Phytoantioxidant Functionalized Nanoparticles: A Green Approach to Combat Nanoparticle-Induced Oxidative Stress
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34737844
PubMed Central
PMC8563134
DOI
10.1155/2021/3155962
Knihovny.cz E-zdroje
- MeSH
- antioxidancia chemie farmakologie MeSH
- fytonutrienty chemie farmakologie MeSH
- kovové nanočástice aplikace a dávkování chemie toxicita MeSH
- lidé MeSH
- oxidační stres účinky léků MeSH
- rostlinné extrakty farmakologie MeSH
- scavengery volných radikálů farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- fytonutrienty MeSH
- rostlinné extrakty MeSH
- scavengery volných radikálů MeSH
Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.
Department of Allied Sciences University of Patanjali Haridwar 249405 India
Department of Physics Career Point University Hamirpur 177001 India
Patanjali Herbal Research Department Patanjali Research Institute Haridwar 249405 India
Zobrazit více v PubMed
Gerber C., Lang H. P. How the doors to the nanoworld were opened. Nature Nanotechnology . 2006;1(1):3–5. doi: 10.1038/nnano.2006.70. PubMed DOI
Sharma V., Anderson D., Dhawan A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2) Apoptosis . 2012;17(8):852–870. doi: 10.1007/s10495-012-0705-6. PubMed DOI
Jeevanandam J., Barhoum A., Chan Y. S., Dufresne A., Danquah M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology . 2018;9(1):1050–1074. doi: 10.3762/bjnano.9.98. PubMed DOI PMC
Tan W. B., Jiang S., Zhang Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials . 2007;28(8):1565–1571. doi: 10.1016/j.biomaterials.2006.11.018. PubMed DOI
Yoon K. Y., Hoon Byeon J., Park J. H., Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Science of the Total Environment . 2007;373(2-3):572–575. doi: 10.1016/j.scitotenv.2006.11.007. PubMed DOI
Kreuter J., Gelperina S. Use of nanoparticles for cerebral cancer. Tumori Journal . 2008;94(2):271–277. doi: 10.1177/030089160809400220. PubMed DOI
Salam H. A., Rajiv P., Kamaraj M., Jagadeeswaran P., Gunalan S., Sivaraj R. Plants: green route for nanoparticle synthesis. International Journal of Biological Sciences . 2012;1:85–90.
Kumar A., Singh S., Kumar D. Evaluation of antimicrobial potential of cadmium sulphide nanoparticles against bacterial pathogens. International Journal of Pharmaceutical Sciences and Research . 2014;24:202–207.
Thakur B. K., Kumar A., Kumar D. Green synthesis of titanium dioxide nanoparticles using _Azadirachta indica_ leaf extract and evaluation of their antibacterial activity. South African Journal of Botany . 2019;124:223–227. doi: 10.1016/j.sajb.2019.05.024. DOI
Thakur N., Anu K. K., Kumar A., Kumar A. Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method. Dalton Transactions . 2021;50(18):6188–6203. doi: 10.1039/D0DT04405A. PubMed DOI
Chang H., Jwo C. S., Lo C. H., Tsung T. T., Kao M. J., Lin H. M. Rheology of CuO nanoparticle suspension prepared by ASNSS. Reviews on Advanced Materials Science . 2005;10:128–132.
Zhou K., Wang R., Xu B., Li Y. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology . 2006;17(15):3939–3943. doi: 10.1088/0957-4484/17/15/055. DOI
Aruoja V., Dubourguier H. C., Kasemets K., Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae _Pseudokirchneriella subcapitata_. Science of the Total Environment . 2009;407(4):1461–1468. doi: 10.1016/j.scitotenv.2008.10.053. PubMed DOI
Huber D. L. Synthesis, properties, and applications of iron nanoparticles. Small . 2005;1(5):482–501. doi: 10.1002/smll.200500006. PubMed DOI
Gerloff K., Albrecht C., Boots A. W., Forster I., Schins R. P. F. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology . 2009;3(4):355–364. doi: 10.3109/17435390903276933. DOI
Jin T., Sun D., Su J. Y., Zhang H., Sue H. J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. Journal of Food Science . 2009;74(1):46–52. PubMed
Schilling K., Bradford B., Castelli D., et al. Human safety review of nano titanium dioxide and zinc oxide. Photochemical and Photobiological Sciences . 2010;9(4):495–509. doi: 10.1039/b9pp00180h. PubMed DOI
Lok C. N., Ho C. M., Chen R., et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research . 2006;5(4):916–924. doi: 10.1021/pr0504079. PubMed DOI
Gogoi S. K., Gopinath P., Paul A., et al. Green Fluorescent Protein-ExpressingEscherichiacolias a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir . 2006;22(22):9322–9328. doi: 10.1021/la060661v. PubMed DOI
Kim J. S., Kuk E., Yu K. N., et al. Antimicrobial effects of silver nanoparticles. Nanomedicine . 2007;3(1):95–101. doi: 10.1016/j.nano.2006.12.001. PubMed DOI
Samuel U., Guggenbichler J. P. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. International Journal of Antimicrobial Agents . 2004;23:75–78. doi: 10.1016/j.ijantimicag.2003.12.004. PubMed DOI
Chen J., Han C. M., Lin X. W., Tang Z. J., Su S. J. Effect of silver nanoparticle dressing on second degree burn wound. Zhonghua Wai Ke Za Zhi . 2006;44:50–52. PubMed
Dunn K., Edwards-Jones V. The role of Acticoat™ with nanocrystalline silver in the management of burns. Burns . 2004;30:S1–S9. doi: 10.1016/S0305-4179(04)90000-9. PubMed DOI
Pasupuleti V. R., Prasad T. N. V., Shiekh R. A., et al. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. International Journal of Nanomedicine . 2013;8:3355–3364. PubMed PMC
