j.jff.2017.10.047. DOI

David A.V.A., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016;10:84–89. PubMed PMC

Bautista-Ortín A.B., Rodríguez-Rodríguez P., Gil-Muñoz R., Jiménez-Pascual E., Busse-Valverde N., Martínez-Cutillas A., Lopez-Roca J.M., Gómez-Plaza E. Influence of berry ripeness on concentration, qualitative composition and extractability of grape seed tannins. Aust. J. Grape Wine Res. 2012;18:123–130. doi: 10.1111/j.1755-0238.2012.00178.x. DOI

Puupponen-Pimiä R., Nohynek L., Alakomi H.L., Oksman-Caldentey K.M. Bioactive berry compounds—novel tools against human pathogens. Appl. Microbiol. Biotechnol. 2005;67:8–18. doi: 10.1007/s00253-004-1817-x. PubMed DOI

Bushman B.S., Phillips B., Isbell T., Ou B., Crane J.M., Knapp S.J. Chemical composition of cranberry (Rubus spp.) seeds and oils and their antioxidant potential. J. Agric. Food Chem. 2004;52:7982–7987. doi: 10.1021/jf049149a. PubMed DOI

Mullen W., McGinn J., Lean M.E., MacLean M.R., Gardner P., Duthie G.G., Yokota T., Crozier A. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. J. Agric. Food Chem. 2002;50:5191–5196. doi: 10.1021/jf020140n. PubMed DOI

Han X., Shen T., Lou H. Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 2007;8:950–988. doi: 10.3390/i8090950. DOI

De Ligt M., Timmers S., Schrauwen P. Resveratrol and obesity: Can resveratrol relieve metabolic disturbances? Biochim. Biophys. Acta Mol. Basis Dis. 2015;1852:1137–1144. doi: 10.1016/j.bbadis.2014.11.012. PubMed DOI

Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur. J. Endocrinol. 1998;138:619–620. doi: 10.1530/eje.0.1380619. PubMed DOI

Catalgol B., Batirel S., Taga Y., Ozer N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012;3:1–18. doi: 10.3389/fphar.2012.00141. PubMed DOI PMC

Knutson M.D., Leeuwenburgh C. Resveratrol and novel potent activators of SIRT1: Effects on aging and age-related diseases. Nutr. Rev. 2008;66:591–596. doi: 10.1111/j.1753-4887.2008.00109.x. PubMed DOI

Sebastià N., Montoro A., Mañes J., Soriano J.M. A preliminary study of presence of resveratrol in skins and pulps of European and Japanese plum cultivars. J. Sci. Food Agric. 2012;92:3091–3094. doi: 10.1002/jsfa.5759. PubMed DOI

Di Franco R., Calvanese M., Murino P., Manzo R., Guida C., Di Gennaro D., Anania C., Ravo V. Skin toxicity from external beam radiation therapy in breast cancer patients: Protective effects of Resveratrol, Lycopene, Vitamin C and anthocianin (Ixor®) Radiat. Oncol. 2012;7:1–6. doi: 10.1186/1748-717X-7-12. PubMed DOI PMC

Risuleo G. Resveratrol: Multiple activities on the biological functionality of the cell. In: Gupta R.C., editor. Nutraceuticals. Elsevier; Amsterdam, The Netherlands: 2016. pp. 453–464.

Serra A.T., Duarte R.O., Bronze M.R., Duarte C.M. Identification of bioactive response in traditional cherries from Portugal. Food Chem. 2011;125:318–325. doi: 10.1016/j.foodchem.2010.07.088. DOI

Lee J., Koo N., Min D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004;3:21–33. doi: 10.1111/j.1541-4337.2004.tb00058.x. PubMed DOI

Lim Y.Y., Lim T.T., Tee J.J. Antioxidant properties of several tropical fruits: A comparative study. Food Chem. 2007;103:1003–1008. doi: 10.1016/j.foodchem.2006.08.038. DOI

Favela-Hernández J.M.J., González-Santiago O., Ramírez-Cabrera M.A., Esquivel-Ferriño P.C., Camacho-Corona M.D.R. Chemistry and Pharmacology of Citrus sinensis. Molecules. 2016;21:247. doi: 10.3390/molecules21020247. PubMed DOI PMC

