• This record comes from PubMed

Hypoglycemic and antioxidant activities of Jasminum officinale L. with identification and characterization of phytocompounds

. 2024 Nov 15 ; 10 (21) : e39165. [epub] 20241010

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Links

PubMed 39524716
PubMed Central PMC11547964
DOI 10.1016/j.heliyon.2024.e39165
PII: S2405-8440(24)15196-1
Knihovny.cz E-resources

The utilization of plant-derived chemicals with anti-diabetic properties is widely promoted for its advantageous tactics in managing diabetes, as they are cost-effective and have minimal or no adverse effects. Therefore, this work investigates the medicinal plant Jasminum officinale L. leaves by extraction and bio-guided fractionation. The ethyl acetate fraction showed a higher yield of 36.4 %. A phytochemical test on Jasminum officinale confirmed flavonoids, saponins, phenols, and tannins. The highest total phenol and flavonoid contents in the ethyl acetate fraction of J. officinale are 103.01 ± 1.1 mg GAE/g and 80.29 ± 1.03 mg QUE/ value found in methanol crude extract. Furthermore, HPTLC analysis of the ethyl acetate fraction detected the existence of flavonoids (kaempferol) and phenols (gallic acid, quercetin, and rutin). The compounds detected at the greatest concentrations in the LC-M/MS analysis of the ethyl acetate fraction were cirsiliol, kaempferol, and 2-tridecanone. Additionally, J. officinale (IC50 33.845 ± 1.09 μg/mL) demonstrated the highest DPPH scavenging activity in EAF like that of ascorbic acid (IC50 22.27 ± 0.96 μg/mL). Also, in the FRAP assay, the IC50 of this fraction is 15.14 ± 0.25 μM Fe equivalents. In the range of alpha-amylase deactivating action, from 13.25 % to 74.51 %, and IC50 value (47.40 ± 0.29 μg/mL) was significantly higher in the ethyl acetate fraction of J. officinale leaf extract. Moreover, J. officinale leaf extract had a substantially higher retention of glucose level (23.92 ± 0.85 % to 87.21 ± 0.6 %), significantly higher anti-inflammatory activity with the lowest IC50 value (66.00 ± 1.84), and lipid peroxidation (IC50 value 34.67 ± 1.69) by utilizing egg yolk as a substrate for lipids. Overall, the study revealed that J. officinale has considerable anti-diabetic characteristics. However, further comprehensive research is necessary to ascertain the medicinal purposes of J. officinale and its chemical components, pharmacological effects, and clinical uses.

See more in PubMed

Jafri S.A., Khalid Z.M., Khan M.R., Ashraf S., Ahmad N., Karami A.M., Rafique E., Ouladsmane M., Al Suliman N.M., Aslam S. Evaluation of some essential traditional medicinal plants for their potential free scavenging and antioxidant properties. J. King Saud Univ. Sci. 2023;35(3) doi: 10.1016/j.jksus.2023.102562. DOI

Taneja A., Sharma R., Khetrapal S., Sharma A., Nagraik R., Venkidasamy B., Ghate M.N., Azizov S., Sharma S., Kumar D. Value addition employing waste bio-materials in environmental remedies and food sector. Metabolites. 2023;13(5):624. doi: 10.3390/metabo13050624. PubMed DOI PMC

Dickschat J.S. Quorum sensing and bacterial bioflms. Nat. Prod. Rep. 2010;27(3):343–369. doi: 10.1039/B804469B. PubMed DOI

Holst B., Williamson G. Nutrients and phytochemicals: from bioavailability to bioefcacy beyond antioxidants. Curr. Opin. Biotechnol. 2008;19(2):73–82. doi: 10.1016/j.copbio.2008.03.003. PubMed DOI

Holst B., Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr. Opin. Biotechnol. 2008;19(2):73–82. doi: 10.1016/j.copbio.2008.03.003. PubMed DOI

Sarma M.K., Saha D., Das B.K. A delve into the pharmacological targets and biological mechanisms of Paederia foetida Linn.: a rather invaluable traditional medicinal plant. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023;396:2217–2240. doi: 10.1007/s00210-023-02496-4. PubMed DOI

Ukpanukpong R.U., Ajani J.O., Omang W.A., et al. “Antidiabetic and antilipidemic effect of Khaya senegalensis ethanolic bark extract in alloxan induced diabetic wistar rats. International Journal of Current Microbiology and Applied Sciences. 2018;7(8):291–307. doi: 10.20546/ijcmas.2018.708.034. DOI

