Investigation Into the Impact of Solvents on the Phytochemical Composition, Antioxidant Capacities, and Antihyperglycemic Activities of Erigeron annuus (L.) Pers

. 2025 ; 2025 () : 6650124. [epub] 20250415

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40264643

This study aims to assess the phytochemical composition, antioxidant potential, and antidiabetic properties of Erigeron annuus (L.) Pers. The ethyl acetate fraction of Erigeron annuus leaves exhibited the highest extraction rate (22.42%). The preliminary qualitative phytochemical analysis in crude extract and fractions is often performed using chemical tests. For quantitative analysis, spectrophotometric methods are widely used to estimate the concentration of phytochemicals. The antioxidant properties were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay, which measures the reduction of Fe3+ to Fe2+. Qualitative screening revealed the presence of tannins, flavonoids, phenols, saponins, and alkaloids. Notably, the ethyl acetate fraction showed significantly (p < 0.05) higher total phenolic content (70.01 ± 1.1 mg/g) and total flavonoid content (80.29 ± 1.03 mg/g). This fraction also demonstrated substantial α-amylase inhibitory activity and antioxidant potential, suggesting the ability of polyphenols to reduce α-amylase activity. The α-amylase inhibition (23.15 ± 1.22% to 67.31 ± 2.01%) activity and IC50 value (40.59 ± 0.03 μg/mL) were notably higher in the ethyl acetate fraction compared with the standard drug metformin (19.88 ± 1.51 μg/mL). Erigeron annuus ethyl acetate fraction exhibited significantly higher glucose levels (10.88% ± 1.29% to 65.11 ± 0.94%) and conducted a lipid peroxidation experiment utilizing egg yolk as the source of lipids with high content. The most bioactive fraction was evaluated for cytotoxicity against the HEK293 cell line. The cytotoxicity assay revealed that 50% cell viability was observed at a concentration of 50 μg/mL, indicating that the plant extract is nontoxic at concentrations below this threshold. Furthermore, the dominant fraction was further investigated using liquid chromatography-mass spectroscopy and high-performance thin-layer chromatography techniques from the selected plant. Moreover, an in vivo study will be performed to evaluate the antidiabetic efficacy of Erigeron annuus, isolate and characterize its bioactive components, and examine its molecular mechanism of action to improve its therapeutic applicability.

Zobrazit více v PubMed

Pan S. Y., Litscher G., Gao S. H., et al. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidence‐Based Complementary and Alternative Medicine . 2014;2014:20. doi: 10.1155/2014/525340.525340 PubMed DOI PMC

Rana A., Samtiya M., Dhewa T., Mishra V., Aluko R. E. Health benefits of polyphenols: a concise review. Journal of Food Biochemistry . 2022;46(10) doi: 10.1111/jfbc.14264.e14264 PubMed DOI

Elujoba A. A., Odeleye O. M., Ogunyemi C. M. Traditional medicine development for medical and dental primary health care delivery system in Africa. African Journal of Traditional, Complementary, and Alternative Medicines . 2004;2(1):46–61. doi: 10.4314/ajtcam.v2i1.31103. DOI

Ansari P., Akther S., Hannan J. M., Seidel V., Nujat N. J., Abdel-Wahab Y. H. Pharmacologically active phytomolecules isolated from traditional anti-diabetic plants and their therapeutic role for the management of diabetes mellitus. Molecules . 2022;27(13):p. 4278. doi: 10.3390/molecules27134278. PubMed DOI PMC

Mishra L. C., editor. Scientific Basis for Ayurvedic Therapies . CRC Press; 2022.

Hamid A. A., Aiyelaagbe O. O., Usman L. A., Ameen O. M., Lawal A. Antioxidants: its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry . 2010;4(8):142–151.