Khan M.K., Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014;33:85–104. doi: 10.1016/j.jfca.2013.11.004. DOI

Afrin S., Gasparrini M., Forbes-Hernandez T.Y., Reboredo-Rodriguez P., Mezzetti B., Varela-Lόpez A., Giampieri F., Battino M. Promising health benefits of the strawberry: A focus on clinical studies. J. Agric. Food Chem. 2016;64:4435–4449. doi: 10.1021/acs.jafc.6b00857. PubMed DOI

Giampieri F., Alvarez-Suarez J.M., Battino M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014;62:3867–3876. doi: 10.1021/jf405455n. PubMed DOI

Bai L., Guo S., Liu Q., Cui X., Zhang X., Zhang L., Yang X., Hou M., Ho C.T., Bai N. Characterization of nine polyphenols in fruits of Malus pumila Mill by high-performance liquid chromatography. J. Food Drug Anal. 2016;24:293–298. doi: 10.1016/j.jfda.2015.10.002. PubMed DOI PMC

Rupasinghe H.V., Thilakarathna S., Nair S. Polyphenols: Chemistry, Dietary Sources and Health Benefits. Nova Science; New York, NY, USA: 2013. Polyphenols of apples and their potential health benefits; pp. 333–368.

Bondonno N.P., Bondonno C.P., Ward N.C., Hodgson J.M., Croft K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017;69:243–256. doi: 10.1016/j.tifs.2017.04.012. DOI

Kelley D.S., Adkins Y., Laugero K.D. A review of the health benefits of cherries. Nutrients. 2018;10:368. doi: 10.3390/nu10030368. PubMed DOI PMC

Slimestad R., Solheim H. Anthocyanins from black currants (Ribes nigrum L.) J. Agric. Food Chem. 2002;50:3228–3231. doi: 10.1021/jf011581u. PubMed DOI

Jiao H., Wang S.Y. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J. Agric. Food Chem. 2000;48:5672–5676. doi: 10.1021/jf000765q. PubMed DOI

Pappas E., Schaich K.M. Phytochemicals of cranberries and cranberry products: Characterization, potential health effects, and processing stability. Crit. Rev. Food Sci. Nutr. 2009;49:741–781. doi: 10.1080/10408390802145377. PubMed DOI

Bodet C., Grenier D., Chandad F., Ofek I., Steinberg D., Weiss E.I. Potential oral health benefits of cranberry. Crit. Rev. Food Sci. Nutr. 2008;48:672–680. doi: 10.1080/10408390701636211. PubMed DOI

Yang J., Xiao Y.Y. Grape phytochemicals and associated health benefits. Crit. Rev. Food Sci. Nutr. 2013;53:1202–1225. doi: 10.1080/10408398.2012.692408. PubMed DOI

Pezzuto J.M. Grapes and human health: A perspective. J. Agric. Food Chem. 2008;56:6777–6784. doi: 10.1021/jf800898p. PubMed DOI

Beekwilder J., Hall R.D., De Vos C.H. Identification and dietary relevance of antioxidants from raspberry. Biofactors. 2005;23:197–205. doi: 10.1002/biof.5520230404. PubMed DOI

Wang H., Liu J., Li T., Liu R.H. Blueberry extract promotes longevity and stress tolerance via DAF-16 in Caenorhabditis elegans. Food Funct. 2018;9:5273–5282. doi: 10.1039/C8FO01680A. PubMed DOI

Cimino F., Cristani M., Saija A., Bonina F.P., Virgili F. Protective effects of a red orange extract on UVB-induced damage in human keratinocytes. Biofactors. 2007;30:129–138. doi: 10.1002/biof.5520300206. PubMed DOI

Tajaldini M., Samadi F., Khosravi A., Ghasemnejad A., Asadi J. Protective and anticancer effects of orange peel extract and naringin in doxorubicin treated esophageal cancer stem cell xenograft tumor mouse model. Biomed. Pharmacother. 2020;121:1–8. doi: 10.1016/j.biopha.2019.109594. PubMed DOI

