Mechanistic Insight into Antimicrobial and Antioxidant Potential of Jasminum Species: A Herbal Approach for Disease Management

. 2021 May 28 ; 10 (6) : . [epub] 20210528

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34071621

Grantová podpora
VT2019-2021 UHK CEP - Centrální evidence projektů

Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.

Zobrazit více v PubMed

WHO . WHO Methods and Data Sources for Global Burden of Disease Estimates 2000–2011. WHO; Geneva, Switzerland: 2013.

Gupta M., Sharma R., Kumar A. Comparative potential of Simvastatin, Rosuvastatin and Fluvastatin against bacterial infection: An in silico and in vitro study. Orient. Pharm. Exp. Med. 2019;19:259–275. doi: 10.1007/s13596-019-00359-z. DOI

WHO . WHO Antimicrobial Resistance: Global Report on Surveillance. WHO; Geneva, Switzerland: 2014.

Baym M., Stone L.K., Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science. 2016;351:1–21. doi: 10.1126/science.aad3292. PubMed DOI PMC

WHO . WHO Traditional Medicine Strategy. WHO; Geneva, Switzerland: 2002.

Djeussi D.E., Noumedem J.A.K., Seukep J.A., Fankam A.G., Voukeng I.K., Tankeo S.B., Nkuete A.H.L., Kuete V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2013;13:1–8. doi: 10.1186/1472-6882-13-164. PubMed DOI PMC

Duraipandiyan V., Ayyanar M., Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006;6:1–7. doi: 10.1186/1472-6882-6-35. PubMed DOI PMC

Iwu M.W., Duncan A.R., Okunji C.O. New antimicrobials of plant origin. In: Janick J., editor. Perspectives on New Crops and New Uses. ASHS Press; Alexandria, VA, USA: 1999. pp. 457–462.

Kumari A., Verma R., Sharma M., Chauhan P., Kumar A. Evaluation of phytochemical, antioxidant, antibacterial and anti-cancerous activity of Ficus auriculata Lour. and Osyris wightiana Wall. ex Wight. Bull. Environ. Pharmacol. Life Sci. 2018;7:64–70.

Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind. J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC

Banerjee J., Das A., Sinha M., Saha S. Biological Efficacy of Medicinal Plant Extracts in Preventing Oxidative Damage. Oxidative Med. Cell. Longev. 2018;2018:1–2. doi: 10.1155/2018/7904349. PubMed DOI PMC

Halliwell B. Antioxidants and Human Disease: A General Introduction. Nutr. Rev. 1997;55:S44–S49. doi: 10.1111/j.1753-4887.1997.tb06100.x. PubMed DOI

Khan F., Garg V.K., Singh A.K., Kumar T. Role of free radicals and certain antioxidants in the management of huntington’s disease: A review. J. Anal. Pharm. Res. 2018;7:386–392. doi: 10.15406/japlr.2018.07.00256. DOI

Parmar J., Sharma P., Verma P., Goyal P.K. Chemopreventive action of Syzygium cumini on DMBA-induced skin papillomagenesis in mice. Asian Pac. J. Cancer Prev. 2010;11:261–265. PubMed

Kumar A., Kumar D. Development of antioxidant rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture. J. Food Sci. Technol. 2016;53:667–675. doi: 10.1007/s13197-015-1997-7. PubMed DOI PMC

Raghuvanshi D., Dhalaria R., Sharma A., Kumar D., Kumar H., Valis M., Kuča K., Verma R., Puri S. Ethnomedicinal Plants Traditionally Used for the Treatment of Jaundice (Icterus) in Himachal Pradesh in Western Himalaya—A Review. Plants. 2021;10:232. doi: 10.3390/plants10020232. PubMed DOI PMC

Priya J., Raja D.P. Anti-bacterial activity studies of Jasminum grandiflorum and Jasminum sambac. Ethnobot. Leafl. 2008;12:481–483.

KewScience-Plants of the World Online Home Page. [(accessed on 10 January 2021)]; Available online: http://www.plantsoftheworldonline.org/

Ali S.T., Ayub A., Ali S.N. Antibacterial activity of methanolic extracts from some selected medicinal plants. FUUAST J. Biol. 2017;7:123–125.