Montes-Hernandez G., Pironon J., Villieras F. Synthesis of a red iron oxide/montmorillonite pigment in a CO2-rich brine solution. Journal of Colloid and Interface Science . 2006;303(2):472–476. doi: 10.1016/j.jcis.2006.07.064. PubMed DOI
Hoffmann M. R., Martin S. T., Choi W. Y., Bahnemann D. W. Environmental applications of semiconductor photocatalysis. Chemical Reviews . 1995;95(1):69–96. doi: 10.1021/cr00033a004. DOI
Sinha A., Khare S. K. Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresource Technology . 2011;102(5):4281–4284. doi: 10.1016/j.biortech.2010.12.040. PubMed DOI
Gélis C., Girard S., Mavon A., Delverdier M., Paillous N., Vicendo P. Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on twoex vivoskin models. Photodermatology Photoimmunology and Photomedicine . 2003;19(5):242–253. doi: 10.1034/j.1600-0781.2003.00045.x. PubMed DOI
Trouiller B., Reliene R., Westbrook A., Solaimani P., Schiestl R. H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Research . 2009;69(22):8784–8789. doi: 10.1158/0008-5472.CAN-09-2496. PubMed DOI PMC
Janson O., Gururaj S., Pujari-Palmer S., et al. Titanium surface modification to enhance antibacterial and bioactive properties while retaining biocompatibility. Materials Science and Engineering, C . 2019;96:272–279. doi: 10.1016/j.msec.2018.11.021. PubMed DOI
Mora C. L. C., Mueller A., Janssen A. P. G. Antibacterial medical product and method for producing same. 2018, US Patent 10,143,196.
Passagne I., Morille M., Rousset M., Pujalte I., L’Azou B. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells. Toxicology . 2012;299(2-3):112–124. doi: 10.1016/j.tox.2012.05.010. PubMed DOI
Yaqoob A. A., Ahmad H., Parveen T., et al. Recent advances in metal decorated nanomaterials and their various biological applications: a review. Frontiers in Chemistry . 2020;8:1–23. doi: 10.3389/fchem.2020.00341. PubMed DOI PMC
Yaqoob A. A., Parveen T., Umar K., Ibrahim M. N. M. Role of nanomaterials in the treatment of wastewater: a review. Water . 2020;12:1–30.
AshaRani P. V., Mun G. L. K., Hande M. P., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano . 2009;24:279–290. PubMed
Nowack B., Bucheli T. D. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution . 2007;150(1):5–22. doi: 10.1016/j.envpol.2007.06.006. PubMed DOI
Dhawan A., Sharma V. Toxicity assessment of nanomaterials: methods and challenges. Analytical and Bioanalytical Chemistry . 2010;398(2):589–605. doi: 10.1007/s00216-010-3996-x. PubMed DOI
Jamuna B. A., Ravishankar R. V. Environmental risk, human health and toxic effects of nanoparticles. In: Kharisov B. I., Kharissova O. V., Rasika Dias H. V., editors. Nanomaterials for Environmental Protection . New Jersey: John Wiley & Sons; 2014. pp. 523–535.
Gojova A., Guo B., Kota R. S., Rutledge J. C., Kennedy I. M., Barakat A. I. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environmental Health Perspectives . 2007;115(3):403–409. doi: 10.1289/ehp.8497. PubMed DOI PMC
Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. Journal of Applied Toxicology . 2009;29(1):69–78. doi: 10.1002/jat.1385. PubMed DOI
Osman I. F., Baumgartner A., Cemeli E., Fletcher J. N., Anderson D. Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine . 2010;5(8):1193–1203. doi: 10.2217/nnm.10.52. PubMed DOI
Hackenberg S. A., Scherzed A., Kessler M., et al. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicology Letters . 2011;201(1):27–33. doi: 10.1016/j.toxlet.2010.12.001. PubMed DOI
Sharma V., Singh P., Pandey A. K., Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research . 2012;745(1-2):84–91. doi: 10.1016/j.mrgentox.2011.12.009. PubMed DOI
Sun Q., Tan D., Ze Y., et al. Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. Journal of Hazardous Materials . 2012;235:47–53. PubMed
MacNee W., Donaldson K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. European Respiratory Journal . 2003;21(40):47–51. PubMed
Jia H. Y., Liu Y., Zhang X. J., et al. Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum. Journal of the American Chemical Society . 2009;131(1):40–41. doi: 10.1021/ja808033w. PubMed DOI
Durocher S., Rezaee A., Hamm C., Rangan C., Mittler S., Mutus B. Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols. Journal of the American Chemical Society . 2009;131(7):2475–2477. doi: 10.1021/ja808548x. PubMed DOI
Kirchner C., Liedl T., Kudera S., et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Letters . 2005;5(2):331–338. doi: 10.1021/nl047996m. PubMed DOI
Moriwaki H., Osborne M. R., Phillips D. H. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction. Toxicology in Vitro . 2008;22(1):36–44. doi: 10.1016/j.tiv.2007.07.011. PubMed DOI
Arora S., Jain J., Rajwade J. M., Paknikar K. M. Cellular responses induced by silver nanoparticles: _In vitro_ studies. Toxicology Letters . 2008;179(2):93–100. doi: 10.1016/j.toxlet.2008.04.009. PubMed DOI
Ahamed M., Siddiqui M. A., Akhtar M. J., Ahmad I., Pant A. B., Alhadlaq H. A. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochemical and Biophysical Research Communications . 2010;396(2):578–583. doi: 10.1016/j.bbrc.2010.04.156. PubMed DOI
