Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat.: a review
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2011/2021-2022
Excelence project PřF UHK
UHHK
MH CZ - DRO project
00179906
MH CZ - DRO project
PubMed
35513833
PubMed Central
PMC9074205
DOI
10.1186/s43008-022-00095-1
PII: 10.1186/s43008-022-00095-1
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-cancer, Artificial cultivation, Cauliflower mushroom, Immunomodulatory, Sparassol, β-glucan,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Sparassis crispa is an edible mushroom exhibiting a wide range of medicinal properties. It is recognized for therapeutic value because of the high β-glucan content in the basidiomes. The broad range of its reported curative effects include anti-tumour, anti-cancer, immune-enhancing, hematopoietic, anti-angiogenic, anti-inflammatory, anti-diabetic, wound-healing, antioxidant, anti-coagulant, and anti-hypertensive properties. However, most of the studies are conducted on immunomodulatory and anticancer activities. Besides this, it also exhibits anti-microbial properties due to the presence of sparassol. Technology is now available for the cultivation of S. crispa on coniferous sawdust. This review is an attempt to focus on its distribution, taxonomy, chemical composition, medicinal properties, potential applications, and artificial cultivation.
Zobrazit více v PubMed
Abasi F, Amjad MS, Qureshi H. (2021) Historical evidence and documentation of remedial flora of Azad Jammu and Kashmir (AJK). In: Pharmacognosy-Medicinal Plants. IntechOpen. 10.5772/intechopen.96472
Andrew C, Diez J, James TY, Kauserud H. Fungarium specimens: a largely untapped source in global change biology and beyond. Philos Trans R Soc B. 2018;374:20170392. doi: 10.1098/rstb.2017.0392. PubMed DOI PMC
Aryal H, Budhathoki U. Some wild mushrooms of Rupandehi district, West Nepal. Bibechana. 2013;10:34–43. doi: 10.3126/bibechana.v10i0.9309. DOI
Bang R, Lee YJ. A review on phytochemistry and pharmacology of Sparassis crispa. Korean J Herbol. 2019;34(6):131–138. doi: 10.1016/j.jep.2019.02.041. DOI
Bang S, Lee C, Ryu J, Li W, Koh YS, Jeon JH, Lee J, Shim SH. Simultaneous determination of the bioactive compounds from Sparassis crispa (Wulf.) by HPLC-DAD and their inhibitory effects on LPS-stimulated cytokine production in bone marrow-derived dendritic cell. Arch Pharmacal Res. 2018;41(8):823–829. doi: 10.1007/s12272-018-1054-y. PubMed DOI
Bashir KMI, Rheu KM, Kim MS, Cho MG. The complete mitochondrial genome of an edible mushroom, Sparassis Crispa. Mitochondrial DNA B. 2020;5(1):862–863. doi: 10.1080/23802359.2020.1715855. PubMed DOI PMC
Burdsall HH, Miller OK. Neotypification of Sparassis crispa. Mycotaxon. 1988;31(2):591–593.
Chandrasekaran G, Kim GJ, Shin HJ. Purification and characterisation of an alkaliphilic esterase from a culinary medicinal mushroom, Sparassis Crispa. Food Chem. 2011;124(4):1376–1381. doi: 10.1016/j.foodchem.2010.07.094. DOI
Chauhan J, Negi AK, Rajasekaran A, Pala NA. Wild edible macro-fungi- A source of supplementary food in Kinnaur District, Himachal Pradesh, India. J Med Plants Stud. 2014;2(1):40–44.