Prakkash M.J., Ragunathan R., Jesteena J. Evaluation of bioactive compounds from Jasminum polyanthum and its medicinal properties. J. Drug Deliv. Ther. 2019;9:303–310. doi: 10.22270/jddt.v9i2.2413. DOI

Rani B., Yadav M., Pachauri G. Awesome medicinal benefits of jasmine plant. J. Biol. Chem. Res. 2017;34:918–922.

Upaganlawar A.B., Bhagat A., Tenpe C.R., Yeole P.G. Effect of Jasminum sambac leaves extracts on serum glucose and lipid profile rats treated with alloxan. Pharmacologyonline. 2003;1:1–6.

Lis-Balchin M., Hart S., Lo W.H. Jasmine absolute (Jasminum grandiflora L.) and its mode of action on guinea pig ileum in vitro. Phytother. Res. 2002;16:437–439. doi: 10.1002/ptr.935. PubMed DOI

Kunhachan P., Banchonglikitkul C., Kajsongkram T. Chemical composition, toxicity and vasodilatation effect of the flowers extract of Jasminum sambac (L.) Ait. “G. Duke of Tuscany”. Evid. Based Complement. Alter. Med. 2012;2012:1–7. doi: 10.1155/2012/471312. PubMed DOI PMC

Khan M.H., Yadava P.S. Ethno Medicinal Plants of Manipur, North-East India (Thoubal District) Bishen Singh Mahendra Pal Singh; Dehradun, India: 2014. pp. 242–261.

Bhutya R.K. Ayurvedic Medicinal Plant of India. Volume 1. Scientific Publishers; Jodhpur, India: 2011. pp. 253–254.

Geyid A., Abebe D., Debella A., Makonnen Z., Aberra F., Teka F., Kebede T., Urga K., Yersaw K., Biza T., et al. Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J. Ethnopharmacol. 2005;97:421–427. doi: 10.1016/j.jep.2004.08.021. PubMed DOI

Lulekal E., Rondevaldova J., Bernaskova E., Cepkova J., Asfaw Z., Kelbessa E., Kokoska L., van Damme P. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia. Pharm. Biol. 2014;52:614–620. doi: 10.3109/13880209.2013.858362. PubMed DOI

Ramya V., Dhayalan V.D., Umamaheswari S. In vitro studies on antibacterial activity and separation of active compounds of selected flower extracts by HPTLC. J. Chem. Pharm. Res. 2010;2:86–91.

Moe T.S., Win H.H., Hlaing T.T., Lwin W.W., Htet Z.M., Mya K.M. Evaluation of in vitro antioxidant, antiglycation and antimicrobial potential of indigenous Myanmar medicinal plants. J. Integr. Med. 2018;16:358–366. doi: 10.1016/j.joim.2018.08.001. PubMed DOI

Abhipsa V., Manasa M., Poornima G., Rekha C., Kekuda T.R. In vitro antibacterial efficacy of selected plant extracts, streptomycin and their combination. Asian J. Res. Chem. 2012;5:791–793.

Mittal A., Satish S., Anima P. Evaluation of wound healing, antioxidant and antimicrobial efficacy of Jasminum auriculatum Vahl. leaves. Avicenna J. Phytomed. 2016;6:295–304. PubMed PMC

Thiruvengadam S., Nivedha S., Pujita V., Romauld S.I. Detection of Antioxidant and Antimicrobial Activity of Leaf Extract of Jasminum azoricum. Res. J. Pharm. Technol. 2018;11:3629–3632. doi: 10.5958/0974-360X.2018.00668.6. DOI

SyamSree K., Anudeep M., Ramana C.V., Bhaskar C. Screening of antimicrobial activity of flower extracts on human bacterial pathogens. J. Pharmacog. Phytochem. 2015;3:153–156.