He F., Zuo L. Redox roles of reactive oxygen species in cardiovascular diseases. International Journal of Molecular Sciences . 2015;16(11):27770–27780. doi: 10.3390/ijms161126059. PubMed DOI PMC
Dias V., Junn E., Mouradian M. M. The role of oxidative stress in Parkinson’s disease. Journal of Parkinson's Disease . 2013;3(4):461–491. doi: 10.3233/JPD-130230. PubMed DOI PMC
Zuo L., Zhou T., Pannell B. K., Ziegler A. C., Best T. M. Biological and physiological role of reactive oxygen species-the good, the bad and the ugly. Acta Physiologica . 2015;214(3):329–348. doi: 10.1111/apha.12515. PubMed DOI
Tan B. L. Water extract of brewers’ rice induces apoptosis in human colorectal cancer cells via activation of caspase-3 and caspase-8 and downregulates the Wnt/β-catenin downstream signaling pathway in brewers’ rice-treated rats with azoxymethane-induced colon carcinogenesis. BMC Complementary Medicine and Therapies . 2015;15:1–14. PubMed PMC
Liu Z., Zhou T., Ziegler A. C., Dimitrion P., Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Medicine and Cellular Longevity . 2017;2017:11. doi: 10.1155/2017/2525967.2525967 PubMed DOI PMC
Rodriguez-Sanchez L., Blanco M. C., Lopez-Quintela M. A. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B . 2000;104(41):9683–9688. doi: 10.1021/jp001761r. DOI
Mafuné F., Kohno J. Y., Takeda Y., Kondow T., Sawabe H. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. The Journal of Physical Chemistry B . 2000;104(35):8333–8337. doi: 10.1021/jp001803b. DOI
Salavati-Niasari M., Davar F., Mazaheri M., Shaterian M. Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]-oleylamine complex by thermal decomposition. Journal of Magnetism and Magnetic Materials . 2008;320(3-4):575–578. doi: 10.1016/j.jmmm.2007.07.020. DOI
Okitsu K., Ashokkumar M., Grieser F. Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. The Journal of Physical Chemistry B . 2005;109(44):20673–20675. doi: 10.1021/jp0549374. PubMed DOI
Gutiérrez-Wing C., Esparza R., Vargas-Hernández C., Fernández García M. E., José-Yacamán M. Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nanoscale . 2012;4(7):2281–2287. doi: 10.1039/c2nr12053d. PubMed DOI PMC
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry . 2011;13(10):2638–2650. doi: 10.1039/c1gc15386b. DOI
Arockiya Aarthi Rajathi F., Arumugam R., Saravanan S., Anantharaman P. Phytofabrication of gold nanoparticles assisted by leaves of _Suaeda monoica_ and its free radical scavenging property. Journal of Photochemistry and Photobiology B: Biology . 2014;135:75–80. doi: 10.1016/j.jphotobiol.2014.03.016. PubMed DOI
Zahir A. A., Chauhan I. S., Bagavan A., et al. Synthesis of nanoparticles using Euphorbia prostrata extract reveals a shift from apoptosis to G0/G1 arrest in Leishmania donovani. Journal of Nanomedicine and Nanotechnology . 2014;5:1–12. PubMed
Kavitha K. S., Baker S., Rakshith D., et al. Plants as green source towards synthesis of nanoparticles. International Research Journal of Biological Sciences . 2013;2:66–76.
Akhtar M. S., Panwar J., Yun Y. S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry and Engineering . 2013;1(6):591–602. doi: 10.1021/sc300118u. DOI
Sathishkumar G., Jha P. K., Vignesh V., et al. Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. Journal of Molecular Liquids . 2016;215:229–236.
Singh J., Dutta T., Kim K. H., Rawat M., Samddar P., Kumar P. Green synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology . 2018;16:1–24. PubMed PMC
Kumar Bachheti R., Fikadu A., Bachheti A., Husen A. Biogenic fabrication of nanomaterials from flower-based chemical compounds, characterization and their various applications: a review. Saudi Journal of Biological Sciences . 2020;27(10):2551–2562. doi: 10.1016/j.sjbs.2020.05.012. PubMed DOI PMC
Kumar H., Bhardwaj K., Dhanjal D. S., et al. Fruit extract mediated green synthesis of metallic nanoparticles: a new avenue in pomology applications. International Journal of Molecular Sciences . 2020;21(22) doi: 10.3390/ijms21228458. PubMed DOI PMC
Narayanan K. B., Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science . 2011;169(2):59–79. doi: 10.1016/j.cis.2011.08.004. PubMed DOI
Bhardwaj K., Dhanjal D. S., Sharma A., et al. Conifer-derived metallic nanoparticles: green synthesis and biological applications. International Journal of Molecular Sciences . 2020;21(23):1–22. PubMed PMC
Chandrasekaran A., Idelchik M. D. P. S., Melendez J. A. Redox control of senescence and age-related disease. Redox Biology . 2017;11:91–102. doi: 10.1016/j.redox.2016.11.005. PubMed DOI PMC
Liu Y., Imlay J. A. Cell death from antibiotics without the involvement of reactive oxygen species. Science . 2013;339(6124):1210–1213. doi: 10.1126/science.1232751. PubMed DOI PMC
Sena L. A., Chandel N. S. Physiological roles of mitochondrial reactive oxygen species. Molecular Cell . 2012;48(2):158–167. doi: 10.1016/j.molcel.2012.09.025. PubMed DOI PMC
Shadel G. S., Horvath T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell . 2015;163(3):560–569. doi: 10.1016/j.cell.2015.10.001. PubMed DOI PMC
Smallwood M. J., Nissim A., Knight A. R., Whiteman M., Haigh R., Winyard P. G. Oxidative stress in autoimmune rheumatic diseases. Free Radical Biology and Medicine . 2018;125:3–14. doi: 10.1016/j.freeradbiomed.2018.05.086. PubMed DOI