Choi JH, Lee HJ, Kim S. Purification and antithrombotic activity of wulfase, a fibrinolytic enzyme from the fruit bodies of the edible and medicinal mushroom Sparassis crispa Wulf. ex Fr. Appl Biochem Microbiol. 2016;52:608–614. doi: 10.1134/S000368381606003X. DOI
Choi WS, Shin PG, Yoo YB, Noh H, Kim GD. Anti-inflammatory activity of the blossom mushroom extract. Korean Mushroom Soc. 2013;11(1):46–51. doi: 10.14480/JM.2013.11.1.046. DOI
Dai YC, Cui BK, Yuan HS, Li BD. Pathogenic wood-decaying fungi in China. Forest Pathol. 2007;37(2):105–120. doi: 10.1111/j.1439-0329.2007.00485.x. DOI
Dai YC, Wang Z, Binder M, Hibbett DS. Phylogeny and a new species of Sparassis (Polyporales, Basidiomycota): evidence from mitochondrial atp6, nuclear rDNA and rpb2 genes. Mycologia. 2006;98(4):584–592. doi: 10.3852/mycologia.98.4.584. PubMed DOI
Devkota S. The fleshy fungi, Sparassis crispa (Basidiomycetes: Polyporales) from Nepal. Sci World. 2009;77:94–95. doi: 10.3126/sw.v7i7.3835. DOI
Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, Nepovimova E, Kuca K. Bioactive compounds of edible fruits with their anti-aging properties: a comprehensive review to prolong human life. Antioxidants. 2020;9:112. doi: 10.3390/antiox9111123. PubMed DOI PMC
Dyakov MY, Kamzolkina OV, Shtaer OV, Bis’ko NA, Poedinok NL, Mikhailova OB, Tikhonova OV, Tolstikhina TE, Vasil’eva BF, Efremenkova OV. Morphological characteristics of natural strains of certain species of basidiomycetes and biological analysis of antimicrobial activity under submerged cultural conditions. Microbiology. 2011;80(2):274–285. doi: 10.1134/S0026261711020044. DOI
Farooq MU, Chioza A, Ohga S. Vegetative development of Sparassis crispa in various growth conditions and effect of electric pulse simulation on its fruit body production. Adv Microbiol. 2014;4(5):267–274. doi: 10.4236/aim.2014.45033. DOI
Fries EM (1821). Systema Mycologicum, vol 1. Grifiswald: E. Mauritus
Fulzele AA. Few interesting basidiomycetes fungi from Nagpur district of Maharashtra, India. Int J Res Biosci Agric Technol. 2013;1(1):17–30.
Han JM, Lee EK, Gong SY, Sohng JK, Kang YJ, Jung HJ. Sparassis crispa exerts anti-inflammatory activity via suppression of TLR-mediated NF-κB and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. J Ethnopharmacol. 2019;231:10–18. doi: 10.1016/j.jep.2018.11.003. PubMed DOI
Hao ZQ, Chen ZJ, Chang MC, Meng JL, Liu JY, Feng CP. Rheological properties and gel characteristics of polysaccharides from fruit-bodies of Sparassis crispa. Int J Food Prop. 2018;21(1):2283–2295. doi: 10.1080/10942912.2018.1510838. DOI
Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Mechanism of enhanced hematopoietic response by soluble β-glucan SCG in cyclophosphamide-treated mice. Microbiol Immunol. 2006;50(9):687–700. doi: 10.1111/j.1348-0421.2006.tb03841.x. PubMed DOI
Harada T, Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. Effect of SCG, 1,3-beta-D-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol Pharm Bull. 2002;25(7):931–939. doi: 10.1248/bpb.25.931. PubMed DOI
Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. IFN-γ Induction by SCG, 1,3-β-D-Glucan from Sparassis crispa, in DBA/2 mice in vitro. J Interferon Cytokine Res. 2002;22(12):1227–1239. doi: 10.1089/10799900260475759. PubMed DOI
Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3- β -D-glucan SCG in DBA/2 mice in vitro. J Interferon Cytokine Res. 2004;24(8):478–489. doi: 10.1089/1079990041689656. PubMed DOI
Hasegawa A, Yamada M, Dombo M, Fukushima R, Matsuura N, Sugitachi A. Sparassis crispa as biological response modifier. Cancer Chemotherapy. 2004;31(11):1761–1763. PubMed
Hayashi K, Tokuyama S, Hashimoto M, Kimura T, Dombo M, Kawagishi H. Occurrence and identification of chalcones from the culinary-medicinal cauliflower mushroom Sparassis crispa (Wulf.) Fr. (Aphyllophoromycetideae) Int J Med Mushrooms. 2008;10(4):331–336. doi: 10.1615/IntJMedMushr.v10.i4.50. DOI
Hervey AH. A survey of 500 basidiomycetes for antibacterial activity. Bull Torrey Bot Club. 1947;74(6):476–503. doi: 10.2307/2481874. DOI
Horie K, Rakwal R, Hirano M, Shibato J, Nam HW, Kim YS, Yonekura M. Proteomics of two cultivated mushrooms Sparassis crispa and Hericium erinaceum provides insight into their numerous functional protein components and diversity. J Proteome Res. 2008;7(5):1819–1835. doi: 10.1021/pr070369o. PubMed DOI
Huang JC, Chi ZX, Wang MZ, Yu YR, Ying ZH. Study on domestication cultivation of Sparassis crispa (Wulf.) Fries. Acta Agriculturae Jiangxi. 2007;19(8):120–122.