Anoopkumar A.N., Aneesh E.M., Sudhikumar A.V. Exploring the mode of action of isolated bioactive compounds by induced reactive oxygen species generation in Aedes aegypti: A microbes based double-edged weapon to fight against Arboviral diseases. Int. J. Trop. Insect Sci. 2020;40:573–585. doi: 10.1007/s42690-020-00104-z. DOI

Mamba P., Adebayo S.A., Tshikalange T.E. Anti-microbial, anti-inflammatory and HIV-1 reverse transcriptase activity of selected South African plants used to treat sexually transmitted diseases. Int. J. Pharmacog. Phytochem. Res. 2016;8:1870–1876.

Nagarajappa R., Batra M., Sharda A.J., Asawa K., Sanadhya S., Daryani H., Ramesh G. Antimicrobial Effect of Jasminum grandiflorum L. and Hibiscus rosa-sinensis L. Extracts Against Pathogenic Oral Microorganisms—An In Vitro Comparative Study. Oral Health Prev. Dent. 2013;13:441–448. PubMed

Rahman M., Khatun A., Khan S., Hossain F., Khan A.A. Phytochemical, cytotoxic and antibacterial activity of two medicinal plants of Bangladesh. Pharmacologyonline. 2014;1:3–10.

Abdel-Sattar E., Harraz F.M., El-Gayed S.H. Antimicrobial Activity of Extracts of some Plants Collected from the Kingdom of Saudi Arabia. JKAU Med. Sci. 2008;15:25–33. doi: 10.4197/Med.15-1.3. DOI

Ngan D.H., Hoai H.T.C., Huong L.M., Hansen P.E., Vang O. Bioactivities and chemical constituents of a Vietnamese medicinal plant Che Vang, Jasminum subtriplinerve Blume (Oleaceae) Nat. Prod. Res. 2008;22:942–949. doi: 10.1080/14786410701647119. PubMed DOI

Nguyen D.M.C., Seo D.-J., Park R.-D., Jung W.-J. Antifungal, Nematicidal and Antioxidant Activity of the Methanol Extracts Obtained from Medicinal Plants. J. Appl. Biol. Chem. 2013;56:199–204. doi: 10.3839/jabc.2013.032. DOI

Saxena S., Uniyal V., Bhatt R.P. Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection. Braz. J. Microbiol. 2012;43:1347–1354. doi: 10.1590/S1517-83822012000400016. PubMed DOI PMC

Chander M.P., Pillai C.R., Sunish I.P., Vijayachari P. Antimicrobial and antimalarial properties of medicinal plants used by the indigenous tribes of Andaman and Nicobar Islands, India. Microb. Pathog. 2016;96:85–98. doi: 10.1016/j.micpath.2016.04.017. PubMed DOI

Lambert P.A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J. Appl. Microbiol. 2002;92:46S–54S. doi: 10.1046/j.1365-2672.92.5s1.7.x. PubMed DOI

Kumar A., Singh S., Kumar D. Evaluation of antimicrobial potential of cadmium sulphide nanoparticles against bacterial pathogens. Int. J. Pharm. Sci. Rev. Res. 2014;24:202–207.

Brown E.D., Wright G.D. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336–343. doi: 10.1038/nature17042. PubMed DOI

Sekyere J.O., Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: Advances in the era of genomics. Futur. Microbiol. 2018;13:241–262. doi: 10.2217/fmb-2017-0172. PubMed DOI

Sekyere J.O. Current State of Resistance to Antibiotics of Last-Resort in South Africa: A Review from a Public Health Perspective. Front. Public Health. 2016;4:1–11. doi: 10.3389/fpubh.2016.00209. PubMed DOI PMC

Sekyere J.O., Govinden U., Bester L.A., Essack S.Y. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016;121:601–617. doi: 10.1111/jam.13169. PubMed DOI

Sekyere J.O., Govinden U., Essack S. The molecular epidemiology and genetic environment of carbapenemases detected in Africa. Microb. Drug Resist. 2016;22:59–68. doi: 10.1089/mdr.2015.0053. PubMed DOI

Voss-Rech D., Potter L., Vaz C.S.L., Pereira D.I.B., Sangioni L.A., Vargas A.C., de Avila Botton S. Antimicrobial resistance in non-typhoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-year meta-analysis. Foodborne Pathog. Dis. 2017;14:116–124. doi: 10.1089/fpd.2016.2228. PubMed DOI