Karagülle M., Kardeş S., Karagülle O., et al. Effect of spa therapy with saline balneotherapy on oxidant/antioxidant status in patients with rheumatoid arthritis: a single-blind randomized controlled trial. International Journal of Biometeorology . 2017;61(1):169–180. doi: 10.1007/s00484-016-1201-4. PubMed DOI
Sato H., Shibata H., Shimizu T., et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience . 2013;248:345–358. doi: 10.1016/j.neuroscience.2013.06.010. PubMed DOI
Navarro-Yepes J., Zavala-Flores L., Anandhan A., et al. Antioxidant gene therapy against neuronal cell death. Pharmacology and Therapeutics . 2014;142(2):206–230. doi: 10.1016/j.pharmthera.2013.12.007. PubMed DOI PMC
Keren I., Wu Y., Inocencio J., Mulcahy L. R., Lewis K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science . 2013;339(6124):1213–1216. doi: 10.1126/science.1232688. PubMed DOI
Boonstra J., Post J. A. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene . 2004;337:1–13. doi: 10.1016/j.gene.2004.04.032. PubMed DOI
di Meo S., Reed T. T., Venditti P., Victor V. M. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity . 2016;2016:44. doi: 10.1155/2016/1245049.1245049 PubMed DOI PMC
Rajendran P., Nandakumar N., Rengarajan T., et al. Antioxidants and human diseases. Clinica Chimica Acta . 2014;436:332–347. doi: 10.1016/j.cca.2014.06.004. PubMed DOI
Hansen J. M., Go Y. M., Jones D. P. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annual Review of Pharmacology and Toxicology . 2006;46(1):215–234. doi: 10.1146/annurev.pharmtox.46.120604.141122. PubMed DOI
Glasauer A., Chandel N. S. Targeting antioxidants for cancer therapy. Biochemical Pharmacology . 2014;92(1):90–101. doi: 10.1016/j.bcp.2014.07.017. PubMed DOI
Lobo V., Patil A., Phatak A., Chandra N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacognosy Reviews . 2010;4(8):118–126. doi: 10.4103/0973-7847.70902. PubMed DOI PMC
Liguori I., Russo G., Curcio F., et al. Oxidative stress, aging, and diseases. Clinical Interventions in Aging . 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Wu J. Q., Kosten T. R., Zhang X. Y. Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry . 2013;46:200–206. doi: 10.1016/j.pnpbp.2013.02.015. PubMed DOI
Rahman K. Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging . 2007;2(2):219–236. PubMed PMC
Taniyama Y., Griendling K. K. Reactive oxygen species in the vasculature. Hypertension . 2003;42(6):1075–1081. doi: 10.1161/01.HYP.0000100443.09293.4F. PubMed DOI
Pizzino G., Irrera N., Cucinotta M., et al. Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity . 2017;2017:13. doi: 10.1155/2017/8416763.8416763 PubMed DOI PMC
Abete P., Napoli C., Santoro G., et al. Age-related decrease in cardiac tolerance to oxidative stress. Journal of Molecular and Cellular Cardiology . 1999;31(1):227–236. doi: 10.1006/jmcc.1998.0862. PubMed DOI
Beckman K. B., Ames B. N. The free radical theory of aging matures. Physiological Reviews . 1998;78(2):547–581. doi: 10.1152/physrev.1998.78.2.547. PubMed DOI
Donato A. J., Eskurza I., Silver A. E., et al. Direct evidence of endothelial oxidative stress with aging in Humans. Circulation Research . 2007;100(11):1659–1666. doi: 10.1161/01.RES.0000269183.13937.e8. PubMed DOI
Bahorun T., Soobrattee M. A., Luximon-Ramma V., Aruoma O. I. Free radicals and antioxidants in cardiovascular health and disease. Internet Journal of Medical Update . 2007;1:1–17.
Droge W. Free radicals in the physiological control of cell function. Physiological Reviews . 2002;82(1):47–95. doi: 10.1152/physrev.00018.2001. PubMed DOI
Chatterjee M., Saluja R., Kanneganti S., Chinta S., Dikshit M. Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cellular and Molecular Biology . 2007;53:84–93. PubMed
Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care . 2008;31(Supplement 2):S181–S184. doi: 10.2337/dc08-s245. PubMed DOI
de Cristofaro R., Rocca B., Vitacolonna E., et al. Lipid and protein oxidation contribute to a prothrombotic state in patients with type 2 diabetes mellitus. Journal of Thrombosis and Haemostasis . 2003;1(2):250–256. doi: 10.1046/j.1538-7836.2003.00072.x. PubMed DOI
Sag C. M., Santos C. X., Shah A. M. Redox regulation of cardiac hypertrophy. Journal of Molecular and Cellular Cardiology . 2014;73:103–111. doi: 10.1016/j.yjmcc.2014.02.002. PubMed DOI
Zhou T., Prather E. R., Garrison D. E., Zuo L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. International Journal of Molecular Sciences . 2018;19:1–20. PubMed PMC
Van der Pol A., Van Gilst W. H., Voors A. A., Van der Meer P. Treating oxidative stress in heart failure: past, present and future. European Journal of Heart Failure . 2019;21:425–435. PubMed PMC
Caramori G., Papi A. Oxidants and asthma. Thorax . 2004;59(2):170–173. doi: 10.1136/thorax.2002.002477. PubMed DOI PMC
Hoshino Y., Mishima M. Redox-based therapeutics for lung diseases. Antioxidants and Redox Signaling . 2008;10(4):701–704. doi: 10.1089/ars.2007.1961. PubMed DOI
Thimmulappa R. K., Chattopadhyay I., Rajasekaran S. Oxidative Stress in Lung Diseases . Singapore: Springer; 2020. Oxidative stress mechanisms in the pathogenesis of environmental lung diseases; pp. 103–137.