Giri B., Dey S., Das T., Sarkar M., Banerjee J., Dash S. K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomedicine & Pharmacotherapy . 2018;107:306–328. doi: 10.1016/j.biopha.2018.07.157. PubMed DOI

Baharith A. A., Alharbi O. N. Prevalence of risky behaviors among patients attending diabetes and endocrinology clinics in KFAFH 2022. Pharmacophore . 2023;14(1):100–110. doi: 10.51847/hK2KhX09na. DOI

Ong K. L., Stafford L. K., McLaughlin S. A., et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet . 2023;402(10397):203–234. doi: 10.1016/S0140-6736(23)01301-6. PubMed DOI PMC

Sendker J., Sheridan H. Toxicology of herbal products . Springer; 2017. History and current status of herbal medicines; pp. 11–27. DOI

Tran N., Pham B., Le L. Bioactive compounds in anti-diabetic plants: from herbal medicine to modern drug discovery. Biology . 2020;9(9):p. 252. doi: 10.3390/biology9090252. PubMed DOI PMC

Yaribeygi H., Ashrafizadeh M., Henney N. C., Sathyapalan T., Jamialahmadi T., Sahebkar A. Neuromodulatory effects of anti-diabetes medications: a mechanistic review. Pharmacological Research . 2020;152 doi: 10.1016/j.phrs.2019.104611.104611 PubMed DOI

Hassan M. A., Elmageed G. M. A., El-Qazaz I. G., El-Sayed D. S., El-Samad L. M., Abdou H. M. The synergistic influence of polyflavonoids from Citrus aurantifolia on diabetes treatment and their modulation of the PI3K/AKT/FOXO1 signaling pathways: molecular docking analyses and in vivo investigations. Pharmaceutics . 2023;15(9):p. 2306. doi: 10.3390/pharmaceutics15092306. PubMed DOI PMC

Dwivedi C., Daspaul S. Anti-diabetic herbal drugs and polyherbal formulation used for diabetes: a review. The Journal of Phytopharmacology . 2013;2(1-3):44–51. doi: 10.31254/phyto.2013.21308. DOI

Akpoveso O. O., Ubah E. E., Obasanmi G. Anti-oxidant phytochemicals as potential therapy for diabetic complications. Antioxidants . 2023;12(1):p. 123. doi: 10.3390/antiox12010123. PubMed DOI PMC

Matough F. A., Budin S. B., Hamid Z. A., Alwahaibi N., Mohamed J. The role of oxidative stress and anti-oxidants in diabetic complications. Sultan Qaboos University Medical Journal . 2012;12(1):5–18. doi: 10.12816/0003082. PubMed DOI PMC

Chandra P., Sharma R. K., Arora D. S. Anti-oxidant compounds from microbial sources: a review. International Food Research Journal . 2020;129 doi: 10.1016/j.foodres.2019.108849.108849 PubMed DOI

Sharma M., Sharma M., Bithel N., Sharma M. Ethnobotany, phytochemistry, pharmacology and nutritional potential of medicinal plants from asteraceae family. Journal of Mountain Research . 2022;17(2):67–83. doi: 10.51220/jmr.v17i2.7. DOI

Jo M. J., Lee J. R., Cho I. J., Kim Y. W., Kim S. C. Roots of Erigeron annuus Attenuate acute inflammation as mediated with the inhibition of NF-κB-associated nitric oxide and prostaglandin E2 production. Evidence‐Based Complementary and Alternative Medicine . 2013;2013:1–10. doi: 10.1155/2013/297427.297427 PubMed DOI PMC

Jeong C. H., Jeong H. R., Choi G. N., Kim D. O., Lee U., Heo H. J. Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf. Chinese Medicine . 2011;6(1) doi: 10.1186/1749-8546-6-25. PubMed DOI PMC

Kim O. S., Kim Y. S., Jang D. S., Yoo N. H., Kim J. S. Cytoprotection against hydrogen peroxide-induced cell death in cultured mouse mesangial cells by erigeroflavanone, a novel compound from the flowers of Erigeron annuus. Chemico-Biological Interactions . 2009;180(3):414–420. doi: 10.1016/j.cbi.2009.03.021. PubMed DOI

Kumari P., Ujala, Bhargava B. Phytochemicals from edible flowers: opening a new arena for healthy lifestyle. Journal of Functional Foods . 2021;78 doi: 10.1016/j.jff.2021.104375.104375 DOI

Kifle Z. D., Yesuf J. S., Atnafie S. A. Evaluation of in vitro and in vivo anti-diabetic, anti-hyperlipidemic and anti-oxidant activity of flower crude extract and solvent fractions of Hagenia abyssinica (Rosaceae) Journal of Experimental Pharmacology . 2020;12:151–167. doi: 10.2147/JEP.S249964. PubMed DOI PMC

Ghosh A., Chandra G. Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Natural Product Research . 2006;20(4):371–379. doi: 10.1080/14786410600661575. PubMed DOI