Jang YA, Kim HN, Yang JC, Lee JW, Kim BA, Lee JT. A study on the possibility of extracts from Sparassis crispa for cosmetic ingredients. J Korean Oil Chem Soc. 2015;32:731–739. doi: 10.12925/jkocs.2015.32.4.731. DOI
Jeong JS, Yu YJ, Seo SY, Yu YB. Selection of suitable conditions of mycelial growth and materials of bag cultivation in Sparassis crispa. J Mushrooms. 2011;9(2):80–83.
Joshi M, Sagar A. In vitro free radical scavenging activity of a wild edible mushroom, Sparassis crispa (Wulf.) Fr., from North Western Himalayas India. J Mycol. 2014 doi: 10.1155/2014/748531. DOI
Jülich W. Basidiomycetes of SouthEast Asia. Int J Mycol Lichenol. 1984;1(3):319–325.
Kalyoncu F, Ergönül B, Yildiz H, Kalmiş E, Solak H. Chemical composition of four wild edible mushroom species collected from Southwest Anatolia. Gazi Univ J Sci. 2010;23(4):375–379.
Kamble VR, Mane SK, Khilare CJ. Host specificity of some wood rotting fungi in Western Ghats of Maharashtra, India. Bionano Front. 2012;5(2):217–223.
Karadžić D. Contribution to the study of fungi in the genera Sparassis Fr. and Hericium Pers. in our forests. Glasnik Sumarskog Fakulteta. 2006;93:83–96. doi: 10.2298/GSF0693083K. DOI
Kavishree S, Hemavathy J, Lokesh BR, Shashirekha MN, Rajarathnam S. Fat and fatty acids of Indian edible mushrooms. Food Chem. 2008;106(2):597–602. doi: 10.1016/j.foodchem.2007.06.018. DOI
Kawagishi H, Hayashi K, Tokuyama S, Hashimoto N, Kimura T, Dombo M. Novel bioactive compound from the Sparassis crispa mushroom. Biosci Biotechnol Biochem. 2007;71(7):1804–1806. doi: 10.1271/bbb.70192. PubMed DOI
Kim HHS, Singh TSK, Choi JK, Shin TY, Kim SH. Sparassis crispa suppresses mast cell-mediated allergic inflammation: Role of calcium, mitogen-activated protein kinase and nuclear factor-κB. Int J Mol Med. 2012;30(2):344–350. doi: 10.3892/ijmm.2012.1000. PubMed DOI
Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim Y, Han SB. Induction of dendritic cell maturation by β-glucan isolated from Sparassis crispa. Int Immunopharmacol. 2010;10(10):1284–1294. doi: 10.1016/j.intimp.2010.07.012. PubMed DOI
Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agric Food Chem. 2008;56(16):7265–7270. doi: 10.1021/jf8008553. PubMed DOI
Kimura T, Yamamoto K, Nishikawa Y. Comparison of the antitumor effect of the fruit body and the mycelia of Hanabiratake (Sparassis crispa) Mushroom Sci Biotechnol. 2013;21(3):129–132. doi: 10.24465/msb.21.3_129. DOI
Kiyama R, Furutani Y, Kawaguchi K, Nakanishi T. Genome sequence of the cauliflower mushroom Sparassis crispa (Hanabiratake) and its association with beneficial usage. Sci Rep. 2018;8(1):16053. doi: 10.1038/s41598-018-34415-6. PubMed DOI PMC
Kodani S, Hayashi K, Hashimoto M, Kimura T, Dombo M, Kawagishi H. New sesquiterpenoid from the mushroom Sparassis crispa. Biosci Biotechnol Biochem. 2009;73(1):228–229. doi: 10.1271/bbb.80595. PubMed DOI
Kumar M, Harsh N, Prasad R, Pandey VV. An ethnomycological survey of Jaunsar, Chakrata, Dehradun, India. J Threat Taxa. 2017;9(9):10717–10725. doi: 10.11609/jott.3306.9.9.10717-10725. DOI
Kurosumi A, Kobayasi F, Mtui G, Nakamura Y. Development of optimal culture method of Sparassis crispa mycelia and a new extraction method of antineoplastic constituent. Biochem Eng J. 2006;30(1):109–111. doi: 10.1016/j.bej.2006.02.004. DOI
Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg. 2009;197(4):503–509. doi: 10.1016/j.amjsurg.2007.11.021. PubMed DOI
Lakhanpal TN (2014) Mushroom biodiversity in India: prospects and potential. In: Abstract of the proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products, New Delhi from 19–22 November 2014
Lalotra P, Bala P, Kumar S, Sharma YP. Biochemical characterization of some wild edible mushrooms from Jammu and Kashmir. Proc Natl Acad Sci India Sect b: Biol Sci. 2018;88(2):539–545. doi: 10.1007/s40011-016-0783-2. DOI
Lee DS, Kim KH, Yook HS. Antioxidant activities of different parts of Sparassis crispa depending on extraction temperature. J Korean Soc Food Sci Nutr. 2016;45:1617–1622. doi: 10.3746/jkfn.2016.45.11.1617. DOI
Lee EJ, Kim JE, Park MJ, Park DC, Lee SP. Antimicrobial effect of the submerged culture of Sparassis crispa in soybean curd whey. Korean J Food Preserv. 2013;20(1):111–120. doi: 10.11002/kjfp.2013.20.1.111. DOI
Lee JJ, Son HY, Choi YM, Cho JH, Min JK, Oh HK. Physicochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria. Korean J Food Preserv. 2016;23(3):361–368. doi: 10.9721/KJFST.2020.52.4.377. DOI
Lee JM, Kim JY, Choi KD, Han KD, Hur H, Kim SW, Shim JO, Lee JY, Lee TS, Lee MW. Sawdust media affecting the mycelial growth and the fruiting body formation of Sparassis crispa. Mycobiology. 2004;32(4):190–193. doi: 10.4489/MYCO.2004.32.4.190. DOI
Lee YG, Thi NN, Kim HG, Lee DY, Lee SE, Kim GS, Baek NI. Ergosterol peroxides from the fruit body of Sparassis crispa. J Appl Biol Chem. 2016;59(4):313–316. doi: 10.3839/jabc.2016.053. DOI
Lowe EP, Wei D, Rice PJ, Li C, Kalbfleisch J, Browder IW, Williams DL. Human vascular endothelial cells express pattern recognition receptors for fungal glucans which stimulates nuclear factor kappa B activation and interleukin 8 production. Am J Surg. 2002;68(6):508–517. PubMed
Lu M, Yanquan L, Xiaoling J, Zhenghe Y. Effect of inorganic salts, vitamins and phytohormones on mycelial growth of Sparassis crispa. J Fungal Res. 2011;9(3):172–175.
Marakalala MJ, Williams DL, Hoving JC, Engstad R, Netea MG, Brown GD. Dectin-1 plays a redundant role in the immunomodulatory activities of β-glucan-rich ligands in vivo. Microbes Infect. 2013;15(6–7):511–515. doi: 10.1016/j.micinf.2013.03.002. PubMed DOI PMC
Martin KJ, Gilbertson RL. Cultural and other morphological studies of Sparassis radicata and related species. Mycologia. 1976;68(3):622–639. doi: 10.1080/00275514.1976.12019947. DOI
Masuoka T, Kawakami T, Kiyoshima T, Asada C, Nakamura Y, Teranishi K, Shimomura N. Effect of pulsed discharges on mycelium growth of Sparassis crispa. IEEE Pulsed Power Conf. 2015;2015:1–5. doi: 10.1109/PPC.2015.7296869. DOI
Matsuura N, Zang L, Nishimura N, Shimada Y. Lacto-fermented cauliflower fungus (Sparassis crispa) ameliorates hepatic steatosis by activating beta-oxidation in diet-induced obese zebrafish. J Med Food. 2020 doi: 10.1089/jmf.2019.4571. PubMed DOI
Nameda S, Harada T, Miura NN, Adachi Y, Yadomae T, Nakajima M, Ohno N. Enhanced cytokine synthesis of leukocytes by a β-glucan preparation, SC-G, extracted from a medicinal mushroom, Sparassis Crispa. Immunopharmacol Immunotoxicol. 2003;25(3):321–335. doi: 10.1081/IPH-120024500. PubMed DOI
Nasim G, Bajwa R, Ali M. Sparassis crispa (Wulf.) Fr., the cauliflower mushroom-A new record from Lahore Pakistan. Mycopathology. 2007;5(2):119–120.