Choudhury G., MacNee W. Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. Journal of Chronic Obstructive Pulmonary Disease . 2017;14(1):122–135. doi: 10.1080/15412555.2016.1214948. PubMed DOI
Galle J. Oxidative stress in chronic renal failure. Nephrology, Dialysis, Transplantation . 2001;16(11):2135–2137. doi: 10.1093/ndt/16.11.2135. PubMed DOI
Balasubramanian S. Progression of chronic kidney disease: mechanisms and interventions in retardation. Apollo Medicine . 2013;10(1):19–28. doi: 10.1016/j.apme.2013.01.009. DOI
Putri A. Y., Thaha M. Role of oxidative stress on chronic kidney disease progression. Acta Medica Indonesiana . 2014;46(3):244–252. PubMed
Halliwell B. Role of free radicals in the neurodegenerative Diseases. Drugs and Aging . 2001;18(9):685–716. doi: 10.2165/00002512-200118090-00004. PubMed DOI
Singh R. P., Sharad S., Kapur S. Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. Journal, Indian Academy of Clinical Medicine . 2004;5:218–225.
Rao A. V., Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutritional Neuroscience . 2002;5(5):291–309. doi: 10.1080/1028415021000033767. PubMed DOI
Lee S. C., Chan J. C. Evidence for DNA damage as a biological link between diabetes and cancer. Chinese Medical Journal . 2015;128(11):1543–1548. doi: 10.4103/0366-6999.157693. PubMed DOI PMC
Qian Q., Chen W., Cao Y., et al. Targeting reactive oxygen species in cancer via Chinese herbal medicine. Oxidative Medicine and Cellular Longevity . 2019;2019:23. doi: 10.1155/2019/9240426.9240426 PubMed DOI PMC
Redza-Dutordoir M., Averill-Bates D. A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta . 2016;1863(12):2977–2992. doi: 10.1016/j.bbamcr.2016.09.012. PubMed DOI
Mehta M., Dhanjal D. S., Paudel K. R., et al. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology . 2020;28(4):795–817. doi: 10.1007/s10787-020-00698-3. PubMed DOI
Ramachandran A., Jaeschke H. Oxidative stress and acute hepatic injury. Current Opinion in Toxicology . 2018;7:17–21. doi: 10.1016/j.cotox.2017.10.011. PubMed DOI PMC
Quiñonez-Flores C. M., González-Chávez S. A., del Río Nájera D., Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. BioMed Research International . 2016;2016:14. doi: 10.1155/2016/6097417.6097417 PubMed DOI PMC
Attia A. M. M., Ibrahim F. A. A., Abd el-Latif N. A., et al. Therapeutic antioxidant and anti-inflammatory effects of laser acupuncture on patients with rheumatoid arthritis. Lasers in Surgery and Medicine . 2016;48(5):490–497. doi: 10.1002/lsm.22487. PubMed DOI
Jaswal S., Mehta H. C., Sood A. K., Kaur J. Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clinica Chimica Acta . 2003;338(1-2):123–129. doi: 10.1016/j.cccn.2003.08.011. PubMed DOI
Naqvi S., Naqvi, Samim M., et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine . 2010;5(1):983–989. doi: 10.2147/IJN.S13244. PubMed DOI PMC
Apopa P. L., Qian Y., Shao R., et al. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Particle and Fibre Toxicology . 2009;6(1) doi: 10.1186/1743-8977-6-1. PubMed DOI PMC
Fahmy B., Cormier S. A. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology in Vitro . 2009;23(7):1365–1371. doi: 10.1016/j.tiv.2009.08.005. PubMed DOI PMC
Saud Alarifi D. A., Alkahtani S., Verma A., Ahamed M., Ahmed M., Alhadlaq H. A. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. International Journal of Nanomedicine . 2013;8:983–993. PubMed PMC
Li J. J., Hartono D., Ong C., Bay B., Yung L. L. Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials . 2010;31(23):5996–6003. doi: 10.1016/j.biomaterials.2010.04.014. PubMed DOI
Chairuangkitti P., Lawanprasert S., Roytrakul S., et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS- independent pathways. Toxicology in Vitro . 2013;27(1):330–338. doi: 10.1016/j.tiv.2012.08.021. PubMed DOI
Johnston H. J., Hutchison G., Christensen F., Peters M., Hankin S., Stone S. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology . 2010;4:328–346. PubMed
Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International . 2013;2013:15. doi: 10.1155/2013/942916.942916 PubMed DOI PMC
Huang T., Holden J. A., Heath D. E., O'Brien-Simpson N. M., O'Connor A. J. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale . 2019;11(31):14937–14951. doi: 10.1039/C9NR04424H. PubMed DOI
Cho S., Lee B., Park W., Huang X., Kim D. H. Photoperiodic flower mimicking metallic nanoparticles for image-guided medicine applications. ACS Applied Materials and Interfaces . 2018;10(33):27570–27577. doi: 10.1021/acsami.8b09596. PubMed DOI PMC
Menu P., Mayor A., Zhou R., et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death and Disease . 2012;3:1–6. PubMed PMC
Akter M., Sikder M. T., Rahman M. M., et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research . 2018;9:1–16. doi: 10.1016/j.jare.2017.10.008. PubMed DOI PMC
Lee A. R., Lee S. J., Lee M., et al. Editor’s highlight: a genome-wide screening of target genes against silver nanoparticles in fission yeast. Toxicological Sciences . 2018;161(1):171–185. doi: 10.1093/toxsci/kfx208. PubMed DOI PMC
Gaetke L. M., Kuang C. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology . 2003;189(1-2):147–163. doi: 10.1016/S0300-483X(03)00159-8. PubMed DOI
