Mechanistic Insight into Antimicrobial and Antioxidant Potential of Jasminum Species: A Herbal Approach for Disease Management
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VT2019-2021
UHK
CEP - Centrální evidence projektů
PubMed
34071621
PubMed Central
PMC8227019
DOI
10.3390/plants10061089
PII: plants10061089
Knihovny.cz E-zdroje
- Klíčová slova
- Jasminum species, antimicrobial, antioxidants, mechanistic insight, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Drug resistance among microbial pathogens and oxidative stress caused by reactive oxygen species are two of the most challenging global issues. Firstly, drug-resistant pathogens cause several fatalities every year. Secondly aging and a variety of diseases, such as cardiovascular disease and cancer, are associated with free radical generated oxidative stress. The treatments currently available are limited, ineffective, or less efficient, so there is an immediate need to tackle these issues by looking for new therapies to resolve resistance and neutralize the harmful effects of free radicals. In the 21st century, the best way to save humans from them could be by using plants as well as their bioactive constituents. In this specific context, Jasminum is a major plant genus that is used in the Ayurvedic system of medicine to treat a variety of ailments. The information in this review was gathered from a variety of sources, including books, websites, and databases such as Science Direct, PubMed, and Google Scholar. In this review, a total of 14 species of Jasminum have been found to be efficient and effective against a wide variety of microbial pathogens. In addition, 14 species were found to be active free radical scavengers. The review is also focused on the disorders related to oxidative stress, and it was concluded that Jasminum grandiflorum and J. sambac normalized various parameters that were elevated by free radical generation. Alkaloids, flavonoids (rutoside), terpenes, phenols, and iridoid glucosides are among the main phytoconstituents found in various Jasminum species. Furthermore, this review also provides insight into the mechanistic basis of drug resistance, the generation of free radicals, and the role of Jasminum plants in combating resistance and neutralizing free radicals.
Zobrazit více v PubMed
WHO . WHO Methods and Data Sources for Global Burden of Disease Estimates 2000–2011. WHO; Geneva, Switzerland: 2013.
Gupta M., Sharma R., Kumar A. Comparative potential of Simvastatin, Rosuvastatin and Fluvastatin against bacterial infection: An in silico and in vitro study. Orient. Pharm. Exp. Med. 2019;19:259–275. doi: 10.1007/s13596-019-00359-z. DOI
WHO . WHO Antimicrobial Resistance: Global Report on Surveillance. WHO; Geneva, Switzerland: 2014.
Baym M., Stone L.K., Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science. 2016;351:1–21. doi: 10.1126/science.aad3292. PubMed DOI PMC
WHO . WHO Traditional Medicine Strategy. WHO; Geneva, Switzerland: 2002.
Djeussi D.E., Noumedem J.A.K., Seukep J.A., Fankam A.G., Voukeng I.K., Tankeo S.B., Nkuete A.H.L., Kuete V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2013;13:1–8. doi: 10.1186/1472-6882-13-164. PubMed DOI PMC
Duraipandiyan V., Ayyanar M., Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006;6:1–7. doi: 10.1186/1472-6882-6-35. PubMed DOI PMC
Iwu M.W., Duncan A.R., Okunji C.O. New antimicrobials of plant origin. In: Janick J., editor. Perspectives on New Crops and New Uses. ASHS Press; Alexandria, VA, USA: 1999. pp. 457–462.
Kumari A., Verma R., Sharma M., Chauhan P., Kumar A. Evaluation of phytochemical, antioxidant, antibacterial and anti-cancerous activity of Ficus auriculata Lour. and Osyris wightiana Wall. ex Wight. Bull. Environ. Pharmacol. Life Sci. 2018;7:64–70.