Niazi AR, Ijaz H. Proximate analysis and in vitro biological activities of cauliflower mushroom, Sparassis crispa (Agaricomycetes), from Pakistan. Int J Med Mushrooms. 2021;23(2):79–84. doi: 10.1615/IntJMedMushrooms.2021037467. PubMed DOI
Nowacka-Jechalke N, Nowak R, Lemieszek MK, Rzeski W, Gawlik-Dziki U, Szpakowska N, Kaczýnski Z Promising potential of crude polysaccharides from Sparassis crispa against colon cancer: an in vitro study. Nutrients. 2021;13:161. doi: 10.3390/nu13010161. PubMed DOI PMC
Ogidi CO, Oyetayo VO, Akinyele BJ. Wild medicinal mushrooms: potential applications in phytomedicine and functional foods. Introduct Mushroom. 2020 doi: 10.5772/intechopen.90291. DOI
Oh DS, Park JM, Park H, Ka KH, Chun WJ. Site characteristics and vegetation structure of the habitat of cauliflower mushroom (Sparassis crispa) Korean J Mycol. 2009;37(1):33–40. doi: 10.4489/KJM.2009.37.1.033. DOI
Ohno N, Harada T, Masuzawa S, Miura NN, Adachi Y, Nakajima M, Yadomae T (2002) Antitumor activity and hematopoietic response of β-Glucan extracted from an edible and medicinal mushroom Sparassis crispa Wulf.: Fr. (Aphyllophoromycetideae). Int J Med Mushrooms 4(1):14. 10.1615/IntJMedMushr.v4.i1.20
Ohno N, Miura N, Nakajima M, Yadomae T. Antitumor 1,3-β-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull. 2000;23:866–872. doi: 10.1248/bpb.23.866. PubMed DOI
Ohno N, Nameda S, Harada T, Miura NN, Adachi Y, Nakajima M, Yoshida K, Yoshida H Yadomae T (2003) Immunomodulating activity of β-glucan preparation, SCG, extracted from a culinary and medicinal mushroom, Sparassis crispa Wulf.:Fr. (Aphyllophoromycetideae), and application to cancer patients. Int J Med Mushroom 5(4):359–368. 10.1615/InterJMedicMush.v5.i4.30
Park H, Lee BH, Ka KH, Bak WC, Oh DS, Park JM, Chun WJ. Cultivation of cauliflower mushroom (Sparassis crispa) by use of steam-treated coniferous sawdusts. J Korean Wood Sci Technol. 2006;34(3):84–89.
Park H, Ryu S, Ka KH. Cultivation of Sparassis crispa on several kinds of medium density and particle size of sawdust-based medium made of Larix kaempferi. J Korean Wood Sci Technol. 2011;39(1):68–74. doi: 10.5658/WOOD.2011.39.1.68. DOI
Park HG, Shim YY, Choi SO, Park WM. New method development for nanoparticle extraction of water-soluble β-1,3-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus. J Agric Food Chem. 2009;57(6):2147–2154. doi: 10.1021/jf802940x. PubMed DOI
Park SE, Seo SH, Moon YS, Lee YM, Na CS, Son HS. Antioxidant and immunological activities of Sparassis crispa fermented with Meyerozyma guilliermondii FM. J Korean Soc Food Sci Nutr. 2016;45(10):1398–1405. doi: 10.3746/jkfn.2016.45.10.1398. DOI
Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R. Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem. 2006;54(26):9764–9772. doi: 10.1021/jf0615707. PubMed DOI
Radulovic Z, Karađžić D, Milenković I, Mladenović K (2019) Trametes Versicolor (L.: Fr.) Pit., Schizophyllum commune (Fr.) Fr. and Sparassis Crispa (Wulf.: Fr.) Fr. - Economic Significance and Medicinal Properties. Udruženje Sumarskih Inženjera i Tehničara Srbije, Beograd (Srbija) 71(1–2):19–36.