AshaRani P., Hande M. P., Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biology . 2009;10(1):1–14. doi: 10.1186/1471-2121-10-65. PubMed DOI PMC
Zhang R., Piao M. J., Kim K. C., et al. Endoplasmic reticulum stress signaling is involved in silver nanoparticles- induced apoptosis. The International Journal of Biochemistry and Cell Biology . 2012;44(1):224–232. doi: 10.1016/j.biocel.2011.10.019. PubMed DOI
Ahamed M., Karns M., Goodson M., et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology . 2008;233(3):404–410. doi: 10.1016/j.taap.2008.09.015. PubMed DOI
Foldbjerg R., Olesen P., Hougaard M., Dang D. A., Hoffmann H. J., Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology Letters . 2009;190(2):156–162. doi: 10.1016/j.toxlet.2009.07.009. PubMed DOI
Kim S., Choi J. E., Choi J., et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro . 2009;23(6):1076–1084. doi: 10.1016/j.tiv.2009.06.001. PubMed DOI
Hudecová A., Kusznierewicz B., Rundén-Pran E., et al. Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis . 2012;27(6):759–769. doi: 10.1093/mutage/ges046. PubMed DOI
Holmstrom K. M., Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature Reviews Molecular Cell Biology . 2014;15(6):411–421. doi: 10.1038/nrm3801. PubMed DOI
Chen X., Schluesener H. J. Nanosilver: a nanoproduct in medical application. Toxicology and Applied Pharmacology . 2008;176:1–12. PubMed
Pellieux C., Dewilde A., Pierlot C., Aubry J. M. [18] Bactericidal and virucidal activities of singlet oxygen generated by thermolysis of naphthalene endoperoxides. Methods in Enzymology . 2000;319:197–207. doi: 10.1016/S0076-6879(00)19020-2. PubMed DOI
Kim S. H., Lee H. S., Ryu D. S., Choi S. J., Lee D. S. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology and Biotechnology . 2011;39:77–85.
Wu D., Fan W., Kishen A., Gutmann J. L., Fan B. Evaluation of the Antibacterial Efficacy of Silver Nanoparticles against _Enterococcus faecalis_ Biofilm. Journal of Endodontics . 2014;40(2):285–290. doi: 10.1016/j.joen.2013.08.022. PubMed DOI
Kim J. Y., Sungeun K., Kim J., Jongchan L., Yoon J. The biocidal activity of nano-sized silver particles comparing with silver ion. Journal of Korean Society of Environmental Engineers . 2005;27:771–776.
Fenoglio I., Corazzari I., Francia C., Bodoardo S., Fubini B. The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress. Free Radical Research . 2008;42(8):437–745. doi: 10.1080/10715760802350904. PubMed DOI
Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern. Journal of Antimicrobial Chemotherapy . 2007;59(4):587–590. doi: 10.1093/jac/dkm006. PubMed DOI
Gopinath P., Gogoi S. K., Chattopadhyay A., Ghosh S. S. Implications of silver nanoparticle induced cell apoptosis forin vitrogene therapy. Nanotechnolgy . 2008;19(7, article 075104) doi: 10.1088/0957-4484/19/7/075104. PubMed DOI
Urbańska K., Pająk B., Orzechowski A., et al. The effect of silver nanoparticles (AgNPs) on proliferation and apoptosis of in ovo cultured glioblastoma multiforme (GBM) cells. Nanoscale Research Letters . 2015;10:1–11. PubMed PMC
Dakal T. C., Kumar A., Majumdar R. S., Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology . 2016;7:1–17. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Baruwati B., Varma R. S. High value products from waste: grape pomace Extract-A three-in-one package for the synthesis of metal nanoparticles. ChemSusChem . 2009;2(11):1041–1044. doi: 10.1002/cssc.200900220. PubMed DOI
Kumar H., Bhardwaj K., Kuča K., et al. Flower-based green synthesis of metallic nanoparticles: applications beyond fragrance. Nanomaterials . 2020;10(4):p. 766. doi: 10.3390/nano10040766. PubMed DOI PMC
Kandiah M., Chandrasekaran K. N. Green synthesis of silver nanoparticles using Catharanthus roseus flower extracts and the determination of their antioxidant, antimicrobial, and photocatalytic activity. Journal of Nanotechnology . 2021;2021:18. doi: 10.1155/2021/5512786. DOI
Kuppusamy P., Yusoff M., Maniam G., Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmaceutical Journal . 2016;24(4):473–484. doi: 10.1016/j.jsps.2014.11.013. PubMed DOI PMC
Jain S., Mehata M. S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Scientific Reports . 2017;7(1):p. 15867. doi: 10.1038/s41598-017-15724-8. PubMed DOI PMC
Sharma S., Kumar K., Thakur N., Chauhan M. S. Ocimum tenuiflorum leaf extract as a green mediator for the synthesis of ZnO nanocapsules inactivating bacterial pathogens. Chemical Papers . 2020;74(10):3431–3444. doi: 10.1007/s11696-020-01177-3. DOI
Sharma S., Kumar K., Thakur N., Chauhan S., Chauhan M. S. Eco-friendly _Ocimum tenuiflorum_ green route synthesis of CuO nanoparticles: Characterizations on photocatalytic and antibacterial activities. Journal of Environmental Chemical Engineering . 2021;9(4):p. 105395. doi: 10.1016/j.jece.2021.105395. DOI
Sharma S., Kumar K., Thakur N., Chauhan S., Chauhan M. S. The effect of shape and size of ZnO nanoparticles on their antimicrobial and photocatalytic activities: a green approach. Bulletin of Materials Science . 2020;43(1) doi: 10.1007/s12034-019-1986-y. DOI
Subbaiya R., Selvam M. M. Green synthesis of copper nanoparticles from Hibicus rosasinensis and their antimicrobial, antioxidant activities. Research Journal of Pharmaceutical, Biological and Chemical Sciences . 2015;6:1183–1190.