Fan K., Kurihara N., Abe S., Ho C.T., Ghai G., Yang K. Chemopreventive effects of orange peel extract (OPE) I. OPE inhibits intestinal tumor growth in ApcMin/+ mice. J. Med. Food. 2007;10:11–17. doi: 10.1089/jmf.2006.0214. PubMed DOI

Wang J., Deng N., Wang H., Li T., Chen L., Zheng B., Liu R.H. Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans. Molecules. 2020;25:351. doi: 10.3390/molecules25020351. PubMed DOI PMC

Puglia C., Offerta A., Saija A., Trombetta D., Venera C. Protective effect of red orange extract supplementation against UV-induced skin damages: Photoaging and solar lentigines. J. Cosmet. Dermatol. 2014;13:151–157. doi: 10.1111/jocd.12083. PubMed DOI

Bonina F.P., Leotta C., Scalia G., Puglia C., Trombetta D., Tringali G., Roccazzello A.M., Rapisarda P., Saija A. Evaluation of oxidative stress in diabetic patients after supplementation with a standardised red orange extract. Diabetes Nutr. Metab. 2002;15:14–19. PubMed

Wedge D.E., Meepagala K.M., Magee J.B., Smith S.H., Huang G., Larcom L.L. Anticarcinogenic activity of strawberry, blueberry, and raspberry extracts to breast and cervical cancer cells. J. Med. Food. 2001;4:49–51. doi: 10.1089/10966200152053703. PubMed DOI

Seeram N.P., Adams L.S., Zhang Y., Lee R., Sand D., Scheuller H.S., Heber D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006;54:9329–9339. doi: 10.1021/jf061750g. PubMed DOI

Zhang Y., Seeram N.P., Lee R., Feng L., Heber D. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. 2008;56:670–675. doi: 10.1021/jf071989c. PubMed DOI

Cho H.J., Park J.H.Y. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. J. Cancer Prev. 2013;18:257–263. doi: 10.15430/JCP.2013.18.3.257. PubMed DOI PMC

Shi N., Clinton S.K., Liu Z., Wang Y., Riedl K.M., Schwartz S.J., Zhang X., Pan Z., Chen T. Strawberry phytochemicals inhibit azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in Crj: CD-1 mice. Nutrients. 2015;7:1696–1715. doi: 10.3390/nu7031696. PubMed DOI PMC

Lee D.E., Chung M.Y., Lim T.G., Huh W.B., Lee H.J., Lee K.W. Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells. J. Food Sci. 2013;78:H1464–H1469. doi: 10.1111/1750-3841.12223. PubMed DOI

Vayndorf E.M., Lee S.S., Liu R.H. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J. Funct. Foods. 2013;5:1235–1243. doi: 10.1016/j.jff.2013.04.006. PubMed DOI PMC

Snyder S.M., Zhao B., Luo T., Kaiser C., Cavender G., Hamilton-Reeves J., Sullivan D.K., Shay N.F. Consumption of quercetin and quercetin-containing apple and cherry extracts affects blood glucose concentration, hepatic metabolism, and gene expression patterns in obese C57BL/6J high fat–fed mice. J. Nutr. 2016;146:1001–1007. doi: 10.3945/jn.115.228817. PubMed DOI PMC

Olsson M.E., Gustavsson K.E., Andersson S., Nilsson A., Duan R.D. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 2004;52:7264–7271. doi: 10.1021/jf030479p. PubMed DOI

Holtung L., Grimmer S., Aaby K. Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. J. Agric. Food Chem. 2011;59:3632–3640. doi: 10.1021/jf104427r. PubMed DOI

Molan A.L., Liu Z., Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytother. Res. 2014;28:416–422. doi: 10.1002/ptr.5009. PubMed DOI

Dai J., Patel J.D., Mumper R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food. 2007;10:258–265. doi: 10.1089/jmf.2006.238. PubMed DOI

Boateng J., Verghese M., Shackelford L., Walker L.T., Khatiwada J., Ogutu S., Williams D.S., Jones J., Guyton M., Asiamah D., et al. Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem. Toxicol. 2007;45:725–732. doi: 10.1016/j.fct.2006.10.019. PubMed DOI

God J., Tate P.L., Larcom L.L. Red raspberries have antioxidant effects that play a minor role in the killing of stomach and colon cancer cells. Nutr. Res. 2010;30:777–782. doi: 10.1016/j.nutres.2010.10.004. PubMed DOI