Kumar V., Sharma N., Sourirajan A., Khosla P. K., Dev K. Comparative evaluation of antimicrobial and antioxidant potential of ethanolic extract and its fractions of bark and leaves of Terminalia arjuna from North-Western Himalayas, India. Journal of Traditional and Complementary Medicine . 2018;8(1):100–106. doi: 10.1016/j.jtcme.2017.04.002. PubMed DOI PMC

Shaikh J. R., Patil M. Qualitative tests for preliminary phytochemical screening: an overview. Int. J. Chem. Stud. . 2020;8(2):603–608. doi: 10.22271/chemi.2020.v8.i2i.8834. DOI

Alam M. N., Bristi N. J., Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of anti-oxidant activity. Saudi Pharm J. . 2013;21(2):143–152. doi: 10.1016/j.jsps.2012.05.002. PubMed DOI PMC

Bondonno N. P., Parmenter B. H., Dalgaard F., et al. Flavonoid intakes inversely associate with COPD in smokers. The European Respiratory Journal . 2022;60(2):p. 2102604. doi: 10.1183/13993003.02604-2021. PubMed DOI PMC

Morsy N. Phytochemical analysis of biologically active constituents of medicinal plants. Main Group Chemistry . 2014;13(1):7–21. doi: 10.3233/MGC-130117. DOI

Goel N., Sirohi S. K., Dwivedi J. Estimation of total saponins and evaluate their effect on in vitro methanogenesis and rumen fermentation pattern in wheat straw based diet. Journal of Advanced Veterinary Research . 2012;2(2):120–126.

Ajanal M., Gundkalle M. B., Nayak S. U. Estimation of total alkaloid in Chitrakadivati by UV-spectrophotometer. Ancient Science of Life . 2012;31(4):198–201. doi: 10.4103/0257-7941.107361. PubMed DOI PMC

Truong D. H., Ta N. T., Pham T. V., et al. Effects of solvent—solvent fractionation on the total terpenoid content and in vitro anti-inflammatory activity of Serevenia buxifolia bark extract. Food Science & Nutrition . 2021;9(3):1720–1735. doi: 10.1002/fsn3.2149. PubMed DOI PMC

Hu Q. M., Yang Z., Zhang Y. Y., Bao G. H. Efficient development of antibacterial (−) -epigallocatechin gallate-PBCA nanoparticles using ethyl acetate as oil phase through interfacial polymerization. Food Bioscience . 2021;44 doi: 10.1016/j.fbio.2021.101432.101432 DOI

Benzie I. F., Strain J. J. The ferric reducing ability of plasma (FRAP) as a measure of “anti-oxidant power”: the FRAP assay. Analytical Biochemistry . 1996;239(1):70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Das A. K., Rajkumar V., Nanda P. K., Chauhan P., Pradhan S. R., Biswas S. Anti-oxidant efficacy of litchi (Litchi chinensis Sonn.) pericarp extract in sheep meat nuggets. Anti-Oxidants . 2016;5(2):p. 16. doi: 10.3390/antiox5020016. PubMed DOI PMC

Nair S. S., Kavrekar V., Mishra A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European journal of Experimental Biology . 2013;3(1):128–132.

Déruaz M., Frauenschuh A., Alessandri A. L., et al. Ticks produce highly selective chemokine binding proteins with anti-inflammatory activity. The Journal of Experimental Medicine . 2008;205(9):2019–2031. doi: 10.1084/jem.20072689. PubMed DOI PMC

Kumar M., Guleria S., Chawla P., et al. Anti-obesity efficacy of the selected high altitude Himalayan herbs: in vitro studies. Journal of Food Science and Technology . 2020;57(8):3081–3090. doi: 10.1007/s13197-020-04341-5. PubMed DOI PMC

Fotakis G., Timbrell J. A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters . 2006;160(2):171–177. doi: 10.1016/j.toxlet.2005.07.001. PubMed DOI

Tambunan A. P., Bahtiar A., Tjandrawinata R. R. Influence of extraction parameters on the yield, phytochemical, TLC-densitometric quantification of quercetin, and LC-MS profile, and how to Standardize different batches for long term from Ageratum conyoides L. leaves. Pharmacognosy Journal . 2017;9(6):767–774. doi: 10.5530/pj.2017.6.121. DOI

Tantowi F., Limanan D. Antioxidant test, total alkaloid content, antimitosis test and HPTLC test of chamomile flower extract (Matricaria chamomilla L.) Devotion: Journal of Research and Community Service . 2023;4(1):78–87. doi: 10.36418/dev.v4i1.351. DOI