James I., Wade G., Von Bank H., McGahee A., Chevalier A., Gonzalez P., Bote K., Ntambi J.M., Simcox J. Cellular Lipid in Health and Disease. 2023. Plasma lipid trafficking in type 2 diabetes; pp. 249–269. DOI

Tang C., Bao T., Zhang Q., Qi H., Huang Y., Zhang B., Zhao L., Tong X. Clinical potential and mechanistic insights of mulberry (Morus alba L.) leaves in managing type 2 diabetes mellitus: focusing on gut microbiota, inflammation, and metabolism. J. Ethnopharmacol. 2023;116143 doi: 10.1016/j.jep.2023.116143. PubMed DOI

Baluchnejadmojarad T., Kiasalari Z., Afshin-Majd S., Ghasemi Z., Roghani M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur. J. Pharmacol. 2017;794:69–76. doi: 10.1016/j.ejphar.2016.11.033. PubMed DOI

Kalra S., Unnikrishnan A.G. Obesity in India: the weight of the nation. J. Med. Nutr. Nutraceuticals. 2012;1(1):37. doi: 10.4103/2278-019X.94634. DOI

Heendeniya S.N., Keerthirathna L.R., Manawadu C.K., Dissanayake I.H., Ali R., Mashhour A., Alzahrani H., Godakumbura P., Boudjelal M., Peiris D.C. Therapeutic efficacy of Nyctanthes arbor-tristis flowers to inhibit proliferation of acute and chronic primary human leukemia cells, with adipocyte differentiation and in silico analysis of interactions between survivin protein and selected secondary metabolites. Biomolecules. 2020;10(2):165. doi: 10.3390/biom10020165. PubMed DOI PMC

Luo T., Miranda-Garcia O., Adamson A., Sasaki G., Shay N.F. Development of obesity is reduced in high-fat fed mice fed whole raspberries, raspberry juice concentrate, and a combination of the raspberry phytochemicals ellagic acid and raspberry ketone. J. Berry Res. 2016;6(2):213–223. doi: 10.3233/JBR-160135. DOI

Zheng J., Hu Y., Xu H., Lei Y., Zhang J., Zheng Q., Li L., Tu W., Chen R., Guo Q., Zang X. Normal-weight visceral obesity promotes a higher 10-year atherosclerotic cardiovascular disease risk in patients with type 2 diabetes mellitus–a multicenter study in China. Cardiovasc. Diabetol. 2023;22(1):137. doi: 10.1186/s12933-023-01876-7. PubMed DOI PMC

Lu Y., Han Z.Z., Zhang C.G., Ye Z., Wu L.L., Xu H. Four new sesquiterpenoids with anti-inflammatory activity from the stems of Jasminum officinale. Fitoterapia. 2019;135:22–26. doi: 10.1016/j.fitote.2019.03.029. PubMed DOI

Patil K.J., Patil V.A., Patil S.V., Bhuktar A.S. Comparative preliminary phytochemical studies of Jasminium multiflorum and Jasminum officinale. Trends in life sciences. 2012;1(3):43–45.

Sahu R., Arya V., Joshi R., Kaushik P., Chauhan M. Pharmacological and therapeutic properties of jasminum officinale. L: a review. Indian J. Ecol. 2022;49(3):1122–1128.

Rattan R. Genus Jasminum phytochemicals and pharmacological effects - a Review. 2023;10(2):2349–5138.

Prachee D., Ayushi T., Praveen T., Shikha A., Rai A.K., Geeta W. Phytochemical and phytoelemental profile of J. officinale. International Journal of Pharmacognosy and Phytochemical Research. 2019;11(1):5–9.

Zhao G., Yin Z., Dong J. Antiviral efficacy against hepatitis B virus replication of oleuropein isolated from Jasminum officinale L. var. grandiflorum. J. Ethnopharmacol. 2009;125(2):265–268. PubMed

Balkrishna A., Rohela A., Kumar A., Kumar A., Arya V., Thakur P., Oleksak P., Krejcar O., Verma R., Kumar D., Kuca K. Mechanistic insight into antimicrobial and antioxidant potential of Jasminum species: a herbal approach for disease management. Plants. 2021;10(6):1089. PubMed PMC

Zhang L., Zhang Z.Z., Zhou Y.B., Ling T.J., Wan X.C. Chinese dark teas: postfermentation, chemistry and biological activities. Food Res. Int. 2013;53(2):600–607. doi: 10.1016/j.foodres.2013.01.016. DOI

Mukherjee K., Biswas R., Chaudhary S.K., Mukherjee P.K. Evidence-Based Validation of Herbal Medicine. 2015. Botanicals as medicinal food and their effects against obesity; pp. 373–403. DOI

Hussain M., Bakhsh H., Aziz A., Majeed A., Khan I.A., Mujeeb A., Farooq U. Comparative in vitro study of antimicrobial activities of flower and whole plant of Jasminum officinale against some human pathogenic microbes. Journal of Pharmacy and Alternative Medicine. 2013;2(4):33–43.