Zhang H., Liu J., Li G., Wei J., Chen H., Zhang C., Zhao J., Wang Y., Dang S., Li X., et al. Fresh red raspberry phytochemicals suppress the growth of hepatocellular carcinoma cells by PTEN/AKT pathway. Int. J. Biochem. Cell Biol. 2018;104:55–65. doi: 10.1016/j.biocel.2018.09.003. PubMed DOI

Bibi S., Du M., Zhu M.J. Dietary Red Raspberry Reduces Colorectal Inflammation and Carcinogenic Risk in Mice with Dextran Sulfate Sodium–Induced Colitis. J. Nutr. 2018;148:667–674. doi: 10.1093/jn/nxy007. PubMed DOI PMC

Tu L., Sun H., Tang M., Zhao J., Zhang Z., Sun X., He S. Red raspberry extract (Rubus idaeus L shrub) intake ameliorates hyperlipidemia in HFD-induced mice through PPAR signaling pathway. Food Chem. Toxicol. 2019;133:110796. doi: 10.1016/j.fct.2019.110796. PubMed DOI

Yi W., Fischer J., Krewer G., Akoh C.C. Phenolic compounds from blueberries can inhibit colon cancer cell proliferation and induce apoptosis. J. Agric. Food Chem. 2005;53:7320–7329. doi: 10.1021/jf051333o. PubMed DOI

Paul S., DeCastro A.J., Lee H.J., Smolarek A.K., So J.Y., Simi B., Wang C.X., Zhou R., Rimando A.M., Suh N. Dietary intake of pterostilbene, a constituent of blueberries, inhibits the β-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis. 2010;31:1272–1278. doi: 10.1093/carcin/bgq004. PubMed DOI PMC

Galli R.L., Bielinski D.F., Szprengiel A., Shukitt-Hale B., Joseph J.A. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol. Aging. 2006;27:344–350. doi: 10.1016/j.neurobiolaging.2005.01.017. PubMed DOI

Peng C., Zuo Y., Kwan K.M., Liang Y., Ma K.Y., Chan H.Y.E., Huang Y., Yu H., Chen Z.Y. Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp. Gerontol. 2012;47:170–178. doi: 10.1016/j.exger.2011.12.001. PubMed DOI

Wu T., Tang Q., Gao Z., Yu Z., Song H., Zheng X., Chen W. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS ONE. 2013;8:e77585. doi: 10.1371/journal.pone.0077585. PubMed DOI PMC

Narayansingh R., Hurta R.A. Cranberry extract and quercetin modulate the expression of cyclooxygenase-2 (COX-2) and IκBα in human colon cancer cells. J. Sci. Food Agric. 2009;89:542–547. doi: 10.1002/jsfa.3471. DOI

Ferguson P.J., Kurowska E.M., Freeman D.J., Chambers A.F., Koropatnick J. In vivo inhibition of growth of human tumor lines by flavonoid fractions from cranberry extract. Nutr. Cancer. 2006;56:86–94. doi: 10.1207/s15327914nc5601_12. PubMed DOI

Xiao X., Kim J., Sun Q., Kim D., Park C.S., Lu T.S., Park Y. Preventive effects of cranberry products on experimental colitis induced by dextran sulphate sodium in mice. Food Chem. 2015;167:438–446. doi: 10.1016/j.foodchem.2014.07.006. PubMed DOI

Ruel G., Pomerleau S., Couture P., Lemieux S., Lamarche B., Couillard C. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Brit. J. Nutr. 2006;96:357–364. doi: 10.1079/BJN20061814. PubMed DOI

Duffey K.J., Sutherland L.A. Adult consumers of cranberry juice cocktail have lower C-reactive protein levels compared with nonconsumers. Nutr. Res. 2015;35:118–126. doi: 10.1016/j.nutres.2014.11.005. PubMed DOI

Novotny J.A., Baer D.J., Khoo C., Gebauer S.K., Charron C.S. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults. J. Nutr. 2015;145:1185–1193. doi: 10.3945/jn.114.203190. PubMed DOI