Rana R. (2007) Systematic studies on wild edible mushroom Sparassis crispa Wulf. Ex. Fr. collected from Shimla hills of Himachal Pradesh, India. Int J Innov Res Sci Eng Technol 6(1):680–683
Rhim Ryoo R, Sou HD, Ka KH, Hyun Park H. Phylogenetic relationships of Korean Sparassis latifolia based on morphological and ITS rDNA characteristics. J Microbiol. 2013;51(1):43–48. doi: 10.1007/s12275-013-2503-4. PubMed DOI
Ryu SR, Ka KH, Park H, Bak WC, Lee BH. Cultivation characteristics of Sparassis crispa strains using sawdust medium of Larix kampeferii. Korean J Mycol. 2009;37(1):49–54. doi: 10.4489/KJM.2009.37.1.049. DOI
Schaeffer JC (1772) Fungorum qui Bavaria et palatinate circa Ratisbonam nascuntur icons, vol 2. Regensburg: H G Zunkel
Sekiguchi Y (2005) Hyphal culture of Sparassis crispa and method of preparing composite culture medium. World Intellectual Property Organization. Patent WO2005077148A1
Semwal K. Edible mushrooms of the Northwestern Himalaya, India: a study of indigenous knowledge, distribution and diversity. Mycosphere. 2014;5(3):440–461. doi: 10.5943/mycosphere/5/3/7. DOI
Seo KM (2003) Artificial cultivation of Sparassis crispa. Republic of Korea. Patent KR2004002552
Seo SH, Park SE, Moon YS, Lee Y, Na C, Son HS. Component analysis and immuno-stimulating activity of Sparassis crispa stipe. Korean J Food Sci Technol. 2016;48(5):515–520. doi: 10.9721/KJFST.2016.48.5.515. DOI
Sharifi-Rad J, Butnariu M, Ezzat SM, Adetunji CO, Imran M, Sobhani SR, Tufail T, Hosseinabadi T, Ramírez-Alarcón K, Martorell M, Maroyi A, Martins N. Mushrooms-rich preparations on wound healing: from nutritional to medicinal attributes. Front Pharmacol. 2020 doi: 10.3389/fphar.2020.567518. PubMed DOI PMC
Shim JO, Son SG, Yoon SO, Lee YS, Lee TS, Lee SS, Lee KD, Lee MW. The optimal factors for the mycelial growth of Sparassis crispa. Korean J Mycol. 1998;26(1):39–46. doi: 10.5658/WOOD.2014.42.4.428. DOI
Shin HJ, Oh DS, Lee HD, Kang HB, Lee CW, Cha WS. Analysis of mineral, amino acid and vitamin contents of fruiting body of Sparassis crispa. Journal Life Sci. 2007;17:1290–1293. doi: 10.5352/JLS.2007.17.9.1290. DOI
Sułkowska-Ziaja K, Muszyńska B, Szewczyk A. Antioxidant components of selected indigenous edible mushrooms of the obsolete order Aphyllophorales. Rev Iberoam Micol. 2015;32(2):99–102. doi: 10.1016/j.riam.2013.10.011. PubMed DOI
Tada R, Harada T, Nagi-Miura N, Adachi Y, Nakajima M, Yadomae T, Ohno N. NMR characterization of the structure of a β-(1–3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohyd Res. 2007;342(17):2611–2618. doi: 10.1016/j.carres.2007.08.016. PubMed DOI
Vaka M, Walvekar R, Khalid M, Jagadish P, Mujawar-Mubarak N, Faik A. Rheological behaviour of eutectic nanofluids containing a low fraction of GO/TiO2 hybrid nanoparticles. Therm Sci Eng Prog. 2020;20:100753. doi: 10.1016/j.tsep.2020.100753. DOI
Von-Siepmann R. Polyporus schweinitzii Fr. und Sparassis crispa (Wulf. in Jacq.) ex Fr. als Fäuleerreger in einem Douglasienbestand (Pseudotsuga menziesii (Mirb.) Franco) mit hohem Stammfäuleanteil1. Eur J Forest Patholol. 1976;6:203–210. doi: 10.1111/j.1439-0329.1976.tb00528.x. DOI
Wang J, Wang HX, Ng TB. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides. 2007;28(3):560–565. doi: 10.1016/j.peptides.2006.10.004. PubMed DOI