Phaniendra A., Jestadi D.B., Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind. J. Clin. Biochem. 2015;30:11–26. doi: 10.1007/s12291-014-0446-0. PubMed DOI PMC
Banerjee J., Das A., Sinha M., Saha S. Biological Efficacy of Medicinal Plant Extracts in Preventing Oxidative Damage. Oxidative Med. Cell. Longev. 2018;2018:1–2. doi: 10.1155/2018/7904349. PubMed DOI PMC
Halliwell B. Antioxidants and Human Disease: A General Introduction. Nutr. Rev. 1997;55:S44–S49. doi: 10.1111/j.1753-4887.1997.tb06100.x. PubMed DOI
Khan F., Garg V.K., Singh A.K., Kumar T. Role of free radicals and certain antioxidants in the management of huntington’s disease: A review. J. Anal. Pharm. Res. 2018;7:386–392. doi: 10.15406/japlr.2018.07.00256. DOI
Parmar J., Sharma P., Verma P., Goyal P.K. Chemopreventive action of Syzygium cumini on DMBA-induced skin papillomagenesis in mice. Asian Pac. J. Cancer Prev. 2010;11:261–265. PubMed
Kumar A., Kumar D. Development of antioxidant rich fruit supplemented probiotic yogurts using free and microencapsulated Lactobacillus rhamnosus culture. J. Food Sci. Technol. 2016;53:667–675. doi: 10.1007/s13197-015-1997-7. PubMed DOI PMC
Raghuvanshi D., Dhalaria R., Sharma A., Kumar D., Kumar H., Valis M., Kuča K., Verma R., Puri S. Ethnomedicinal Plants Traditionally Used for the Treatment of Jaundice (Icterus) in Himachal Pradesh in Western Himalaya—A Review. Plants. 2021;10:232. doi: 10.3390/plants10020232. PubMed DOI PMC
Priya J., Raja D.P. Anti-bacterial activity studies of Jasminum grandiflorum and Jasminum sambac. Ethnobot. Leafl. 2008;12:481–483.
KewScience-Plants of the World Online Home Page. [(accessed on 10 January 2021)]; Available online: http://www.plantsoftheworldonline.org/
Ali S.T., Ayub A., Ali S.N. Antibacterial activity of methanolic extracts from some selected medicinal plants. FUUAST J. Biol. 2017;7:123–125.
Prakkash M.J., Ragunathan R., Jesteena J. Evaluation of bioactive compounds from Jasminum polyanthum and its medicinal properties. J. Drug Deliv. Ther. 2019;9:303–310. doi: 10.22270/jddt.v9i2.2413. DOI
Rani B., Yadav M., Pachauri G. Awesome medicinal benefits of jasmine plant. J. Biol. Chem. Res. 2017;34:918–922.
Upaganlawar A.B., Bhagat A., Tenpe C.R., Yeole P.G. Effect of Jasminum sambac leaves extracts on serum glucose and lipid profile rats treated with alloxan. Pharmacologyonline. 2003;1:1–6.
Lis-Balchin M., Hart S., Lo W.H. Jasmine absolute (Jasminum grandiflora L.) and its mode of action on guinea pig ileum in vitro. Phytother. Res. 2002;16:437–439. doi: 10.1002/ptr.935. PubMed DOI
Kunhachan P., Banchonglikitkul C., Kajsongkram T. Chemical composition, toxicity and vasodilatation effect of the flowers extract of Jasminum sambac (L.) Ait. “G. Duke of Tuscany”. Evid. Based Complement. Alter. Med. 2012;2012:1–7. doi: 10.1155/2012/471312. PubMed DOI PMC
Khan M.H., Yadava P.S. Ethno Medicinal Plants of Manipur, North-East India (Thoubal District) Bishen Singh Mahendra Pal Singh; Dehradun, India: 2014. pp. 242–261.
Bhutya R.K. Ayurvedic Medicinal Plant of India. Volume 1. Scientific Publishers; Jodhpur, India: 2011. pp. 253–254.
Geyid A., Abebe D., Debella A., Makonnen Z., Aberra F., Teka F., Kebede T., Urga K., Yersaw K., Biza T., et al. Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J. Ethnopharmacol. 2005;97:421–427. doi: 10.1016/j.jep.2004.08.021. PubMed DOI
Lulekal E., Rondevaldova J., Bernaskova E., Cepkova J., Asfaw Z., Kelbessa E., Kokoska L., van Damme P. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia. Pharm. Biol. 2014;52:614–620. doi: 10.3109/13880209.2013.858362. PubMed DOI
Ramya V., Dhayalan V.D., Umamaheswari S. In vitro studies on antibacterial activity and separation of active compounds of selected flower extracts by HPTLC. J. Chem. Pharm. Res. 2010;2:86–91.
Moe T.S., Win H.H., Hlaing T.T., Lwin W.W., Htet Z.M., Mya K.M. Evaluation of in vitro antioxidant, antiglycation and antimicrobial potential of indigenous Myanmar medicinal plants. J. Integr. Med. 2018;16:358–366. doi: 10.1016/j.joim.2018.08.001. PubMed DOI
Abhipsa V., Manasa M., Poornima G., Rekha C., Kekuda T.R. In vitro antibacterial efficacy of selected plant extracts, streptomycin and their combination. Asian J. Res. Chem. 2012;5:791–793.