Mostafa R. M., El Desouky T. A., El Sayed T. I., Abd El Aziz A. M., El-Sayed A. S. A. Evaluation of phytochemical screening and antifungal activity for some annual plant extracts in Egypt. Egyptian Academic Journal of Biological Sciences, G. Microbiology . 2021;13(1):73–87. doi: 10.21608/eajbsg.2021.179733. DOI

Zhang L., Xu Q., Li L., et al. Anti-oxidant, and enzyme-inhibitory activity of extracts from Erigeron annuus flower. Industrial Crops and Products . 2020;148 doi: 10.1016/j.indcrop.2020.112283.112283 DOI

Banerjee P., Satapathy M., Mukhopahayay A., Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing . 2014;1(1) doi: 10.1186/s40643-014-0003-y. DOI

Boeriu C. G., Fiţigău F. I., Gosselink R. J. A., Frissen A. E., Stoutjesdijk J., Peter F. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Industrial Crops and Products . 2014;62:481–490. doi: 10.1016/j.indcrop.2014.09.019. DOI

Szychta P., Zadrozny M., Lewinski A., Karbownik-Lewinska M. Increased oxidative damage to membrane lipids following surgery for breast cancer. Neuro Endocrinology Letters . 2014;35(7):602–607. PubMed

Ruiz-Ruiz J. C., Matus-Basto A. J., Acereto-Escoffié P., Segura-Campos M. R. Antioxidant and anti-inflammatory activities of phenolic compounds isolated from Melipona beecheii honey. Food and Agricultural Immunology . 2017;28(6):1424–1437. doi: 10.1080/09540105.2017.1347148. DOI

Abdel-Rahman S. S., Abdel-Kader A. A. S. Response of fennel (Foeniculum vulgare, Mill) plants to foliar application of moringa leaf extract and benzyladenine (BA) South African Journal of Botany . 2020;129:113–122. doi: 10.1016/j.sajb.2019.01.037. DOI

Rana R., Pundir S., Lal U. R., Chauhan R., Upadhyay S. K., Kumar D. Phytochemistry and biological activity of Erigeron annuus (L.) Pers. Naunyn-Schmiedeberg's Archives of Pharmacology . 2023;396(10):2331–2336. doi: 10.1007/s00210-023-02518-1. PubMed DOI

Lee H. J., Seo Y. Antioxidant properties of Erigeron annuus extract and its three phenolic constituents. Biotechnology and Bioprocess Engineering . 2006;11(1):13–18. doi: 10.1007/BF02931862. DOI

Gu S., Zhou Z., Zhang S., Cai Y. Advances in anti-diabetic cognitive dysfunction effect of Erigeron breviscapus (Vaniot) hand-mazz. Pharmaceuticals . 2023;16(1):p. 50. doi: 10.3390/ph16010050. PubMed DOI PMC

Habtemariam S. Antioxidant and rutin content analysis of leaves of the common buckwheat (Fagopyrum esculentum Moench) grown in the United Kingdom: a case study. Antioxidants . 2019;8(6):p. 160. doi: 10.3390/antiox8060160. PubMed DOI PMC

Bachheti R. K., Worku L. A., Gonfa Y. H., et al. Prevention and treatment of cardiovascular diseases with plant phytochemicals: a review. Evidence-Based Complementary And Alternative Medicine . 2022;2022:21. doi: 10.1155/2022/5741198.5741198 PubMed DOI PMC

Kim Y. H., Choi K. S. Effect of the Erigeron annuus in vitro anti-oxidant properties and extract on serum lipid in mice. The Korean Journal of Food And Nutrition . 2015;28(3):387–395. doi: 10.9799/ksfan.2015.28.3.387. DOI

Yoo N. H., Jang D. S., Kim J. S. Phytochemical constituents of the roots of Erigeron annuus. Applied Biological Chemistry . 2008;51(4):305–308. doi: 10.3839/jksabc.2008.053. DOI

Nazaruk J., Karna E., Wieczorek P., Sacha P., Tryniszewska E. In vitro antiproliferative and antifungal activity of essential oils from Erigeron acris L. and Erigeron annuus (L.) Pers. Zeitschrift für Naturforschung C . 2010;65(11-12):642–646. doi: 10.1515/znc-2010-11-1202. PubMed DOI