Ghosh A., Chandra G. Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: solanales) against the larval forms of Anopheles stephensi. Nat. Prod. Res. 2006;20(4):371–379. doi: 10.1080/14786410600661575. PubMed DOI

Kumar V., Sharma N., Sourirajan A., Khosla P.K., Dev K. Comparative evaluation of antimicrobial and antioxidant potential of ethanolic extract and its fractions of bark and leaves of Terminalia arjuna from north-western Himalayas, India. Journal of traditional and complementary medicine. 2018;8(1):100–106. doi: 10.1016/j.jtcme.2017.04.002. PubMed DOI PMC

Gonfa T., Teketle S., Kiros T. Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of Cadaba rotundifolia Forssk leaf extracts. Cogent Food Agric. 2020;6:1–12. doi: 10.1080/23311932.2020.1853867. DOI

Alam M.N., Bristi N.J., Rafiquzzaman M. Review on in-vivo and in-vitro methods evaluation of antioxidant activity. Saudi Pharmaceut. J. 2013;21(2):143–152. doi: 10.1016/j.jsps.2012.05.002. PubMed DOI PMC

Bondonno N.P., Parmenter B.H., Dalgaard F., Murray K., Rasmussen D.B., Kyrø C., Cassidy A., Bondonno C.P., Lewis J.R., Croft K.D., Gislason G. Flavonoid intakes inversely associate with COPD in smokers. Eur. Respir. J. 2022;60(2) doi: 10.1183/13993003.02604-2021. PubMed DOI PMC

Morsy N. Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chem. 2014;13(1):7–21. doi: 10.3233/MGC-130117. DOI

Goel N., Sirohi S.K., Dwivedi J. Estimation of total saponins and evaluate their effect on in vitro methanogenesis and rumen fermentation pattern in wheat straw-based diet. J. Adv. Vet. Res. 2012;2(2):120–126.

Kennedy D.O., Wightman E.L. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011;2(1):32–50. doi: 10.3945/an.110.000117. PubMed DOI PMC

Truong D.H., Ta N.T., Pham T.V., Huynh T.D., Do Q.T., Dinh N.C., Dang C.D., Nguyen T.K., Bui A.V. Effects of solvent—solvent fractionation on the total terpenoid content and in vitro anti‐inflammatory activity of Serevenia buxifolia bark extract. Food Sci. Nutr. 2021;9(3):1720–1735. doi: 10.1002/fsn3.2149. PubMed DOI PMC

Hu Q.M., Yang Z., Zhang Y.Y., Bao G.H. Efficient development of antibacterial (−)-epigallocatechin gallate-PBCA nanoparticles using ethyl acetate as oil phase through interfacial polymerization. Food Biosci. 2021;44 doi: 10.1016/j.fbio.2021.101432. DOI

Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 1996 Jul 15;239(1):70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Das A.K., Rajkumar V., Nanda P.K., Chauhan P., Pradhan S.R., Biswas S. Antioxidant efficacy of litchi (Litchi chinensis Sonn.) pericarp extract in sheep meat nuggets. Antioxidants. 2016;5(2):16. doi: 10.3390/antiox5020016. PubMed DOI PMC

Das A.K., Rajkumar V., Nanda P.K., Chauhan P., Pradhan S.R., Biswas S. Anti-oxidant efficacy of litchi (Litchi chinensis Sonn.) pericarp extract in sheep meat nuggets. Antioxidants. 2016;5(2):16. doi: 10.3390/antiox5020016. PubMed DOI PMC

Nair S.S., Kavrekar V., Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol. 2013;3(1):128–132.

Sidhu A.K., Wani S.J., Tamboli P.S., Patil S.N. In vitro evaluation of anti-diabetic activity of leaf and callus extracts of Costus pictus. International journal of recent scientific research. 2014;3:1622–1625.