Mittal A., Satish S., Anima P. Evaluation of wound healing, antioxidant and antimicrobial efficacy of Jasminum auriculatum Vahl. leaves. Avicenna J. Phytomed. 2016;6:295–304. PubMed PMC
Thiruvengadam S., Nivedha S., Pujita V., Romauld S.I. Detection of Antioxidant and Antimicrobial Activity of Leaf Extract of Jasminum azoricum. Res. J. Pharm. Technol. 2018;11:3629–3632. doi: 10.5958/0974-360X.2018.00668.6. DOI
SyamSree K., Anudeep M., Ramana C.V., Bhaskar C. Screening of antimicrobial activity of flower extracts on human bacterial pathogens. J. Pharmacog. Phytochem. 2015;3:153–156.
Anoopkumar A.N., Aneesh E.M., Sudhikumar A.V. Exploring the mode of action of isolated bioactive compounds by induced reactive oxygen species generation in Aedes aegypti: A microbes based double-edged weapon to fight against Arboviral diseases. Int. J. Trop. Insect Sci. 2020;40:573–585. doi: 10.1007/s42690-020-00104-z. DOI
Mamba P., Adebayo S.A., Tshikalange T.E. Anti-microbial, anti-inflammatory and HIV-1 reverse transcriptase activity of selected South African plants used to treat sexually transmitted diseases. Int. J. Pharmacog. Phytochem. Res. 2016;8:1870–1876.
Nagarajappa R., Batra M., Sharda A.J., Asawa K., Sanadhya S., Daryani H., Ramesh G. Antimicrobial Effect of Jasminum grandiflorum L. and Hibiscus rosa-sinensis L. Extracts Against Pathogenic Oral Microorganisms—An In Vitro Comparative Study. Oral Health Prev. Dent. 2013;13:441–448. PubMed
Rahman M., Khatun A., Khan S., Hossain F., Khan A.A. Phytochemical, cytotoxic and antibacterial activity of two medicinal plants of Bangladesh. Pharmacologyonline. 2014;1:3–10.
Abdel-Sattar E., Harraz F.M., El-Gayed S.H. Antimicrobial Activity of Extracts of some Plants Collected from the Kingdom of Saudi Arabia. JKAU Med. Sci. 2008;15:25–33. doi: 10.4197/Med.15-1.3. DOI
Ngan D.H., Hoai H.T.C., Huong L.M., Hansen P.E., Vang O. Bioactivities and chemical constituents of a Vietnamese medicinal plant Che Vang, Jasminum subtriplinerve Blume (Oleaceae) Nat. Prod. Res. 2008;22:942–949. doi: 10.1080/14786410701647119. PubMed DOI
Nguyen D.M.C., Seo D.-J., Park R.-D., Jung W.-J. Antifungal, Nematicidal and Antioxidant Activity of the Methanol Extracts Obtained from Medicinal Plants. J. Appl. Biol. Chem. 2013;56:199–204. doi: 10.3839/jabc.2013.032. DOI
Saxena S., Uniyal V., Bhatt R.P. Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection. Braz. J. Microbiol. 2012;43:1347–1354. doi: 10.1590/S1517-83822012000400016. PubMed DOI PMC
Chander M.P., Pillai C.R., Sunish I.P., Vijayachari P. Antimicrobial and antimalarial properties of medicinal plants used by the indigenous tribes of Andaman and Nicobar Islands, India. Microb. Pathog. 2016;96:85–98. doi: 10.1016/j.micpath.2016.04.017. PubMed DOI
Lambert P.A. Cellular impermeability and uptake of biocides and antibiotics in Gram-positive bacteria and mycobacteria. J. Appl. Microbiol. 2002;92:46S–54S. doi: 10.1046/j.1365-2672.92.5s1.7.x. PubMed DOI
Kumar A., Singh S., Kumar D. Evaluation of antimicrobial potential of cadmium sulphide nanoparticles against bacterial pathogens. Int. J. Pharm. Sci. Rev. Res. 2014;24:202–207.