Ghosh S., More P., Nitnavare R., et al. Antidiabetic and antioxidant properties of copper nanoparticles synthesized by medicinal plant Dioscorea bulbifera. Journal of Nanomedicine and Nanotechnology . 2015;s6 doi: 10.4172/2157-7439.S6-007. DOI
Shabestarian H., Homayouni-Tabrizi M., Soltani M., et al. Green synthesis of gold nanoparticles using sumac aqueous extract and their antioxidant activity. Materials Research . 2017;20:264–270.
Kalaiyarasan T., Bharti V. K., Chaurasia O. P. One pot green preparation ofSeabuckthornsilver nanoparticles (SBT@AgNPs) featuring high stability and longevity, antibacterial, antioxidant potential: a nano disinfectant future perspective. RSC Advances . 2017;7(81):51130–51141. doi: 10.1039/C7RA10262C. PubMed DOI PMC
Elemike E. E., Fayemi O. E., Ekennia A. C., Onwudiwe D. C., Ebenso E. E. Silver nanoparticles mediated by Costus afer leaf Extract: Synthesis, Antibacterial, Antioxidant and electrochemical properties. Molecules . 2017;22(5):p. 701. doi: 10.3390/molecules22050701. PubMed DOI PMC
Saratale R. G., Benelli G., Kumar G., Kim D. S., Saratale G. D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environmental Science and Pollution Research . 2018;25(11):10392–10406. doi: 10.1007/s11356-017-9581-5. PubMed DOI
Mohanta Y. K., Panda S. K., Jayabalan R., Sharma N., Bastia A. K., Mohanta T. K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.) Frontiers in Molecular Biosciences . 2017;4 doi: 10.3389/fmolb.2017.00014. PubMed DOI PMC
Keshari A. K., Srivastava R., Singh P., Yadav V. B., Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by _Cestrum nocturnum_. Journal of Ayurveda and Integrative Medicine . 2020;11(1):37–44. doi: 10.1016/j.jaim.2017.11.003. PubMed DOI PMC
Bharathi D., Bhuvaneshwari V. Evaluation of the cytotoxic and antioxidant activity of phyto-synthesized silver nanoparticles using Cassia angustifolia flowers. BioNanoScience . 2019;9(1):155–163. doi: 10.1007/s12668-018-0577-5. DOI
Selvan D. A., Mahendiran D., Kumar R. S., Rahiman A. K. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and _in vitro_ cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology . 2018;180:243–252. doi: 10.1016/j.jphotobiol.2018.02.014. PubMed DOI
Otunola G. A., Afolayan A. J. In vitroantibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnology and Biotechnological Equipment . 2018;32(3):724–733. doi: 10.1080/13102818.2018.1448301. DOI
Wang L., Wu Y., Xie J., Wu S., Wu Z. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Materials Science and Engineering: C . 2018;86 PubMed
Chandra H., Patel D., Kumari P., Jangwan J. S., Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of _Berberis aristata_ : Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Materials Science and Engineering C-Materials for Biological Applications . 2019;102:212–220. doi: 10.1016/j.msec.2019.04.035. PubMed DOI
Das G., Patra J. K., Debnath T., Ansari A., Shin H. S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.) PloS One . 2019;14(8):p. e0220950. doi: 10.1371/journal.pone.0220950. PubMed DOI PMC
Salari S., Bahabadi S. E., Samzadeh-Kermani A., Yosefzaei F. In-vitro evaluation of antioxidant and antibacterial potential of GreenSynthesized silver nanoparticles using Prosopis farcta fruit extract. Iranian Journal of Pharmaceutical Research . 2019;18(1):430–455. PubMed PMC
Veena S., Devasena T., Sathak S. S. M., Yasasve M., Vishal L. A. Green synthesis of gold nanoparticles from Vitex negundo leaf extract: characterization and in vitro evaluation of antioxidant-antibacterial activity. Journal of Cluster Science . 2019;30(6):1591–1597. doi: 10.1007/s10876-019-01601-z. DOI
Das D., Ghosh R., Mandal P. Biogenic synthesis of silver nanoparticles using S1 genotype of Morus alba leaf extract: characterization, antimicrobial and antioxidant potential assessment. SN Applied Sciences . 2019;1(5):1–16. doi: 10.1007/s42452-019-0527-z. DOI
Mahmoudi R., Aghaei S., Salehpour Z., et al. Antibacterial and antioxidant properties of phyto-synthesized silver nanoparticles usingLavandula stoechasextract. Applied Organometallic Chemistry . 2020;34(2) doi: 10.1002/aoc.5394. DOI
Datkhile K. D., Patil S. R., Durgavale P. P., Patil M. N., Jagdale N. J., Deshmukh V. N. Studies on antioxidant and antimicrobial potential of biogenic silver nanoparticles synthesized using Nothapodytes foetida leaf extract (Wight) Sleumer. Biomedical and Pharmacology Journal . 2020;13(1):441–448. doi: 10.13005/bpj/1904. DOI