Maxwell A. DNA gyrase as a drug target. Trends Microbiol. 1997;5:102–109. doi: 10.1016/S0966-842X(96)10085-8. PubMed DOI

Tenover F.C. Mechanisms of Antimicrobial Resistance in Bacteria. Am. J. Med. 2006;119:S3–S10. doi: 10.1016/j.amjmed.2006.03.011. PubMed DOI

Schneider T., Sahl H.-G. An oldie but a goodie—Cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 2010;300:161–169. doi: 10.1016/j.ijmm.2009.10.005. PubMed DOI

Sekyere J.O., Amoako D.G. Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) Reverses Resistance to Colistin, but Not to Carbapenems and Tigecycline in Multidrug-Resistant Enterobacteriaceae. Front. Microbiol. 2017;8:1–9. doi: 10.3389/fmicb.2017.00228. PubMed DOI PMC

Sekyere J.O., Amoako D.G. Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLoS ONE. 2017;12:1–14. doi: 10.1371/journal.pone.0178888. PubMed DOI PMC

Levy S.B. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 1992;36:695–703. doi: 10.1128/AAC.36.4.695. PubMed DOI PMC

Paulsen I.T., Brown M.H., Skurray R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996;60:575–608. doi: 10.1128/MR.60.4.575-608.1996. PubMed DOI PMC

Khameneh B., Diab R., Ghazvini K., Bazzaz B.S.F. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 2016;95:32–42. doi: 10.1016/j.micpath.2016.02.009. PubMed DOI

Kongkham B., Prabakaran D., Puttaswamy H. Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia. 2020;147:104762. doi: 10.1016/j.fitote.2020.104762. PubMed DOI

Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000;406:775–781. doi: 10.1038/35021219. PubMed DOI

Savjani J.K., Gajjar A.K., Savjani K.T. Mechanisms of Resistance: Useful Tool to Design Antibacterial Agents for Drug—Resistant Bacteria. Mini Rev. Med. Chem. 2009;9:194–205. doi: 10.2174/138955709787316038. PubMed DOI

Fink A.L. The molecular basis of β-lactamase catalysis and inhibition. Pharm. Res. 1985;2:55–61. doi: 10.1023/A:1016378325438. PubMed DOI

Blair J.M., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015;13:42–51. doi: 10.1038/nrmicro3380. PubMed DOI

Olsen I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1303–1308. doi: 10.1007/s10096-015-2375-0. PubMed DOI

Stavri M., Piddock L.J.V., Gibbons S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 2007;59:1247–1260. doi: 10.1093/jac/dkl460. PubMed DOI

Berkow E.L., Angulo D., Lockhart S.R. In Vitro Activity of a Novel Glucan Synthase Inhibitor, SCY-078, against Clinical Isolates of Candida auris. Antimicrob. Agents Chemother. 2017;61:1–2. doi: 10.1128/AAC.00435-17. PubMed DOI PMC

He X., Li S., Kaminskyj S.G.W. Using Aspergillus nidulans To Identify Antifungal Drug Resistance Mutations. Eukaryot. Cell. 2014;13:288–294. doi: 10.1128/EC.00334-13. PubMed DOI PMC

Cowen L., Sanglard D., Howard S.J., Rogers P.D., Perlin D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2015;5:1–2. doi: 10.1101/cshperspect.a019752. PubMed DOI PMC

Cowen L.E. The evolution of fungal drug resistance: Modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 2008;6:187–198. doi: 10.1038/nrmicro1835. PubMed DOI

Cowen L.E., Steinbach W.J. Stress, Drugs, and Evolution: The Role of Cellular Signaling in Fungal Drug Resistance. Eukaryot. Cell. 2008;7:747–764. doi: 10.1128/EC.00041-08. PubMed DOI PMC

Cowen L.E. Hsp90 Orchestrates Stress Response Signaling Governing Fungal Drug Resistance. PLOS Pathog. 2009;5:1–3. doi: 10.1371/journal.ppat.1000471. PubMed DOI PMC

Cowen L.E. The fungal Achilles’ heel: Targeting Hsp90 to cripple fungal pathogens. Curr. Opin. Microbiol. 2013;16:377–384. doi: 10.1016/j.mib.2013.03.005. PubMed DOI

Naidu A., Davidson P.M. Phyto-phenols. In: Naidu A.S., editor. Natural Food Antimicrobial Systems. CRC Press; Boca Raton, FL, USA: 2000. pp. 278–307.

Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI

Gill A.O., Holley R.A. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004;70:5750–5755. doi: 10.1128/AEM.70.10.5750-5755.2004. PubMed DOI PMC

Gill A.O., Holley R.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006;108:1–9. doi: 10.1016/j.ijfoodmicro.2005.10.009. PubMed DOI

Negi P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012;156:7–17. doi: 10.1016/j.ijfoodmicro.2012.03.006. PubMed DOI

Ozfenerci M., Calıskan U.K. Tea tree oil and its use in aromatherapy. Curr. Pers. Maps. 2018;2:90–102.

Gallo F.R., Palazzino G., Federici E., Iurilli R., Monache F.D., Chifundera K., Galeffi C. Oligomeric secoiridoid glucosides from Jasminum abyssinicum. Phytochemistry. 2006;67:504–510. doi: 10.1016/j.phytochem.2005.11.007. PubMed DOI

Tadiwos Y., Nedi T., Engidawork E. Analgesic and anti-inflammatory activities of 80% methanol root extract of Jasminum abyssinicum Hochst. ex. Dc. (Oleaceae) in mice. J. Ethnopharmacol. 2017;202:281–289. doi: 10.1016/j.jep.2017.02.036. PubMed DOI

Lakshmanan P., Gabriel J.J. Comparative qualitative analysis of callus extracts of in-vitro and in-vivo plants of Jasminum angustifolium, a wild and medicinal plant. World J. Pharm. Sci. 2015;3:1421–1425.

Kathiresan K., Philip R. Phytochemical screening and in vitro antioxidant activity of extracts of Jasminum sessiliflorum. Int. J. Pharmacol. Clin. Res. 2018;2:117–123.

Philip R., Krishnasamy K., Abraham E. Evaluation of anti-inflammatory activity of Jasminum sessiliflorum extracts. Int. J. Res. Pharm. Sci. 2019;10:2515–2518. doi: 10.26452/ijrps.v10i3.1501. DOI

Gupta A., Chaphalkar S.R. Use of flow cytometry to measure the immunostimulatory activity of aqueous extract of Jasminum auriculatum. Int. J. Curr. Adv. Res. 2015;4:87–91.

Bahuguna Y., Juyal V., Rawat M.S.M., Jalalpure S. Diuretic activity of flowers of Jasminum auriculatum Vahl. J. Pharm. Res. 2009;2:215–216.

Rastogi R.P., Mehrotra B.N., Sinha S., Pant P., Seth R. Compendium of Indian Medicinal Plants. Central Drug Research Institute; Lucknow, India: 2001. pp. 395–396.

Arivoli S., Divya S., Arumugam B., Meeran M., Jayakumar M., Raveen R., Samuel T. Phytochemical constituents of Jasminum fluminense Linnaeus (Oleaceae): An additional tool in the ecofriendly management of mosquitoes. J. Pharmacog. Phytochem. 2018;7:548–556.

Prajapati N.D., Purohit S.S., Sharma A.K., Kumar T. A Handbook of Medicinal Plants: A Complete Source Book. Agrobios; Jodhpur, India: 2003. p. 554.

Zhao G.-Q., Yin Z.-F., Liu Y.-C., Li H.-B. Iridoid glycosides from buds of Jasminum officinale L. var grandiflorum. Yao Xue Xue Bao Acta Pharm. Sin. 2011;46:1221–1224. PubMed

Zhao G.-Q., Xia J.-J., Dong J.-X. Glycosides from flowers of Jasminum officinale L. var grandiflorum. Yao Xue Xue Bao Acta Pharm. Sin. 2007;42:1066–1069. PubMed

Singh B., Sharma R.A. Secondary Metabolites of Medicinal Plants, 4 Volume Set: Ethnopharmacological Properties, Biological Activity and Production Strategies. John Wiley & Sons; Hoboken, NJ, USA: 2020. pp. 574–584.