Brown E.D., Wright G.D. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336–343. doi: 10.1038/nature17042. PubMed DOI
Sekyere J.O., Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: Advances in the era of genomics. Futur. Microbiol. 2018;13:241–262. doi: 10.2217/fmb-2017-0172. PubMed DOI
Sekyere J.O. Current State of Resistance to Antibiotics of Last-Resort in South Africa: A Review from a Public Health Perspective. Front. Public Health. 2016;4:1–11. doi: 10.3389/fpubh.2016.00209. PubMed DOI PMC
Sekyere J.O., Govinden U., Bester L.A., Essack S.Y. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: Emerging resistance mechanisms and detection methods. J. Appl. Microbiol. 2016;121:601–617. doi: 10.1111/jam.13169. PubMed DOI
Sekyere J.O., Govinden U., Essack S. The molecular epidemiology and genetic environment of carbapenemases detected in Africa. Microb. Drug Resist. 2016;22:59–68. doi: 10.1089/mdr.2015.0053. PubMed DOI
Voss-Rech D., Potter L., Vaz C.S.L., Pereira D.I.B., Sangioni L.A., Vargas A.C., de Avila Botton S. Antimicrobial resistance in non-typhoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-year meta-analysis. Foodborne Pathog. Dis. 2017;14:116–124. doi: 10.1089/fpd.2016.2228. PubMed DOI
Maxwell A. DNA gyrase as a drug target. Trends Microbiol. 1997;5:102–109. doi: 10.1016/S0966-842X(96)10085-8. PubMed DOI
Tenover F.C. Mechanisms of Antimicrobial Resistance in Bacteria. Am. J. Med. 2006;119:S3–S10. doi: 10.1016/j.amjmed.2006.03.011. PubMed DOI
Schneider T., Sahl H.-G. An oldie but a goodie—Cell wall biosynthesis as antibiotic target pathway. Int. J. Med. Microbiol. 2010;300:161–169. doi: 10.1016/j.ijmm.2009.10.005. PubMed DOI
Sekyere J.O., Amoako D.G. Carbonyl Cyanide m-Chlorophenylhydrazine (CCCP) Reverses Resistance to Colistin, but Not to Carbapenems and Tigecycline in Multidrug-Resistant Enterobacteriaceae. Front. Microbiol. 2017;8:1–9. doi: 10.3389/fmicb.2017.00228. PubMed DOI PMC
Sekyere J.O., Amoako D.G. Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLoS ONE. 2017;12:1–14. doi: 10.1371/journal.pone.0178888. PubMed DOI PMC
Levy S.B. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 1992;36:695–703. doi: 10.1128/AAC.36.4.695. PubMed DOI PMC
Paulsen I.T., Brown M.H., Skurray R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996;60:575–608. doi: 10.1128/MR.60.4.575-608.1996. PubMed DOI PMC
Khameneh B., Diab R., Ghazvini K., Bazzaz B.S.F. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb. Pathog. 2016;95:32–42. doi: 10.1016/j.micpath.2016.02.009. PubMed DOI
Kongkham B., Prabakaran D., Puttaswamy H. Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia. 2020;147:104762. doi: 10.1016/j.fitote.2020.104762. PubMed DOI
Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000;406:775–781. doi: 10.1038/35021219. PubMed DOI
Savjani J.K., Gajjar A.K., Savjani K.T. Mechanisms of Resistance: Useful Tool to Design Antibacterial Agents for Drug—Resistant Bacteria. Mini Rev. Med. Chem. 2009;9:194–205. doi: 10.2174/138955709787316038. PubMed DOI
Fink A.L. The molecular basis of β-lactamase catalysis and inhibition. Pharm. Res. 1985;2:55–61. doi: 10.1023/A:1016378325438. PubMed DOI
Blair J.M., Webber M.A., Baylay A.J., Ogbolu D.O., Piddock L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015;13:42–51. doi: 10.1038/nrmicro3380. PubMed DOI
Olsen I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1303–1308. doi: 10.1007/s10096-015-2375-0. PubMed DOI
Stavri M., Piddock L.J.V., Gibbons S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 2007;59:1247–1260. doi: 10.1093/jac/dkl460. PubMed DOI
Berkow E.L., Angulo D., Lockhart S.R. In Vitro Activity of a Novel Glucan Synthase Inhibitor, SCY-078, against Clinical Isolates of Candida auris. Antimicrob. Agents Chemother. 2017;61:1–2. doi: 10.1128/AAC.00435-17. PubMed DOI PMC
He X., Li S., Kaminskyj S.G.W. Using Aspergillus nidulans To Identify Antifungal Drug Resistance Mutations. Eukaryot. Cell. 2014;13:288–294. doi: 10.1128/EC.00334-13. PubMed DOI PMC
Cowen L., Sanglard D., Howard S.J., Rogers P.D., Perlin D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2015;5:1–2. doi: 10.1101/cshperspect.a019752. PubMed DOI PMC
Cowen L.E. The evolution of fungal drug resistance: Modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 2008;6:187–198. doi: 10.1038/nrmicro1835. PubMed DOI
Cowen L.E., Steinbach W.J. Stress, Drugs, and Evolution: The Role of Cellular Signaling in Fungal Drug Resistance. Eukaryot. Cell. 2008;7:747–764. doi: 10.1128/EC.00041-08. PubMed DOI PMC
Cowen L.E. Hsp90 Orchestrates Stress Response Signaling Governing Fungal Drug Resistance. PLOS Pathog. 2009;5:1–3. doi: 10.1371/journal.ppat.1000471. PubMed DOI PMC
Cowen L.E. The fungal Achilles’ heel: Targeting Hsp90 to cripple fungal pathogens. Curr. Opin. Microbiol. 2013;16:377–384. doi: 10.1016/j.mib.2013.03.005. PubMed DOI
Naidu A., Davidson P.M. Phyto-phenols. In: Naidu A.S., editor. Natural Food Antimicrobial Systems. CRC Press; Boca Raton, FL, USA: 2000. pp. 278–307.