Déruaz M., Frauenschuh A., Alessandri A.L., Dias J.M., Coelho F.M., Russo R.C., Ferreira B.R., Graham G.J., Shaw J.P., Wells T.N., Teixeira M.M. Ticks produce highly selective chemokine binding proteins with anti-inflammatory activity. J. Exp. Med. 2008;205(9):2019–2031. doi: 10.1084/jem.20072689. PubMed DOI PMC

Kumar M., Guleria S., Chawla P., Khan A., Modi V.K., Kumar N., Kaushik R. Anti-obesity efficacy of the selected high altitude Himalayan herbs: in-vitro studies. J. Food Sci. Technol. 2020;57:3081–3090. doi: 10.1007/s13197-020-04341-5. PubMed DOI PMC

Tambunan A.P., Bahtiar A., Tjandrawinata R.R. Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to standardize different batches for long term from Ageratum conyoides L. leaves. Phcog. J. 2017;9

Tantowi F., Limanan D. Antioxidant test, total alkaloid content, antimitosis test and HPTLC test of chamomile flower extract (matricaria chamomilla L.) Devotion Journal of Community Service. 2023;4(1):78–87. doi: 10.36418/dev.v4i1.351. DOI

Badmus J.A., Oyemomi S.A., Adedosu O.T., Yekeen T.A., Azeez M.A., Adebayo E.A., Lateef A., Badeggi U.M., Botha S., Hussein A.A., Marnewick J.L. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon. 2020;6(11) doi: 10.1016/j.heliyon.2020.e05413. PubMed DOI PMC

Banerjee A., Dasgupta N., De B. In-vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem. 2005;90(4):727–733. doi: 10.1016/j.foodchem.2004.04.033. DOI

Zeng Y., Guo L.P., Chen B.D., Hao Z.P., Wang J.Y., Huang L.Q., Yang G., Cui X.M., Yang L., Wu Z.X., Chen M.L. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza. 2013;23:253–265. doi: 10.1007/s00572-013-0484-0. PubMed DOI

Singh M., Kumar R., Sharma S., Kumar L., Kumar S., Gupta G., Dua K., Kumar D. Hedychium spicatum: A comprehensive insight into its ethnobotany, phytochemistry, pharmacological and therapeutic attributes. S. Afr. J. Bot. 2023;161:638–647. doi: 10.1016/j.sajb.2023.08.046. DOI

Mostafa R.M., El-Sayed A.S. Evaluation of phytochemical screening and antifungal activity for some annual plant extracts in Egypt. Egyptian Academic Journal of Biological Sciences, G. Microbiology. 2021;13(1):73–87. doi: 10.21608/EAJBSG.20210179733. DOI

Ngo T.V., Scarlett C.J., Bowyer M.C., Ngo P.D., Vuong Q.V. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J. Food Qual. 2017 doi: 10.1155/2017/9305047. DOI

Duletić-Laušević S., Alimpić-Aradski A., Živković J., Gligorijević N., Šavikin K., Radulović S., Ćoćić D., Marin P.D. Evaluation of bioactivities and phenolic composition of extracts of Salvia officinalis L.(Lamiaceae) collected in Montenegro. Botanica Serbica. 2019;43(1):47–58. doi: 10.2298/BOTSERB1901047D. DOI

Duletić-Laušević S., Alimpić-Aradski A., Živković J., Gligorijević N., Šavikin K., Radulović S., Ćoćić D., Marin P.D. Evaluation of bioactivities and phenolic composition of extracts of Salvia officinalis L.(Lamiaceae) collected in Montenegro. Botanica Serbica. 2019;43(1):47–58. doi: 10.2298/BOTSERB1901047D. DOI

Tharakan S.T. Phytochemical and pharmacological properties of five different species ofJasminum. PlantArchives21. 2021 doi: 10.51470/PLANTARCHIVES.2021.v21.no2.022. DOI

Chaabna N., Naili O., Ziane N., Bensouici C., Dahamna S., Harzallah D. In vitro antioxidant, anti-alzheimer and antibacterial activities of ethyl acetate and n-butanol fractions of Punica granatum peel from Algeria. Tropical Journal of Natural Product Research. 2023;7(7)

Do Q.D., Angkawijaya A.E., Tran-Nguyen P.L., Huynh L.H., Soetaredjo F.E., Ismadji S., Ju Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014;22(3):296–302. doi: 10.1016/j.jfda.2013.11.001. PubMed DOI PMC

Shekhar S., Prasad M.P. Studies on antioxidant properties of Jasminum species by FRAP assay. International journal of pure and applied bioscience. 2015;3:52–57.