Ansar S., Tabassum H., Aladwan N. S., et al. Eco friendly silver nanoparticles synthesis by _Brassica oleracea_ and its antibacterial, anticancer and antioxidant properties. Scientific Reports . 2020;10(1):1–12. doi: 10.1038/s41598-020-74371-8. PubMed DOI PMC
Akintola A. O., Kehinde B. D., Ayoola P. B., et al. Antioxidant properties of silver nanoparticles biosynthesized from methanolic leaf extract ofBlighia sapida. In IOP Conference Series: Materials Science and Engineering . 2020;805 doi: 10.1088/1757-899X/805/1/012004. DOI
Tuzun B. S., Fafal T., Tastan P., et al. Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Green Processing and Synthesis . 2020;9(1):153–163. doi: 10.1515/gps-2020-0016. DOI
Rajput S., Kumar D., Agrawal V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Reports . 2020;39(7):921–939. doi: 10.1007/s00299-020-02539-7. PubMed DOI
Santhoshkumar T., Rahuman A. A., Jayaseelan C., et al. Green synthesis of titanium dioxide nanoparticles using _Psidium guajava_ extract and its antibacterial and antioxidant properties. Asian Pacific Journal of Tropical Medicine . 2014;7(12):968–976. doi: 10.1016/S1995-7645(14)60171-1. PubMed DOI
Akinola P. O., Lateef A., Asafa T. B., Beukes L. S., Hakeem A. S., Irshad H. M. Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of _Cola nitida_ : antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon . 2020;6(8):p. e04610. doi: 10.1016/j.heliyon.2020.e04610. PubMed DOI PMC
Upadhyay N. K., Kumar M. S. Y., Gupta A. Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (_Hippophae rhamnoides_ L.) leaves. Food and Chemical Toxicology . 2010;48(12):3443–3448. doi: 10.1016/j.fct.2010.09.019. PubMed DOI
Clarke G., Ting K. N., Wiart C., Fry J. High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants . 2013;2 PubMed PMC
Gaddam S. A., Kotakadi V. S., Gopal D. S., Rao Y. S., Reddy A. V. Efficient and robust biofabrication of silver nanoparticles by Cassia alata leaf extract and their antimicrobial activity. Journal of Nanostructure in Chemistry . 2014;4(1) doi: 10.1007/s40097-014-0082-5. DOI
Adedapo A. A., Jimoh F. O., Afolayan A. J., Masika P. J. Antioxidant activities and phenolic contents of the methanol extracts of the stems of Acokanthera oppositifolia and Adenia gummifera. BMC Complementary and Alternative Medicine . 2008;8(1) doi: 10.1186/1472-6882-8-54. PubMed DOI PMC
Saumya S., Basha P. Antioxidant effect of Lagerstroemia speciosa Pers (Banaba) leaf extract in streptozotocin-induced diabetic mice. Indian Journal of Experimental Biology . 2011;49(2):125–131. PubMed
Salisbury D., Bronas U. Reactive oxygen and nitrogen species: impact on endothelial dysfunction. Nursing Research . 2015;64(1):53–66. doi: 10.1097/NNR.0000000000000068. PubMed DOI
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal . 2007;19(9):1807–1819. doi: 10.1016/j.cellsig.2007.04.009. PubMed DOI
Dhalaria R., Verma R., Kumar D., et al. Bioactive compounds of edible fruits with their anti-aging properties: a comprehensive review to prolong human life. Antioxidants . 2020;9(11):1123–1138. doi: 10.3390/antiox9111123. PubMed DOI PMC
Nagmoti D. M., Khatri D. K., Juvekar P. R., Juvekar A. R. Antioxidant activity free radical-scavenging potential of Pithecellobium dulce Benth. seed extracts. Free radical and Antioxidant . 2012;2(2):37–43. doi: 10.5530/ax.2012.2.2.7. DOI
Boora F., Chirisa E., Mukanganyama S. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. Journal of Food Processing . 2014;2014:7. doi: 10.1155/2014/918018. DOI
Tehrani H. S., Moosavi-Movahedi A. A. Catalase and its mysteries. Progress in Biophysics and Molecular Biology . 2018;140:5–12. doi: 10.1016/j.pbiomolbio.2018.03.001. PubMed DOI
Rakotoarisoa M., Angelov B., Espinoza S., Khakurel K., Bizien T., Angelova A. Cubic liquid crystalline nanostructures involving catalase and curcumin: BioSAXS study and catalase peroxidatic function after cubosomal nanoparticle treatment of differentiated SH-SY5Y cells. Molecules . 2019;24(17):1–21. PubMed PMC
Balkrishna A., Rohela A., Kumar A., et al. Mechanistic insight into antimicrobial and antioxidant potential of Jasminum species: a herbal approach for disease management. Plants . 2021;10(6):1–25. PubMed PMC
Wills E. D. Effects of lipid peroxidation on membrane-bound enzymes of the endoplasmic reticulum. Biochemical Journal . 1971;123:983–991. PubMed PMC
Birben E., Sahiner U. M., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organization Journal . 2012;5(1):9–19. PubMed PMC
Szabó C., Ischiropoulos H., Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery . 2007;6(8):662–680. doi: 10.1038/nrd2222. PubMed DOI