Burt S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004;94:223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022. PubMed DOI
Gill A.O., Holley R.A. Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004;70:5750–5755. doi: 10.1128/AEM.70.10.5750-5755.2004. PubMed DOI PMC
Gill A.O., Holley R.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006;108:1–9. doi: 10.1016/j.ijfoodmicro.2005.10.009. PubMed DOI
Negi P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012;156:7–17. doi: 10.1016/j.ijfoodmicro.2012.03.006. PubMed DOI
Ozfenerci M., Calıskan U.K. Tea tree oil and its use in aromatherapy. Curr. Pers. Maps. 2018;2:90–102.
Gallo F.R., Palazzino G., Federici E., Iurilli R., Monache F.D., Chifundera K., Galeffi C. Oligomeric secoiridoid glucosides from Jasminum abyssinicum. Phytochemistry. 2006;67:504–510. doi: 10.1016/j.phytochem.2005.11.007. PubMed DOI
Tadiwos Y., Nedi T., Engidawork E. Analgesic and anti-inflammatory activities of 80% methanol root extract of Jasminum abyssinicum Hochst. ex. Dc. (Oleaceae) in mice. J. Ethnopharmacol. 2017;202:281–289. doi: 10.1016/j.jep.2017.02.036. PubMed DOI
Lakshmanan P., Gabriel J.J. Comparative qualitative analysis of callus extracts of in-vitro and in-vivo plants of Jasminum angustifolium, a wild and medicinal plant. World J. Pharm. Sci. 2015;3:1421–1425.
Kathiresan K., Philip R. Phytochemical screening and in vitro antioxidant activity of extracts of Jasminum sessiliflorum. Int. J. Pharmacol. Clin. Res. 2018;2:117–123.
Philip R., Krishnasamy K., Abraham E. Evaluation of anti-inflammatory activity of Jasminum sessiliflorum extracts. Int. J. Res. Pharm. Sci. 2019;10:2515–2518. doi: 10.26452/ijrps.v10i3.1501. DOI
Gupta A., Chaphalkar S.R. Use of flow cytometry to measure the immunostimulatory activity of aqueous extract of Jasminum auriculatum. Int. J. Curr. Adv. Res. 2015;4:87–91.
Bahuguna Y., Juyal V., Rawat M.S.M., Jalalpure S. Diuretic activity of flowers of Jasminum auriculatum Vahl. J. Pharm. Res. 2009;2:215–216.
Rastogi R.P., Mehrotra B.N., Sinha S., Pant P., Seth R. Compendium of Indian Medicinal Plants. Central Drug Research Institute; Lucknow, India: 2001. pp. 395–396.
Arivoli S., Divya S., Arumugam B., Meeran M., Jayakumar M., Raveen R., Samuel T. Phytochemical constituents of Jasminum fluminense Linnaeus (Oleaceae): An additional tool in the ecofriendly management of mosquitoes. J. Pharmacog. Phytochem. 2018;7:548–556.
Prajapati N.D., Purohit S.S., Sharma A.K., Kumar T. A Handbook of Medicinal Plants: A Complete Source Book. Agrobios; Jodhpur, India: 2003. p. 554.
Zhao G.-Q., Yin Z.-F., Liu Y.-C., Li H.-B. Iridoid glycosides from buds of Jasminum officinale L. var grandiflorum. Yao Xue Xue Bao Acta Pharm. Sin. 2011;46:1221–1224. PubMed
Zhao G.-Q., Xia J.-J., Dong J.-X. Glycosides from flowers of Jasminum officinale L. var grandiflorum. Yao Xue Xue Bao Acta Pharm. Sin. 2007;42:1066–1069. PubMed
Singh B., Sharma R.A. Secondary Metabolites of Medicinal Plants, 4 Volume Set: Ethnopharmacological Properties, Biological Activity and Production Strategies. John Wiley & Sons; Hoboken, NJ, USA: 2020. pp. 574–584.