Dubey P., Tiwari A., Gupta S.K., Watal G. Phytochemical and biochemical studies of Jasminum officinale leaves. Int. J. Pharm. Sci. Res. 2016;7:2632–2640.

El-Hawary S.S., El-Hefnawy H.M., Osman S.M., El-Raey M.A., Ali F.A.M. Phenolic profiling of different Jasminum species cultivated in Egypt and their antioxidant activity. Nat. Prod. Res. 2019:1–6. doi: 10.1080/14786419.2019.1700508. PubMed DOI

Lu Y., Han Z.-Z., Zhang C.-G., Ye Z., Wu L.-L., Xu H. Four new sesquiterpenoids with anti-inflammatory activity from the stems of Jasminum officinale. Fitoterapia. 2019;135:22–26. doi: 10.1016/j.fitote.2019.03.029. PubMed DOI

Tauchen J., Doskocil I., Caffi C., Lulekal E., Marsik P., Havlik J., van Damme P., Kokoska L. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind. Crop. Prod. 2015;74:671–679. doi: 10.1016/j.indcrop.2015.05.068. DOI

Bhagath K., Kekuda P.T.R., Raghavendra H.L., Swarnalatha S.P., Preethi H.R., Surabhi K.S. In vitro antioxidant and anthelmintic activity of extracts of Jasminum arborescens (Roxb.) Int. J. Drug. Dev. Res. 2010;2:89–95.

Ferreres F., Grosso A.C., Gil-Izquierdo A., Valentão P., Andrade P.B. Assessing Jasminum grandiflorum L. authenticity by HPLC-DAD-ESI/MSn and effects on physiological enzymes and oxidative species. J. Pharm. Biomed. Anal. 2014;88:157–161. doi: 10.1016/j.jpba.2013.08.040. PubMed DOI

Umamaheswari M., Asokkumar K., Rathidevi R., Sivashanmugam A.T., Subhadradevi V., Ravi T.K. Antiulcer and in vitro antioxidant activities of Jasminum grandiflorum L. J. Ethnopharmacol. 2007;110:464–470. doi: 10.1016/j.jep.2006.10.017. PubMed DOI

Chaturvedi A.P., Tripathi Y.B. Methanolic extract of leaves of Jasminum grandiflorum Linn modulates oxidative stress and inflammatory mediators. Inflammopharmacology. 2011;19:273–281. doi: 10.1007/s10787-011-0087-3. PubMed DOI

Dessai P., Sawant R.P. In-vitro pharmacological activities of Jasminum malabaricum Wight. J. Glob. Trends Pharm. Sci. 2018;9:5076–5082.

Poonia P., Niazi J., Chaudhary G., Kalia A.N. In vitro antioxidant potential of Jasminum mesnyi Hance (Leaves) extracts. Res. J. Pharm. Biol. Chem. Sci. 2011;2:348–357.

Borar S., Punia P., Kalia A.N. Antioxidant potential of n-butanol fraction from extract of Jasminum mesnyi Hance leaves. Indian J. Exp. Boil. 2011;49:39–43. PubMed

Guo Z.-Y., Li P., Huang W., Wang J.-J., Liu Y.-J., Liu B., Wang Y.-L., Wu S.-B., Kennelly E.J., Long C.-L. Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. Phytochemistry. 2014;106:124–133. doi: 10.1016/j.phytochem.2014.07.011. PubMed DOI

Li A.-N., Li S., Li H.-B., Xu D.-P., Xu X.-R., Chen F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods. 2014;6:319–330. doi: 10.1016/j.jff.2013.10.022. DOI

Khidzir K.M., Cheng S.-F., Chuah C.-H. Interspecies variation of chemical constituents and antioxidant capacity of extracts from Jasminum sambac and Jasminum multiflorum grown in Malaysia. Ind. Crop. Prod. 2015;74:635–641. doi: 10.1016/j.indcrop.2015.05.053. DOI

He F., Zuo L. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases. Int. J. Mol. Sci. 2015;16:27770–27780. doi: 10.3390/ijms161126059. PubMed DOI PMC

Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s Dis. 2013;3:461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC

Zuo L., Zhou T., Pannell B.K., Ziegler A.C., Best T.M. Biological and physiological role of reactive oxygen species—The good, the bad and the ugly. Acta Physiol. 2015;214:329–348. doi: 10.1111/apha.12515. PubMed DOI

Tan B.L., Norhaizan M.E., Huynh K., Heshu S.R., Yeap S.K., Hazilawati H., Roselina K. Water extract of brewers’ rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers’ rice-treated rats with azoxymethane-induced colon carcinogenesis. BMC Complement. Altern. Med. 2015;15:1–14. doi: 10.1186/s12906-015-0730-4. PubMed DOI PMC

Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Med. Cell. Longev. 2017;2017:1–11. doi: 10.1155/2017/2525967. PubMed DOI PMC

Hercberg S., Galan P., Preziosi P., Bertrais S., Mennen L., Malvy D., Roussel A.M., Favier A., Briançon S. The SU. VI. MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch. Intern. Med. 2004;164:2335–2342. doi: 10.1001/archinte.164.21.2335. PubMed DOI

Halliwell B., Rafter J., Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005;81:268S–276S. doi: 10.1093/ajcn/81.1.268S. PubMed DOI

Dysken M.W., Sano M., Asthana S., Vertrees J.E., Pallaki M., Llorente M., Love S., Schellenberg G.D., McCarten J.R., Malphurs J., et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. Jama. 2014;311:33–44. doi: 10.1001/jama.2013.282834. PubMed DOI PMC

Yuan G., Sun B., Yuan J., Wang Q. Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chem. 2010;118:774–781. doi: 10.1016/j.foodchem.2009.05.062. DOI

Kolanjiappan K., Manoharan S. Chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis. Fundam. Clin. Pharmacol. 2005;19:687–693. doi: 10.1111/j.1472-8206.2005.00376.x. PubMed DOI

Chaturvedi A.P., Kumar M., Tripathi Y.B. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats. Int. Wound J. 2012;10:675–682. doi: 10.1111/j.1742-481X.2012.01043.x. PubMed DOI PMC

Sengar N., Joshi A., Prasad S.K., Hemalatha S. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. J. Ethnopharmacol. 2015;160:140–148. doi: 10.1016/j.jep.2014.11.039. PubMed DOI

Ho C.C., Ng S.C., Chuang H.L., Wen S.Y., Kuo C.H., Mahalakshmi B., Huang C.Y., Kuo W.W. Extracts of Jasminum sambac flowers fermented by Lactobacillus rhamnosus inhibit H2O2-and UVB-induced aging in human dermal fibroblasts. Environ. Toxicol. 2020;36:607–619. doi: 10.1002/tox.23065. PubMed DOI

Abdoul-Latif F., Edou P., Eba F., Mohamed N., Ali A., Djama S., Obame L., Bassolé I., Dicko M. Antimicrobial and antioxidant activities of essential oil and methanol extract of Jasminum sambac from Djibouti. Afr. J. Plant Sci. 2010;4:38–43.

AlRashdi A.S., Salama S.M., Alkiyumi S.S., Abdulla M.A., Hadi A.H.A., Abdelwahab S.I., Taha M.M., Hussiani J., Asykin N. Mechanisms of gastroprotective effects of ethanolic leaf extract of Jasminum sambac against HCl/ethanol-induced gastric mucosal injury in rats. Evid. Based Compl. Alt. Med. 2012;2012:1–15. doi: 10.1155/2012/786426. PubMed DOI PMC

Bhagat A.D., Khairnar A.U., Tenpe C.R., Upaganalwar A.B., Yeole P.G. Anti-inflammatory activity of Jasminum sambac leaf extract against carrageenan induced rat paw edema. Indian J. Nat. Prod. 2007;23:25–28.

Rahman M.A., Hasan M., Hossain S.M.A., Biswas N.N. Analgesic and cytotoxic activities of Jasminum sambac (L.) Aiton. Pharmacologyonline. 2011;1:124–131.