Wang Z, Binder M, Dai YC, Hibbett DS. Phylogenetic relationships of Sparassis inferred from nuclear and mitochondrial ribosomal DNA and RNA polymerase sequences. Mycologia. 2004;96(5):1015. doi: 10.1080/15572536.2005.11832902. PubMed DOI
Wang Z, Liu J, Zhong X, Li J, Wang X, Ji L, Shang X. Rapid characterization of chemical components in edible Mushroom Sparassis crispa by UPLC-orbitrap MS analysis and potential inhibitory effects on allergic rhinitis. Molecules. 2019;24(16):3014. doi: 10.3390/molecules24163014. PubMed DOI PMC
Woodward S, Sultan HY, Barrett DK, Pearce RB. Two new antifungal metabolites produced by Sparassis crispa in culture and in decayed trees. J Gener Microbiol. 1993;139(1):153–159. doi: 10.1099/00221287-139-1-153. DOI
Wulfen FX (1781) Plantae rariores carinthiacae. In: Jacquin, NJ, Miscellanea Austriacae, vol 2. Officina Krausiana, Vienna
Yamamoto K, Kimura T. Dietary Sparassis crispa (Hanabiratake) ameliorates plasma levels of adiponectin and glucose in Type 2 diabetic mice. J Health Sci. 2010;56:541–546. doi: 10.1248/jhs.56.541. DOI
Yamamoto K, Kimura T. Orally and topically administered Sparassis crispa (Hanabiratake) improved healing of skin wounds in mice with streptozotocin-induced diabetes. Biosci Biotechnol Biochem. 2013;77(6):1303–1305. doi: 10.1271/bbb.121016. PubMed DOI
Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Anti-angiogenic and anti-metastatic effects of β-1,3-D-glucan purified from Hanabiratake, Sparassis Crispa. Biol Pharm Bull. 2009;32(2):259–263. doi: 10.1248/bpb.32.259. PubMed DOI
Yamamoto K, Unitika L, Nishikawa Y, Kimura T, Dombo M, Matsuura N, Sugitachi A. Antitumor activities of low molecular weight fraction derived from the cultured fruit body of Sparassis crispa in tumor-bearing mice. J Jpn Soc Food Sci Technol (japan) 2007;54(9):419–423. doi: 10.3136/nskkk.54.419. DOI
YanQuan L, Lu M, XiaoLing J, ZhengHe Y. Optimization of selected growth parameters for Sparassis crispa. Acta Edulis Fungi. 2012;19(4):35–37.
Yao M, Yamamoto K, Kimura T, Dombo M. Effects of Hanabiratake (Sparassis crispa) on allergic rhinitis in OVA-sensitized mice. Food Sci Technol Res. 2008;14:589–594. doi: 10.3136/fstr.14.589. DOI
Ying ZH, Lin YQ, Ma L, Jiang XL. Effects of different light quality and quantity on mycelial growth and primordium formation of Sparassis crispa. Fujian J Agric Sci. 2013;6:005.
Yoshikawa K, Kokudo N, Hashimoto T, Yamamoto K, Inose T, Kimura T. Novel phthalide compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anti-cancer related activity. Biol Pharm Bull. 2010;33(8):1355–1359. doi: 10.1248/bpb.33.1355. PubMed DOI
Yoshitomi H, Iwaoka E, Kubo M, Shibata M, Gao M. Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP. J Nat Med. 2011;65(1):135–141. doi: 10.1007/s11418-010-0475-9. PubMed DOI PMC
Yu YJ, Seo SY, Seo KW, Choi DC, Jo HK, Yu YB, Soung YJ, Ryu J. Technical development for the short-log bag cultivation of Sparassis crispa. J Mushrooms. 2010;8(1):16–21.
Zhao Q, Feng B, Yang ZL, Dai YC, Wang Z, Tolgor B. New species and distinctive geographical divergences of the genus Sparassis (Basidiomycota): Evidence from morphological and molecular data. Mycol Prog. 2013;12(2):445–454. doi: 10.1007/s11557-012-0853-7. DOI