Dubey P., Tiwari A., Gupta S.K., Watal G. Phytochemical and biochemical studies of Jasminum officinale leaves. Int. J. Pharm. Sci. Res. 2016;7:2632–2640.
El-Hawary S.S., El-Hefnawy H.M., Osman S.M., El-Raey M.A., Ali F.A.M. Phenolic profiling of different Jasminum species cultivated in Egypt and their antioxidant activity. Nat. Prod. Res. 2019:1–6. doi: 10.1080/14786419.2019.1700508. PubMed DOI
Lu Y., Han Z.-Z., Zhang C.-G., Ye Z., Wu L.-L., Xu H. Four new sesquiterpenoids with anti-inflammatory activity from the stems of Jasminum officinale. Fitoterapia. 2019;135:22–26. doi: 10.1016/j.fitote.2019.03.029. PubMed DOI
Tauchen J., Doskocil I., Caffi C., Lulekal E., Marsik P., Havlik J., van Damme P., Kokoska L. In vitro antioxidant and anti-proliferative activity of Ethiopian medicinal plant extracts. Ind. Crop. Prod. 2015;74:671–679. doi: 10.1016/j.indcrop.2015.05.068. DOI
Bhagath K., Kekuda P.T.R., Raghavendra H.L., Swarnalatha S.P., Preethi H.R., Surabhi K.S. In vitro antioxidant and anthelmintic activity of extracts of Jasminum arborescens (Roxb.) Int. J. Drug. Dev. Res. 2010;2:89–95.
Ferreres F., Grosso A.C., Gil-Izquierdo A., Valentão P., Andrade P.B. Assessing Jasminum grandiflorum L. authenticity by HPLC-DAD-ESI/MSn and effects on physiological enzymes and oxidative species. J. Pharm. Biomed. Anal. 2014;88:157–161. doi: 10.1016/j.jpba.2013.08.040. PubMed DOI
Umamaheswari M., Asokkumar K., Rathidevi R., Sivashanmugam A.T., Subhadradevi V., Ravi T.K. Antiulcer and in vitro antioxidant activities of Jasminum grandiflorum L. J. Ethnopharmacol. 2007;110:464–470. doi: 10.1016/j.jep.2006.10.017. PubMed DOI
Chaturvedi A.P., Tripathi Y.B. Methanolic extract of leaves of Jasminum grandiflorum Linn modulates oxidative stress and inflammatory mediators. Inflammopharmacology. 2011;19:273–281. doi: 10.1007/s10787-011-0087-3. PubMed DOI
Dessai P., Sawant R.P. In-vitro pharmacological activities of Jasminum malabaricum Wight. J. Glob. Trends Pharm. Sci. 2018;9:5076–5082.
Poonia P., Niazi J., Chaudhary G., Kalia A.N. In vitro antioxidant potential of Jasminum mesnyi Hance (Leaves) extracts. Res. J. Pharm. Biol. Chem. Sci. 2011;2:348–357.