Imran M., Iqbal A., Badshah S. L., et al. chemical and nutritional profiling of the seaweed Dictyota dichotoma and evaluation of its antioxidant, antimicrobial and hypoglycemic potentials. Drugs . 2023;21(5):p. 273. doi: 10.3390/md21050273. PubMed DOI PMC

Ali M., Hassan M., Ansari S. A., Alkahtani H. M., Al-Rasheed L. S., Ansari S. A. Quercetin and kaempferol as multi-targeting antidiabetic agents against mouse model of chemically induced type 2 diabetes. Pharmaceuticals . 2024;17(6):p. 757. doi: 10.3390/ph17060757. PubMed DOI PMC

Sangeetha R. Luteolin in the management of type 2 diabetes mellitus. Current Research in Nutrition and Food Science Journal . 2019;7(2):393–398. doi: 10.12944/CRNFSJ.7.2.09. DOI

Khoo H. E., Azlan A., Abd Kadir N. A. Fatty acid profile, phytochemicals, and other substances in Canarium odontophyllum fat extracted using supercritical carbon dioxide. Frontiers in Chemistry . 2019;7(7):p. 5. doi: 10.3389/fchem.2019.00005. PubMed DOI PMC

Mantas M. J., Nunn P. B., Codd G. A., Barker D. Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2, 3-diaminopropanoic acid (BMAA) Phytochemistry . 2022;200 doi: 10.1016/j.phytochem.2022.113198.113198 PubMed DOI

Khalid H., Butt M. H., ur Rehman Aziz A., et al. Phytobioinformatics screening of ayurvedic plants for potential α-glucosidase inhibitors in diabetes management. Current Plant Biology . 2024;40 doi: 10.1016/j.cpb.2024.100404.100404 DOI

Zeng J., Huang T., Xue M., et al. Current knowledge and development of hederagenin as a promising medicinal agent: a comprehensive review. RSC Advances . 2018;8(43):24188–24202. doi: 10.1039/c8ra03666g. PubMed DOI PMC

Idris O. A., Wintola O. A., Afolayan A. J. Comparison of the proximate composition, vitamins (ascorbic acid, α-tocopherol and retinol), anti-nutrients (phytate and oxalate) and the GC-MS analysis of the essential oil of the root and leaf of Rumex crispus L. Plants . 2019;8(3):p. 51. doi: 10.3390/plants8030051. PubMed DOI PMC

Drewes S. E., Khan F., Van Vuuren S. F., Viljoen A. M. Simple 1, 4-benzoquinones with antibacterial activity from stems and leaves of Gunnera perpensa. Phytochemistry . 2005;66(15):1812–1816. doi: 10.1016/j.phytochem.2005.05.024. PubMed DOI

López-Fernández O., Domínguez R., Pateiro M., Munekata P. E. S., Rocchetti G., Lorenzo J. M. Determination of polyphenols using liquid chromatography–tandem mass spectrometry technique (LC–MS/MS): a review. Antioxidants . 2020;9(6):p. 479. doi: 10.3390/antiox9060479. PubMed DOI PMC

Kaur J., Dhiman V., Bhadada S., Katare O. P., Ghoshal G. LC/MS guided identification of metabolites of different extracts of Cissus quadrangularis. Food Chemistry Advances . 2022;1 doi: 10.1016/j.focha.2022.100084.100084 DOI

Mohammadhosseini M., Venditti A., Sarker S. D., Nahar L., Akbarzadeh A. The genus Ferula: ethnobotany, phytochemistry and bioactivities–a review. Industrial Crops and Products . 2019;129:350–394. doi: 10.1016/j.indcrop.2018.12.012. DOI

Thakur M., Verma R., Kumar D., et al. Hypoglycemic and antioxidant activities of Jasminum officinale L. with identification and characterization of phytocompounds. Heliyon . 2024;10(21) doi: 10.1016/j.heliyon.2024.e39165.e39165 PubMed DOI PMC

Mehesare S. S., Waghmare S. P., Thorat M. G., Hajare S. W., I Hatzade R., Ingawale M. V. Quantification of gallic acid, rutin and quercetin in hydro-ethanolic extract of Holarrhena antidysenterica using high performance thin layer chromatography (HPTLC) Acta Scientific Veterinary Sciences . 2022;4(4):43–49. doi: 10.31080/ASVS.2022.04.0350. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...