Saraswathi R., Palayyan M. Systemic review on jasminum polyanthum. World Journal of Pharmaceutical Sciences. 2022:151–154. doi: 10.54037/WJPS.2022.100117. DOI

Habtemariam S. Antioxidant and rutin content analysis of leaves of the common buckwheat (Fagopyrum esculentum Moench) grown in the United Kingdom: a case study. Antioxidants. 2019;8(6):16. doi: 10.3390/antiox8060160. PubMed DOI PMC

Iqbal S., Bhanger M.I., Anwar F. Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT-Food Science and technology. 2007;40(2):361–367. doi: 10.1016/j.lwt.2005.10.001. DOI

Maestri D.M., Nepote V., Lamarque A.L., Zygadlo J.A. Natural products as antioxidants. Phytochemistry: advances in research. 2006;37(661):105–135.

Kaviya L., Kavitha S., Vishnupriya V., Gayathri R. In vitro study on the antidiabetic effect on jasmine oil. Drug Invent. Today. 2019;12(6)

Muzammil S., Andleeb R., Hayat S., Ijaz M.U., Ashraf A., Zafar N., Naz S., Shaheen M. Integrating in-silico and in-vitro approaches to screen the antidiabetic properties from Tabernaemontana divaricata (jasmine) flowers. Evid. base Compl. Alternative Med. 2022 doi: 10.1155/2022/4616815. PubMed DOI PMC

Gunathilaka T.L., Samarakoon K.W., Ranasinghe P., Peiris L.D. In-vitro antioxidant, hypoglycemic activity, and identification of bioactive compounds in phenol-rich extract from the marine red algae Gracilaria edulis (Gmelin) Silva. Molecules. 2019;24(20):3708. PubMed PMC

Sarveswaran R., Jayasuriya W.J., Suresh T.S. In vitro assays to investigate the anti-inflammatory activity of herbal extracts a review. 2017. DOI

Prakash J., Arora N.K. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech. 2019;9(4):126. doi: 10.1007/s13205-019-1660-5. PubMed DOI PMC

El-Hawary S.S., El-Hefnawy H.M., Osman S.M., El-Raey M.A., Mokhtar F.A., Ibrahim H.A. Antioxidant, anti-inflammatory and cytotoxic activities of Jasminum multiflorum (burm. F.) andrews leaves towards MCF-7 breast cancer and HCT 116 colorectal cell lines and identification of bioactive metabolites. Anti Cancer Agents Med. Chem. 2021;21(18):2572–2582. doi: 10.2174/1871520621666210901103440. PubMed DOI

Sayem A.S., Arya A., Karimian H., Krishnasamy N., Ashok Hasamnis A., Hossain C.F. Action of phytochemicals on insulin signaling pathways accelerating glucose transporter (GLUT4) protein translocation. Molecules. 2018;23(2):258. doi: 10.3390/molecules23020258. PubMed DOI PMC

Schwartsburd P. Glucose-lowering strategies in diabetes: pharmacological development of new anti-diabetic drugs. Curr. Pharmaceut. Des. 2018;24(9):1007–1011. doi: 10.2174/1381612824666171227222113. PubMed DOI

Wei F.H., Chen F.L., Tan X.M. Gas chromatographic-mass spectrometric analysis of essential oil of Jasminum officinale L var grandiflorum flower. Trop. J. Pharmaceut. Res. 2015;14(1):149–152. doi: 10.4314/tjpr.v1i1.21. DOI

Watanabe M., Ohshita Y., Tsushida T. Antioxidant compounds from buckwheat (Fagopyrum esculentum Möench) hulls. J. Agric. Food Chem. 1997;45(4):1039–1044. doi: 10.1021/jf9605557. DOI

Imran M., Salehi B., Sharifi-Rad J., Aslam Gondal T., Saeed F., Imran A., Shahbaz M., Tsouh Fokou P.V., Umair Arshad M., Khan H., Guerreiro S.G. Kaempferol: a key emphasis to its anticancer potential. Molecules. 2019;24(12):2277. PubMed PMC

Patel D.K., Patel K. Biological application of cirsiliol in the medicine for the treatment of inflammatory disorders. Scientific data analysis for therapeutic benefit. HPB. 2021;23:S555–S556.

Surai P.F. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. World Poultry Sci. J. 2012;68(3):465–476.

Zaak H., Bendif H., Rebbas K., Aouati L., Abdennour A., Hamza A., Nkuimi Wandjou J.G., Maggi F. Essential oil composition and biological activities of Ononis alba Poir (Fabaceae) Nat. Prod. Res. 2022;36(9):2418–2423. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...