Borar S., Punia P., Kalia A.N. Antioxidant potential of n-butanol fraction from extract of Jasminum mesnyi Hance leaves. Indian J. Exp. Boil. 2011;49:39–43. PubMed
Guo Z.-Y., Li P., Huang W., Wang J.-J., Liu Y.-J., Liu B., Wang Y.-L., Wu S.-B., Kennelly E.J., Long C.-L. Antioxidant and anti-inflammatory caffeoyl phenylpropanoid and secoiridoid glycosides from Jasminum nervosum stems, a Chinese folk medicine. Phytochemistry. 2014;106:124–133. doi: 10.1016/j.phytochem.2014.07.011. PubMed DOI
Li A.-N., Li S., Li H.-B., Xu D.-P., Xu X.-R., Chen F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods. 2014;6:319–330. doi: 10.1016/j.jff.2013.10.022. DOI
Khidzir K.M., Cheng S.-F., Chuah C.-H. Interspecies variation of chemical constituents and antioxidant capacity of extracts from Jasminum sambac and Jasminum multiflorum grown in Malaysia. Ind. Crop. Prod. 2015;74:635–641. doi: 10.1016/j.indcrop.2015.05.053. DOI
He F., Zuo L. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases. Int. J. Mol. Sci. 2015;16:27770–27780. doi: 10.3390/ijms161126059. PubMed DOI PMC
Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s Dis. 2013;3:461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC
Zuo L., Zhou T., Pannell B.K., Ziegler A.C., Best T.M. Biological and physiological role of reactive oxygen species—The good, the bad and the ugly. Acta Physiol. 2015;214:329–348. doi: 10.1111/apha.12515. PubMed DOI
Tan B.L., Norhaizan M.E., Huynh K., Heshu S.R., Yeap S.K., Hazilawati H., Roselina K. Water extract of brewers’ rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers’ rice-treated rats with azoxymethane-induced colon carcinogenesis. BMC Complement. Altern. Med. 2015;15:1–14. doi: 10.1186/s12906-015-0730-4. PubMed DOI PMC
Liu Z., Zhou T., Ziegler A.C., Dimitrion P., Zuo L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Med. Cell. Longev. 2017;2017:1–11. doi: 10.1155/2017/2525967. PubMed DOI PMC
Hercberg S., Galan P., Preziosi P., Bertrais S., Mennen L., Malvy D., Roussel A.M., Favier A., Briançon S. The SU. VI. MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch. Intern. Med. 2004;164:2335–2342. doi: 10.1001/archinte.164.21.2335. PubMed DOI
Halliwell B., Rafter J., Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005;81:268S–276S. doi: 10.1093/ajcn/81.1.268S. PubMed DOI
Dysken M.W., Sano M., Asthana S., Vertrees J.E., Pallaki M., Llorente M., Love S., Schellenberg G.D., McCarten J.R., Malphurs J., et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. Jama. 2014;311:33–44. doi: 10.1001/jama.2013.282834. PubMed DOI PMC
Yuan G., Sun B., Yuan J., Wang Q. Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chem. 2010;118:774–781. doi: 10.1016/j.foodchem.2009.05.062. DOI
Kolanjiappan K., Manoharan S. Chemopreventive efficacy and anti-lipid peroxidative potential of Jasminum grandiflorum Linn. on 7,12-dimethylbenz(a)anthracene-induced rat mammary carcinogenesis. Fundam. Clin. Pharmacol. 2005;19:687–693. doi: 10.1111/j.1472-8206.2005.00376.x. PubMed DOI
Chaturvedi A.P., Kumar M., Tripathi Y.B. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats. Int. Wound J. 2012;10:675–682. doi: 10.1111/j.1742-481X.2012.01043.x. PubMed DOI PMC
Sengar N., Joshi A., Prasad S.K., Hemalatha S. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. J. Ethnopharmacol. 2015;160:140–148. doi: 10.1016/j.jep.2014.11.039. PubMed DOI
Ho C.C., Ng S.C., Chuang H.L., Wen S.Y., Kuo C.H., Mahalakshmi B., Huang C.Y., Kuo W.W. Extracts of Jasminum sambac flowers fermented by Lactobacillus rhamnosus inhibit H2O2-and UVB-induced aging in human dermal fibroblasts. Environ. Toxicol. 2020;36:607–619. doi: 10.1002/tox.23065. PubMed DOI
Abdoul-Latif F., Edou P., Eba F., Mohamed N., Ali A., Djama S., Obame L., Bassolé I., Dicko M. Antimicrobial and antioxidant activities of essential oil and methanol extract of Jasminum sambac from Djibouti. Afr. J. Plant Sci. 2010;4:38–43.
AlRashdi A.S., Salama S.M., Alkiyumi S.S., Abdulla M.A., Hadi A.H.A., Abdelwahab S.I., Taha M.M., Hussiani J., Asykin N. Mechanisms of gastroprotective effects of ethanolic leaf extract of Jasminum sambac against HCl/ethanol-induced gastric mucosal injury in rats. Evid. Based Compl. Alt. Med. 2012;2012:1–15. doi: 10.1155/2012/786426. PubMed DOI PMC
Bhagat A.D., Khairnar A.U., Tenpe C.R., Upaganalwar A.B., Yeole P.G. Anti-inflammatory activity of Jasminum sambac leaf extract against carrageenan induced rat paw edema. Indian J. Nat. Prod. 2007;23:25–28.
Rahman M.A., Hasan M., Hossain S.M.A., Biswas N.N. Analgesic and cytotoxic activities of Jasminum sambac (L.) Aiton. Pharmacologyonline. 2011;1:124–131.