Kumar M., Randhava N.K. Jasminum mesnyi Hance: Review at a Glance. J. Drug Deliv. Ther. 2014;4:44–47. doi: 10.22270/jddt.v4i5.935. DOI

Bhushan B., Sardana S., Bansal G. Phytochemical and pharmacognostical studies of leaves of Jasminum mesyni Hance. J. Chem. Pharma. Res. 2015;7:922–926.

Kumaresan M., Kannan M., Sankari A., Chandrasekhar C.N., Vasanthi D. Phytochemical screening and antioxidant activity of Jasminum multiflorum (pink Kakada) leaves and flowers. J. Pharmacog. Phytochem. 2019;8:1168–1173.

Jain A., Sharma R., Kumar A., Sharma S. Jasminum species: An overview. Int. J. Inst. Pharm. Life Sci. 2011;1:251–266.

Shekhar S., Prasad M.P. Evaluation of antimicrobial activity of Jasminum species using solvent extracts against clinical pathogens. World J. Pharm. Pharm. Sci. 2015;4:1247–1256.

Yuniarto A., Kurnia I., Ramadhan M. Anti-obesity effect of ethanolic extract of jasmine flowers (Jasminum sambac (L.) Ait.) in high fat diet induced mice: Potent inhibitor of pancreatic lipase enzyme. Int. J. Adv. Phar. Biol. Chem. 2015;4:18–22.

Dhalaria R., Verma R., Kumar D., Puri S., Tapwal A., Kumar V., Nepovimova E., Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9:1123. doi: 10.3390/antiox9111123. PubMed DOI PMC

Nagmoti D.M., Khatri D.K., Juvekar P.R., Juvekar A.R. Antioxidant activity free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Radic. Antioxid. 2012;2:37–43. doi: 10.5530/ax.2012.2.2.7. DOI

Sharma A., Bernatchez P.N., de Haan J.B. Targeting Endothelial Dysfunction in Vascular Complications Associated with Diabetes. Int. J. Vasc. Med. 2012;2012:1–12. doi: 10.1155/2012/750126. PubMed DOI PMC

Boora F., Chirisa E., Mukanganyama S. Evaluation of Nitrite Radical Scavenging Properties of Selected Zimbabwean Plant Extracts and Their Phytoconstituents. J. Food Process. 2014;2014:1–7. doi: 10.1155/2014/918018. DOI

Tehrani H.S., Moosavi-Movahedi A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018;140:5–12. doi: 10.1016/j.pbiomolbio.2018.03.001. PubMed DOI

Rakotoarisoa M., Angelov B., Espinoza S., Khakurel K., Bizien T., Angelova A. Cubic Liquid Crystalline Nanostructures Involving Catalase and Curcumin: BioSAXS Study and Catalase Peroxidatic Function after Cubosomal Nanoparticle Treatment of Differentiated SH-SY5Y Cells. Molecules. 2019;24:3058. doi: 10.3390/molecules24173058. PubMed DOI PMC

Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC

Devasagayam T.P.A., Tilak J.C., Boloor K.K., Sane K.S., Ghaskadbi S.S., Lele R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India. 2004;52:794–804. PubMed

Wills E.D. Effects of lipid peroxidation on membrane-bound enzymes of the endoplasmic reticulum. Biochem. J. 1971;123:983–991. doi: 10.1042/bj1230983. PubMed DOI PMC

Farooqui A.A., Horrocks L.A. Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases. Cell. Mol. Neurobiol. 1998;18:599–608. doi: 10.1023/A:1020625717298. PubMed DOI PMC

Cheeseman K. Mechanisms and effects of lipid peroxidation. Mol. Asp. Med. 1993;14:191–197. doi: 10.1016/0098-2997(93)90005-X. PubMed DOI

Yu B.P., Suescun E.A., Yang S.Y. Effect of age-related lipid peroxidation on membrane fluidity and phospholipase A2: Modulation by dietary restriction. Mech. Ageing Dev. 1992;65:17–33. doi: 10.1016/0047-6374(92)90123-U. PubMed DOI

Sies H., Sharov V.S., Klotz L.O., Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations: A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem. 1997;272:27812–27817. doi: 10.1074/jbc.272.44.27812. PubMed DOI

Szabó C., Ischiropoulos H., Radi R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007;6:662–680. doi: 10.1038/nrd2222. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...