Chew B., Mathison B., Kimble L., McKay D., Kaspar K., Khoo C., Chen C.Y.O., Blumberg J. Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. Eur. J. Nutr. 2019;58:1223–1235. doi: 10.1007/s00394-018-1643-z. PubMed DOI PMC

Vaisman N., Niv E. Daily consumption of red grape cell powder in a dietary dose improves cardiovascular parameters: A double blind, placebo-controlled, randomized study. Int. J Food Sci. Nutr. 2015;66:342–349. doi: 10.3109/09637486.2014.1000840. PubMed DOI

Castilla P., Echarri R., Dávalos A., Cerrato F., Ortega H., Teruel J.L., Lucas M.F., Gomes-Coronado D., Ortuno J., Lasunción M.A. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am. J. Clin. Nutr. 2006;84:252–262. doi: 10.1093/ajcn/84.1.252. PubMed DOI

Khadem-Ansari M.H., Rasmi Y., Ramezani F. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem. J. 2010;4:96–99. doi: 10.2174/1874091X01004010096. PubMed DOI PMC

Shahidi F. In: Natural Antioxidants: An Overview. Natural Antioxidants: Chemistry, Health Effects, and Applications. Shahidi F., editor. The American Oil Chemists Society; Champion, IL, USA: 1997. pp. 1–11.

Shahidi F., Naczk M., Griffiths W. Food phenolics: Sources, chemistry, effects, applications. Trends Food Sci. Technol. 1995;7:1–5.

Brewer M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011;10:221–247. doi: 10.1111/j.1541-4337.2011.00156.x. DOI

Mullenix P.S., Andersen C.A., Starnes B.W. Atherosclerosis as inflammation. Ann. Vasc. Surg. 2005;19:130–138. doi: 10.1007/s10016-004-0153-z. PubMed DOI

Rosenberg P.B. Clinical aspects of inflammation in Alzheimer’s disease. Int. Rev. Psychiatry. 2005;17:503–514. doi: 10.1080/02646830500382037. PubMed DOI

Giampieri F., Forbes-Hernandez T.Y., Gasparrini M., Alvarez-Suarez J.M., Afrin S., Bompadre S., Quiles J.L., Mezzetti B., Battino M. Strawberry as a health promoter: An evidence based review. Food Funct. 2015;6:1386–1398. doi: 10.1039/C5FO00147A. PubMed DOI

Cai X., Han Y., Gu M., Song M., Wu X., Li Z., Li F., Goulette T., Xiao H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct. 2019;10:6331–6341. doi: 10.1039/C9FO01537J. PubMed DOI PMC

Forbes-Hernandez T.Y., Gasparrini M., Afrin S., Bompadre S., Mezzetti B., Quiles J.L., Giampieri F., Battino M. The healthy effects of strawberry polyphenols: Which strategy behind antioxidant capacity? Crit. Rev. Food Sci. Nutr. 2016;56:S46–S59. doi: 10.1080/10408398.2015.1051919. PubMed DOI

Van’t Veer P., Jansen M.C., Klerk M., Kok F.J. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000;3:103–107. doi: 10.1017/S1368980000000136. PubMed DOI

Neto C.C. Cranberry and its phytochemicals: A review of in vitro anticancer studies. J. Nutr. 2007;137:186S–193S. doi: 10.1093/jn/137.1.186S. PubMed DOI

Bishayee A., Haskell Y., Do C., Siveen K.S., Mohandas N., Sethi G., Stoner G.D. Potential benefits of edible berries in the management of aerodigestive and gastrointestinal tract cancers: Preclinical and clinical evidence. Crit. Rev. Food Sci. Nutr. 2016;56:1753–1775. doi: 10.1080/10408398.2014.982243. PubMed DOI

Chu S.C., Hsieh Y.S., Hsu L.S., Chen K.S., Chiang C.C., Chen P.N. Rubus idaeus L inhibits invasion potential of human A549 lung cancer cells by suppression epithelial-to-mesenchymal transition and Akt pathway in vitro and reduces tumor growth in vivo. Integr. Cancer Ther. 2014;13:259–273. doi: 10.1177/1534735413510559. PubMed DOI

Baby B., Antony P., Vijayan R. Antioxidant and anticancer properties of berries. Crit. Rev. Food Sci. Nutr. 2018;58:2491–2507. doi: 10.1080/10408398.2017.1329198. PubMed DOI