Kumar M., Randhava N.K. Jasminum mesnyi Hance: Review at a Glance. J. Drug Deliv. Ther. 2014;4:44–47. doi: 10.22270/jddt.v4i5.935. DOI
Bhushan B., Sardana S., Bansal G. Phytochemical and pharmacognostical studies of leaves of Jasminum mesyni Hance. J. Chem. Pharma. Res. 2015;7:922–926.
Kumaresan M., Kannan M., Sankari A., Chandrasekhar C.N., Vasanthi D. Phytochemical screening and antioxidant activity of Jasminum multiflorum (pink Kakada) leaves and flowers. J. Pharmacog. Phytochem. 2019;8:1168–1173.
Jain A., Sharma R., Kumar A., Sharma S. Jasminum species: An overview. Int. J. Inst. Pharm. Life Sci. 2011;1:251–266.
Shekhar S., Prasad M.P. Evaluation of antimicrobial activity of Jasminum species using solvent extracts against clinical pathogens. World J. Pharm. Pharm. Sci. 2015;4:1247–1256.
Yuniarto A., Kurnia I., Ramadhan M. Anti-obesity effect of ethanolic extract of jasmine flowers (Jasminum sambac (L.) Ait.) in high fat diet induced mice: Potent inhibitor of pancreatic lipase enzyme. Int. J. Adv. Phar. Biol. Chem. 2015;4:18–22.
Dhalaria R., Verma R., Kumar D., Puri S., Tapwal A., Kumar V., Nepovimova E., Kuca K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants. 2020;9:1123. doi: 10.3390/antiox9111123. PubMed DOI PMC
Nagmoti D.M., Khatri D.K., Juvekar P.R., Juvekar A.R. Antioxidant activity free radical-scavenging potential of Pithecellobium dulce Benth seed extracts. Free Radic. Antioxid. 2012;2:37–43. doi: 10.5530/ax.2012.2.2.7. DOI
Sharma A., Bernatchez P.N., de Haan J.B. Targeting Endothelial Dysfunction in Vascular Complications Associated with Diabetes. Int. J. Vasc. Med. 2012;2012:1–12. doi: 10.1155/2012/750126. PubMed DOI PMC
Boora F., Chirisa E., Mukanganyama S. Evaluation of Nitrite Radical Scavenging Properties of Selected Zimbabwean Plant Extracts and Their Phytoconstituents. J. Food Process. 2014;2014:1–7. doi: 10.1155/2014/918018. DOI
Tehrani H.S., Moosavi-Movahedi A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018;140:5–12. doi: 10.1016/j.pbiomolbio.2018.03.001. PubMed DOI
Rakotoarisoa M., Angelov B., Espinoza S., Khakurel K., Bizien T., Angelova A. Cubic Liquid Crystalline Nanostructures Involving Catalase and Curcumin: BioSAXS Study and Catalase Peroxidatic Function after Cubosomal Nanoparticle Treatment of Differentiated SH-SY5Y Cells. Molecules. 2019;24:3058. doi: 10.3390/molecules24173058. PubMed DOI PMC
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010;4:118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Devasagayam T.P.A., Tilak J.C., Boloor K.K., Sane K.S., Ghaskadbi S.S., Lele R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India. 2004;52:794–804. PubMed
Wills E.D. Effects of lipid peroxidation on membrane-bound enzymes of the endoplasmic reticulum. Biochem. J. 1971;123:983–991. doi: 10.1042/bj1230983. PubMed DOI PMC
Farooqui A.A., Horrocks L.A. Lipid Peroxides in the Free Radical Pathophysiology of Brain Diseases. Cell. Mol. Neurobiol. 1998;18:599–608. doi: 10.1023/A:1020625717298. PubMed DOI PMC
Cheeseman K. Mechanisms and effects of lipid peroxidation. Mol. Asp. Med. 1993;14:191–197. doi: 10.1016/0098-2997(93)90005-X. PubMed DOI
Yu B.P., Suescun E.A., Yang S.Y. Effect of age-related lipid peroxidation on membrane fluidity and phospholipase A2: Modulation by dietary restriction. Mech. Ageing Dev. 1992;65:17–33. doi: 10.1016/0047-6374(92)90123-U. PubMed DOI
Sies H., Sharov V.S., Klotz L.O., Briviba K. Glutathione peroxidase protects against peroxynitrite-mediated oxidations: A new function for selenoproteins as peroxynitrite reductase. J. Biol. Chem. 1997;272:27812–27817. doi: 10.1074/jbc.272.44.27812. PubMed DOI
Szabó C., Ischiropoulos H., Radi R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007;6:662–680. doi: 10.1038/nrd2222. PubMed DOI