Stoner G.D., Wang L.S., Zikri N., Chen T., Hecht S.S., Huang C., Sardo. C., Lechner J.F. Seminars in Cancer Biology. Volume 17. Elsevier; Amsterdam, The Netherlands: 2007. Cancer prevention with freeze-dried berries and berry components; pp. 403–410. PubMed PMC

Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915. PubMed DOI PMC

Goschorska M., Gutowska I., Baranowska-Bosiacka I., Barczak K., Chlubek D. The use of antioxidants in the treatment of migraine. Antioxidants. 2020;9:116. doi: 10.3390/antiox9020116. PubMed DOI PMC

Jafarpour M., Yousefi G., Hamedi A., Shariat A., Salehi A., Heydari M. Effect of a traditional syrup from Citrus medica L. fruit juice on migraine headache: A randomized double blind placebo controlled clinical trial. J. Ethnopharmacol. 2016;179:170–176. doi: 10.1016/j.jep.2015.12.040. PubMed DOI

Martin A., Prior R., Shukitt-Hale B., Cao G., Joseph J.A. Effect of fruits, vegetables, or vitamin E–rich diet on vitamins E and C distribution in peripheral and brain tissues: Implications for brain function. J. Gerontol. A Biol. Sci. Med. Sci. 2000;55:B144–B151. doi: 10.1093/gerona/55.3.B144. PubMed DOI

Devore E.E., Kang J.H., Breteler M.M., Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol. 2012;72:135–143. doi: 10.1002/ana.23594. PubMed DOI PMC

Mursu J., Virtanen J.K., Tuomainen T.P., Nurmi T., Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2014;99:328–333. doi: 10.3945/ajcn.113.069641. PubMed DOI

Muraki I., Imamura F., Manson J.E., Hu F.B., Willett W.C., van Dam R.M., Sun Q. Fruit consumption and risk of type 2 diabetes: Results from three prospective longitudinal cohort studies. Br. Med. J. 2013;347:12. doi: 10.1136/bmj.f5001. PubMed DOI PMC

Amani R., Moazen S., Shahbazian H., Ahmadi K., Jalali M.T. Flavonoid-rich beverage effects on lipid profile and blood pressure in diabetic patients. World J. Diabetes. 2014;5:962–968. doi: 10.4239/wjd.v5.i6.962. PubMed DOI PMC

Erlund I., Koli R., Alfthan G., Marniemi J., Puukka P., Mustonen P., Mattila P., Jula A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am. J. Clin. Nutr. 2008;87:323–331. doi: 10.1093/ajcn/87.2.323. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Assessing the potential role of arbuscular mycorrhizal fungi in improving the phytochemical content and antioxidant properties in Gomphrena globosa

. 2024 Oct 01 ; 14 (1) : 22830. [epub] 20241001

Revisiting the ethnomedicinal, ethnopharmacological, phytoconstituents and phytoremediation of the plant Solanum viarum Dunal

. 2024 Aug ; 397 (8) : 5513-5531. [epub] 20240318

An investigation of the pigments, antioxidants and free radical scavenging potential of twenty medicinal weeds found in the southern part of Bangladesh

. 2024 ; 12 () : e17698. [epub] 20240723

A systematic review on endophytic fungi and its role in the commercial applications

. 2023 Mar 01 ; 257 (4) : 70. [epub] 20230301

Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat.: a review

. 2022 May 06 ; 13 (1) : 8. [epub] 20220506

Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress

. 2021 ; 2021 () : 3155962. [epub] 20211026

Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2

. 2021 Sep 18 ; 9 (9) : . [epub] 20210918

Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review

. 2021 Jun 06 ; 26 (11) : . [epub] 20210606

Mechanistic Insight into Antimicrobial and Antioxidant Potential of Jasminum Species: A Herbal Approach for Disease Management

. 2021 May 28 ; 10 (6) : . [epub] 20210528

Ethnomedicinal Plants Traditionally Used for the Treatment of Jaundice (Icterus) in Himachal Pradesh in Western Himalaya-A Review

. 2021 Jan 25 ; 10 (2) : . [epub] 20210125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...